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Let Cla, b] denote the space of continuous functions = on
[a, b]. Let {aj, ---, a,} be an orthonormal set of functions of
bounded variation on [a, b]. Let

Flo) = f(S:al(t)dx(t), o S" an(®) doc(t)) :

Recently, Cameron and Storvick defined certain operator-valued
function space integrals, and, in particular, an operator-valued
Feynman integral. In their setting, we give existence the-
orems as well as explicit formulas for the function space in-
tegrals of functionals /" as above, We also study the properties
of the operators which arise by “integrating” this type of
functional.

Insofar as possible we adopt the definitions and notation of our
earlier paper [6]. For a better motivated definition of the operator-
valued function space integrals I,(F') and J(F) see [3] and [4].
Throughout the paper we assume that F' has the form given above
where f is a measurable function on R,.

Four cases arise: (a) The normalized constant function a,(t) =
(b — a)~'"* is orthogonal to span {«, ---,a,}. (b) a,ef{a, -+, a,}, say
«, = a, for convenience. (¢) «,¢{a, ---, a,} but a,espan{«, ---, a,}.
In this case, one may choose a new orthonormal basis {8,, ---, 8,} for
span {«,, ---, @,} such that «, = 5,. Now by an appropriate change
in f, one has case (b). (d) «, ¢ span {«,, ---, «,} and «, is not orthogonal
to span {a,, --+, @,}. In this case one may choose a basis {8, -+, Buri}
for span {a,, «;, ---, @,} such that a, = A5, Again after making an
appropriate change in f, we are back to case (b) except that the
dimension is raised by one. Examples of cases (a) and (b) are easily
given. Choose one of the standard orthonormal sets on [a, b]. Pick
out a finite subset. If the constant function is not included, we have
(a); if it is included, we have (b). Cases (c) and (d) will be illustrated
in §4 of the paper; (¢) in connection with the important example of
functions of independent increments. Throughout, the hypotheses are
made on the function f which arises after the conversion has been
made, if necessary, to cases (a) or (b).

To obtain the existence of I,(¥') for Re N > 0 we require only that
Sy, ++-, u,) exp [—p(u + --- + u2)] be integrable for all p > 0. For
the existence of J,(F') we require the integrability of f(u,, «--, u,).
In both cases, the restriction on f is much weaker than in [2] or [9]
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416 G. W. JOHNSON AND D. L. SKOUG

where Cameron’s earlier definition of the Feynman and related integrals
was employed to study functionals of the same type. It is perhaps
worth mentioning that the existence theorems of this paper are the
first results in the theory (see [3], [4], and [6]) in which the func-
tional F is allowed to be unbounded.

In our earlier work [6], the existence of I,(F') was obtained quite
readily but the existence of J,(F') was more difficult to establish.
Here, the situation is reversed. In establishing the existence of I,(F'), a
probabilistic interpretation of I7(F') for X > 0 allows us to write I3(F")
in a more manageable form.

To obtain the existence of J,(F'), one needs to show that it is the
weak operator limit of I,(F) as A goes to —iq along the line p — igq,
p > 0. We get a stronger result than this; in case (a), as in [6], we
show that J,(F') is the strong operator limit of I,(F') as N — —iq
through the right half plane. In case (b), we actually get J,(F') as
the limit in operator norm of I,(F'). Also, as in [6], we get the ex-
istence of J,(F') for every ¢ = 0. In this respect, our results resemble
the “deterministic theorem for J,(F')” from [4], an improvement over
Theorem 5 of [3] which gave existence of J,(F') for almost every gq.
The type of functiocnal dealt with in those two theorems is quite dif-
ferent from ours however. In our case, the operators arising as the
function space integrals will turn out to be convolution operators, and
so, known results on such operators [5, p. 951-964] can be applied to
give information on I,(F¥') and J,(F).

Finally we mention that the class of functionals studied here
neither includes nor is included in the class studied earlier [6]. The
most obvious difference is that, in the present case, F(x) may depend
upon the values of x throughout [a, b] whereas a functicnal F' of the
form F(x) = f,(z(t)) - f.(x(t,)) depends only on the values of = at
Ly ooy tae

2. The operator L, (F). We let a,, a;, -+-, @, and F' be as be-
fore. For convenience we let e;(u) = M*[27(b — a)]~""* exp (—Mu*/2(b — a))
and let * denote the operation of convolution. The following theorem
establishes the existence of I,(F).

THEOREM 1. Let f(u,, --+, u,) be such that
Sy, oo, u,) exp [—pui + oo + ul)]

18 integrable on R, for all p > 0. Then the operator I,(F') exists for:
all x such that Rex > 0. (a) If «, is orthogonal to span {a, ---, &},
then L(F') is given by the formula
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LEWE = & | aitw — v
= [ [H )

(1)

where
d; = ()\4/27[)11./2 S:a(n) Sj“f(vl, oo, Q)W)
exp [— @i + -+- + 9%)/2)dv, - -- dv, ,

Ye L, and —co < &< oo, (b)y If ay = «,, then L,(F) is given by the
Jormula

GEWE = |7 mw = 9ew — )
= [@es)] « FIE)

(2)

where
ha(w) = (v2m) 2" =17 s — a0, ey 0)
exp [N} + «-- + v})/2ldv, + - - dv, ,
Yrel, and —oo < &< oo,
Proof. (b) We first establish the existence of the operator I¢"(F').

Let e L,. For » > 0 the following Wiener integral exists and is
given by

[, FO 4 Gy-ta) + v

SWM f(x—‘”S:a'l(t)dx(t), - x‘l’zizaﬂ(t)dx(t)>
(N ~ a)’/zgial(t)dx(t) + s>dx

= @mt (" ) [ r,  G — @), + )
exp [—3(u; + -+ + wi)]du, <+ du,
= [h@)ex (V)] * [¥()](§)
which is in L, since ke, is in L,. Now for ReXx > 0 let
AN )(©E) = [a@)ex()]* [¥(0)](8) -

Then A(\; ) is in L, for Rex > 0. Furthermore for any ¢ L,, an
application of Morera’s theorem (together with the Fubini theorem
and the Cauchy Integral theorem) to (A(\; +), ), as in [3, p. 533]
enables us to conclude that A(\;+) is analytic (as a vector valued
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function) in A for Rex > 0. But for » > 0,

A )8 = S LFO7Ew 4 (T b) + ddo

Cola,

and so I{*(F') exists for ReX > 0 and is given by

(I (F)p) (@) = [ha(v)ex(v)]* [v()](E) .

Let o:fa =t <t < --- <t, =b] be a partition of [a, b] and let
I (F') be defined by (4.7) of [3] or (2) of [6]. We must show that
I(F)— I*(F') in the weak operator topology as |[jo||— 0. This will
establish the existence of Iy*(F') (and hence of I,(F'), the common
value of Iy*(F') and I?"(F')) and verify (2). We begin with an outline
of the proof. Using the general multivariate normal probability density
function, we obtain an alternate expression for I3(F) for » > 0. This
expression and the old expression agree on the real axis and are both
analytic throughout the right half-plane; hence they agree for all
such that Rex > 0. Using the new expression for I3(F') we are able
to prove the necessary limit statement; the key here is showing that
the covariance matrix associated with the multivariate normal density
funetion converges to the identity matrix.

As is pointed out in [3, p. 530], for A > 0,

aEn© = ([ a@aoe + 9, -, [ apaoa, + 9)

C’o[a,b
cp(NH2(b) + E)dx .
But, as a,(t) = (b — a)7*/*, we have

@EW© = | (] abdeo, v 3 et - o],

Colasb

s N S ettty — a(t )] (6 — ayc | addatt) + ¢)do

Now let X? denote the random variable on the Wiener space Ca, b]
defined by X(x) = Sbal(t)dx(t). Tt is well known [7] that X¢ is dis-
tributed normally vs;ith mean 0 and variance 1; i.e., X7 ~ N(0,1).
Also [x(t;) — x(t;_)] ~ N, t; — t;_,) and, for j == k, [2(t;) — «(¢;_,)] and
[x(t,) — x(t,_,)] are independent. Hence for ¢ = 2, ---, n, the random
variable X7 defined by Xi(x) = 37, a,(t,)[=(t;) — x(t;_,)] satisfies

x; ~ N(0, 3 att)t; — ) -

Now let us consider the convariance matrix C, associated with
the random variables X7, ..., X°. Since each X? has mean 0, the

k™ entry, af, of C, is given by S : X:Xodx. We will now show
Cola,b]
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that C,— I in operator norm as |[¢||— 0 where I denotes the »n by
n identity matrix. It suffices to show that ag — 0; (the Kronecker
8) as |jo]|—0. Since {(t; — t;_) " la(t;) — x(t;_)}7~. is a family of
independent random variables each distributed N(0, 1) we obtain

0% = 3 alt)ant;)(t; — t:)

for all i =1,2,+--,m and £=1,2, -, n. Thus af, =1 for all o.
For ¢ = 2,3, .-+, n, a; is an approximating sum for the Riemann in-

tegral gbaﬁ(t)dt =1 and so a3 —1 as ||¢||—0. For ¢+ k,af is an

b
approximating sum for the Riemann integral S a;()a,®)dt = 0 and so

for 1 #k, a3, —0 as ||[6|]|]—0. Hence C,— I in operator norm as
[le||—0. Thus for ||o| sufficiently small, C, is a positive-definite
matrix and is invertible and has a positive determinant [1]; we assume
throughout the remainder of the proof that ||o|| is small enough so
that C, has these properties. Thus C, — I, C;* — I and |C,["*—1 as
[le]] —0. Now let ¢(v, +--, v,) = @m) " C, [ exp{—3((v;, - -+, va),
C-'(v,, +++, v,))} be the multivariate normal density function associated
with X7, ..., X7 [1]. Here (,) refers to the inner product. Then we
can write [8, p. 41],

EEWE = | (" oo, )0, - 0

(3)
(b — ), + Hdv, -+ do,

which upon a change of variables becomes
I(F ) (E) = NQRm) b — a) ™ C, |7

(4) gl‘(n)'g:f((u‘ — (b — @) Uy, -, W)Y ()
exp [M((( — )b — @)%, -+, w),

Ci((uy, — E)(b — @), uy, + =+, u,))/2ld0t; + + - dit, .

We now have our alternate expression for I§(F') for A > 0. This
formula defines an operator-valued analytic function of A for Rex > 0
as can be shown in the usual manner [3, p. 533] by applying Morera’s
theorem. To check the details of this, one should keep in mind the
properties of C, and may also wish to consult the remainder of this
proof.

Now (4) and the defining expression for I5(F) are equal to the
same Wiener integral for A > 0 and both expressions are analytic for
Rex > 0. Thus (4) gives I{(F') whenever Re )\ > 0.

Now let A be fixed (Rex > 0) and let +, v, L, We finish by
showing (I{(F)4r, ¥r0) — (I (F ), ) as ||o|| —0. It will suffice to
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show this for an arbitrary sequence of partitions {o,} such that
llopll — 0. Comparing (4) and (2) carefully and recalling that C;' —T
and |C, [*—1, we see that the proof of (b) will be finished if we
can justify an application of the dominated convergence theorem to
(5) @r)" N (D — @) Gy [MIE Y, ) -

Now since C;;!— I, it is easy to see that there exists N such that
k = N implies

((wl) ) wn)r C;kl(wu M) wn)) = %((wlr ) wn)’ (wn ) wn))
for all vectors (w,, ---, w,). Hence for t = N, a dominating function
is given by
[ (%, — (b — @)%, Uy = ooy w,) |[9(wy) [ 4ro(8) |

-exp {——EZ—)”[(@L1 ~ &b —a)yt+ U+ - + ui]}

which is integrable by our hypotheses. Thus the proof of (b) is finally
complete.

(a) In this case we note that for » > 0 and + e L, the following
Wiener integral exists and is given by

Sc[ O+ () + da

»

foom f()r”z S:al(t)dx(t), e A S:an(t)dx(t)>

.q;,@—m(b — gyt Siao(t)dx(t)>da;

= <2n)-<”+”'2§°° o+ D7 A0 e ) O+ 9)

-exp {—3(u® + ui + -+ + wd)}dudu, -« du,
= [d:e: )]+ [v(W)1(E) -

The remainder of the proof in this ease is similar to the proof of the
above case and is omitted.

Using the lemma from [6] and results on convolution operators.
found in [5, p. 951-964], we easily obtain the following corollary.
L(F)* will denote the adjoint of I,(F').

COROLLARY. For all N such that Re X > 0, ,(F) ts a normal
operator. In case (a): (i) I(F)* is given by the formula

(L(FY4)(E) = [d:8w)] * [y(w)](E) .
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i) || LF)|| = |dy]. (ii) The spectrum of I(F') consists entirely of
continuous spectrum and 1is {0} U {d e~/ : —co <y < oo}, (iv)
The range of L(F') s contained in the set of equivalence classes of
L, which contain a continuous function. (v) Lf d, = 0, [,(F') is one-
to-one. In case (b): (1) L(F)* is given by the formula

(LEY)E) = [ha(—w)Ew)] = [y @)]E) -

(i) || L(F)|| = sup {|F (he) ()| : —o0 <y < oo} where F denotes the
Fourier transform. (iii) The spectrum of I(F') is the closure of the
range of F (h.e,).

3. The Operator J,(F').

THEOREM 2. Assume f(u,, +-+, u,) is integrable on R,. Then the
operator J (F') exists for all q # 0. (a) If a, is orthogonal to span
{a,, -« -, @}, then J,(F') is given by

TAEYNE = di | e slo — DV )v
= [d_ie—i()]* [¥(v)](§)

Jor e L,, where the integral is interpreted in the mean [3, p. 521].
Furthermore J(F') is the strong operator limit of L(F) as N— —iq
in the right half plane. (b) If a, = ay, then J(F') is given by

(6)

TUEWE = | halv = De_slv — D)o
= [hos@e-s0)]+ [ O]

for vre L,. In this case J(F) is the limit in operator norm of I(F')
as »— —1iq in the right half plane.

(7)

REMARK. (i) In case (a), J,(F') is not the limit in operator norm
of I(F) since, if d_;; # 0, J(F') lies in the open set of invertible
operators [5, p. 862] while by the corollary above we see that I;(F)
is never invertible. (ii) The integrability of

Sy, o, u,) exp {(—p(ui+ -« + ul)}

for all p > 0 is not sufficient to insure the existence of J (¥'), in fact
the boundedness of f(u,, ---, u,) is not sufficient.

Proof. (a) The proof of this case follows from the theorem in
[6]. (b) Let g + 0 be given. Let K (F) denote the map defined by
(KoF)¥)(8) = [hos(@le_ig(@)] = [v(0)](§). K (F) is an operator since
h_ e 18 in L. It will suffice to show that K (F) is the operator
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norm limit of I,(#) as » — —4q. However, by [5, p. 953], it suffices
to show that h,e, converges in L, norm to A_,e_;,, as »— —iq. But
for all » such that |\] < 2|q| and Re: > 0, |h(v)e;(v)| is dominated
by the L, function

0@ = (g7 " o0 = -[7 17,0 ooy 0 v, o,

Thus the result follows upon application of the dominated convergence

theorem.
Again using [5, p. 951-964] and the lemma from [6], we easily

obtain the following corollary.

COROLLARY. In case (a): (i) For d_;; # 0, (d_;,))"'J(F') is a unit-
ary operator and so J(F) is a normal operator and ||J(F)|| = [d_i,|-
(ii) J(F')* 1is given by the formula ’

TEYE) = iy _eulv = po)do
where the integral is interpreted in the mean. (Gii) If d_;, = 0, J,(F)
18 invertible as an element of £ (L,), and J(F)™ = |d_, | 2T (F)E. In
case (b): (1) J,(F) s a_nm‘mal operator. (ii) J(F)* is given by the
formula, (J(FY4)(E) = [l —w)es(w)] * [ ()] (E).

(iii) T(F) || = sup {|.F (h_ie-i)(¥) | : —oo <y < oo}
(iv) The spectrum of J,(F') is the closure of the range of F (h_ie_:,)-

4. Examples.

ExaMPLE 1. Let

b
a

F(x) = exp {ig:[x(t) — x(a)]dt} — exp {zs ®— t)dx(t)}
= exp {i(b — )23 S:(b (I t)dx(t)} )

Now this is a functional of the type we are considering where
a,(t) = 37b — a)~**b — t)

and fy(w,) = exp {¢(b — a)**3~"y4,}. This illustrates case (d) of the in-
troduction. If we let B,(t) = 3"*b — a)~*/*(@ + b — 2t) then {8, = a,, B}
is an orthonormal basis for span {«a,, «,}. Also «,(t) = (B.(t) + 3'%8.,(¢)).
Thus

F(z) = exp {i(b _ ayhgigeie Sb Bu)dz(t) + i(b — a)3/22—‘§:,81(t)dx(t)} i
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Thus the appropriate function is
Sy, w,) = exp (Ub — a)**271372(u, + 3'u,)}
and so case (b) of Theorem 1 is applicable. We obtain
hi(w) = exp {i(b — a)u/2 — (b — a)®/24\}

and . Z (h;e;))(y) = exp {— (b — a)’/24\ — (b — a — 2y)*(b — a)/8\}. Thus,
by the corollary, we see for example, that

I L(F)|| = exp{—“’;zf‘%;ll‘;&} .

In [3] the functional

Fy(z) = exp {z S:m(t)dt}

is considered. But (L,(F)v)(€) = e“*(L(F)¥)(€), so that I(F,) is
simply I,(F') followed by the unitary operator of multiplication by
e#®=_  In particular, ||L(F)|| = || L(F)]|.

ExampPLE 2. (Functions of independent increments.) Let
oifla=t <t < v <t,=0]
be a partition of [a, b]. Let
F@) = g(@@t) — »(@), 2(@t) — (@), -, 2(b) — 2(t.-) .

We wish to illustrate how such functionals may be treated in the
framework of our theorems. We consider the case where n = 3. Now

0(@(t) — 2(a), w(t) — a(t), 50) — a(t)
= ot — 0 a®datt), (t — 1] @ (da®), © — 1| a®ds))

where

a ) = ¢ — af)—IIZX[a,tl)(t): ay(t) = (t. — tl)’-llzx[tl,tz)(t) ’

and a,(t) = (b — t)™*Y,n() is an orthonormal set. This situation
illustrates case (¢) of the introduction. Accordingly, we seek another
orthonormal basis {8,, B,, B;} for span {a,, a,, a;} with 8, = «,. Routine
but tedious computations show that we may take

Bz(t) = (b - t1)1/2(t1 - a)—llz(b - a)—IIZX[a,tl)(t)
— (t, — a)**(b — t)7b — @) Y1e,,00(0)
and
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Bs(t) = (b - tz)llz(tz - tl)—llz(b - tl)_IIZX[tl,tz)(t)
= (& — &b — L) THb — 8) T Y gs, ()

Then writing the a;’s in terms of the 8;’s and letting

Sy, s, Uy)
= g((t, — 0)""*(b — a)™"[(b — )" "u,
F (6 @, (6 — BV~ 8 — 0 — )b — @),

+ (0 — )" — ) U,
+ (t—t)"*(0— @)~ u], (b— )" [— (b — )"t — @) (b — £.) (b — @) u,
- (tz - tl)m(b - tl)—llzua + (b - tz)xlz(b - a)—1/2u1]) ’

we obtain
@) = £([ .0ds), | 8.0datt), || 8:00datt))

which is case (b). In connection with Theorem 2 we mention that if
¢ is integrable, so also is f.

EXAMPLE 3. Let f(u,, u)) = ¢~ and let

) = f(S:al(t)doc(t), Siaz(t)dx(t)>

where a,(t) = (b — a)™** and {a,, @} are orthonormal. In this case,
ha(u) = NN 4 2)712%0-0  and  F (he)(y) = MA + 2)lembmaviian)
Thus for example || L(F)|| = M N+ 2|7 and || J(F) || = |q] |2 — ig|™

The authors would like to thank R. H. Cameron for a helpful con-
versation and Professors Cameron and Storvick for an opportunity to

see an early version of [4].
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