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FIBRATIONS OF ANALYTIC VARIETIES

KeiTrH KENDIG

The induced continuous, differentiable, or analytic fibering
about any point of a continuous, differentiable, or analytic
group A, by a subgroup B is well known, as are generalizations
to various spaces with operators, One may ask about analogous
results for varieties per se, For instance, if C is any arc in
E? and peC, then there is always a homeomorphism ¢ from
a neighborhood U of p to I X I (I=(0, 1)), se that o(U N C) =
I x {4}. But there are arcs in E* which are so wildly embedded
that at no point of the arc is there an analogous fibering,
This paper considers a general fibration problem for complex-
analytic varieties, and extends a result on fibering hypersurf-
aces due to Hassler Whitney.

Roughly, one can formulate a basic fibering question for complex-
analytic-varieties in this way: Try to decompose any variety V into dis-
jointfsubmanifolds, or “strata”, so that V has a fibration about each
point p of V, using a piece of the submanifold through p as fiber (Con-
jecture 1.4). We require such a decomposition to be locally finite.
This problem is easily solved if we ask only for continuous fibrations,
but it is in general not solvable if one requires analytic fibrations (see
'Remark 1.6). A natural notion turns out to be “semi-analytic” fibra-
tion, in which analytic fibers vary continuously. For a hypersurface
W, Whitney has found such fibrations about all points off a subvariety
of codimension 2 in W. We extend his result to arbitrary varieties,
and using some of the ideas of the proof, we also answer a question
of his concerning the structure of any variety near a submanifold of
codimension 1.

1. Preliminaries; statement of the fibering theorem. Let V
be analytic of dimension » in an open set H of & " (where & denotes

the complex line).

DEFINITION 1.1. A set M S H is a manifold if about each point
pe M there is a & "-open neighborhood U such that M N U is the set
of ecommon zeros in U of a set of functions analytic in U, and M is
nonsingular. A stratification of V is a splitting of V into a disjoint
union of a locally finite set of irreducible manifolds, called the strata,
such that the boundary of each stratum is the union of a set of lower

dimensional strata.

THEOREM 1.2. There is a stratification of any variety [3, p. 227].
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Let M be an s-dimensional stratum of V, and let 4" denote the
r-fold product of an open disk in &

DEFINITION 1.3. A & "-open neighborhood U of pc M has a semi-
analytic fibration if there is a homeomorphism ¢ from 4° X 4 *to U
such that for each ge 4", 6(4° X @) is biholomorphic to M N U; for
g = 0ed™,0(4° x q) lies entirely in (V\M)N U or (H\V) N U, and
o(4*x 0y =MnU.

CONJECTURE 1.4. Any analytic variety V has a stratification such
that each point has a neighborhood with a semi-analytic fibration [3,
p. 230].

Our main fibering theorem is

THEOREM 1.5. V has a stratification so that about any point in
an (r — 1)-dimensional stratum, there is a meighborhood which can be
semi-analytically fibered.

REMARK 1.6. An example of Whitney (see [3, p. 239]) shows ¢
cannot be made biholomorphic in general.

We collect here some other definitions and facts used in the
sequel.

DEFINITION 1.7. The tangent cone C(V,p) of V at pe V is the
set of all g€ & " such that there are sequences {a;}(a;€ €) and ¢; — p
(g:€ V) so aig; — ) —«.

If V has pure dimension r at p, C(V, p) is 2 homogeneous algebraic
variety of pure dimension ». If I(V, p) denotes the ring of germs of
functions holomorphic in &* at p and vanishing on V, then & (V, p)
is the variety of zeros in & of the set of all initial polynomials of
each function in I(V, p). (The initial polynomial of f at p is the poly-
nomial of all terms of lowest order in f’s expansion at p.)

DerFINITION 1.8. Let varieties V, V, have pure dimension », s re-
spectively in a & "-open neighborhood of a point p. V, and V, inter-
sect properly at p if the codimension of V,N V, is the sum of the
codimensions # — 7 and n —s of V, and V,. V., and V, intersect
transversally at p if C(V, p) and C(V,, p) intersect properly at p.

THEOREM 1.9. Suppose an (n — r — 1)-dimensional linear variety
L,_,_, intersects V in an isolated point p. Then [3, Lemma 9.7]
there is a & ™open neighborhood U of p so that the points in U of



FIBRATIONS OF ANALYTIC VARIETIES 443

the union of the parallel translates of L., . through points of VN U
form an analytic variety in U, called the cylinderization of V by
L., near p. We denote it by V(L,_,_,, p) or simply by V(li_,_)
if the reference to p is clear.

THEOREM 1.10. If W is any subvariety of V, there is a strati-
JSication so W lies outside the strata of dimenston > dim W.

This is clear from the proof of (1.3).

NoraTtioN 1.11. S(V) will denote the singular subvariety of V;
", n-dimensional complex projective space; and G,,,, the Grassmann
manifold of all r-subspaces of #". (, ---, %, will denote analytic
co-ordinates about a point p of an (r — 1)-dimensional stratum M. %
will stand for (z,.--,2,.,0,---,0, % for (0,--+,0,%,, ---,x,), and
by abuse of notation, (%, %) for (x, ---,2,). Throughout the paper,
any & "-open neighborhood U about p that we consider will be such
that M N U is an open subset of the (x, ---,2,_,)-plane G gy oo ys
(where &, denotes the w;-axis, P the (w;, x;)-plane, ete.).

2. Proof of the fibering theorem. The strategy of the proof
is this: We first prove the following theorem, which gives us the
stratification used in our main fibration theorem.

THEOREM 2.1. Any variety V of dimension r has a stratification
so each (r — l)-stratum M has the following three properties:

(i) The dimension of V at any pe M is pure.

(ii) For any fired pe M, for each g V\M and each € > 0, there
8 a 0> 0 such that distance(q, p) < 6 = d(C(V, q), p(q)) <e&. (p(q)
is the analytic r-plane containing q and the part of M near p, and
d is any Hausdorf metric on G,,,.)

(iiiy For any fixed pe M, for each qc M and each € > 0, there
s @ 0 >0 such that distance(q, p) < o= for each xecC(V,q) (the
natural image of C(V,q) in "), there is a ye€ C(V, p) within €
of x (relative to a metric in F ).

REMARK 2.2. Property (ii) expresses a kind of continuity of C(V, ¢)
as g approaches a point p in M transversally, while property (iii) does
the same for ¢ varying in M.

We next prove

THEOREM 2.3. Let V be stratified as in Theorem 2.1. For each
p wn an (r — D-stratum M (where dim, V = r), and each (n — r)-plane
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P transverse to V at p, there is a & "-open neighborhood U of p so
every translate P+ q (e VN U) is transverse to V at q.

Using the above theorem, we can now easily prove our main re-
sult, Theorem 1.5, as follows: If pe M and dim, V = 7, then, assum-
ing the part of &, ..., near p forms an open set of p, (2.1)
together with [3, p. 2783, Zusatz II] shows that a V-open neighborhood
of any point of V\M near p may be represented in the form

(2'4) L; = fi($u ] ﬂ'/',.) (7’ =7+ lr RN (2 f1 analytic) .

With these functions we easily construct a fibration of a neigh-
borhood of p using Whitney’s method [3, §§ 11, 12].
If pe M and dim, V = » — 1, then Theorem 1.5 is trivial.

Proof of Theorem 2.1.

(i) Suppose r <n. Write V=V U V" (V', V' varieties), V'
having pure dimension #», dim V" < r,dim (V' N V") <» — 1. Then
we may stratify V so V' N V” is contained in the union of strata of
dimension <r — 1 (1.10).

To prove (ii) and (iii) we show that in any stratification satisfying
(i), those points of M where the conditions of (ii) and (iii) do not
hold are contained in an analytic subvariety of V' having dimension
less than » — 1, and may therefore be put into lower dimensional
strata (again by 1.10). Any (r — 1)-stratum of this new stratification
will then satisfy (i), (ii), and (iii).

(ii) The points of M satisfying (ii) are called regular points by
Whitney; that we can choose a stratification satisfying (ii) is essentially
done in {4, Th. 19.2].

(iii) We show the set of points where the condition in (iii) fails
ig contained in the set A, defined ag follows: Denote the topological
closure of the (countable) collection of (r — 1)-strata by M, M,, ---.
Let A, be the set of points of M, having multiplicity in V (Definition
2.5) greater than the minimum assumed on M;. Then take A to be

=, A;. To prove (iii) we must show

(a) A is an analytic subvariety of V (of dimension < » — 1);

(b) The condition of (iii) holds in M\A. The main part of the
proof of (b) is establishing

(b)) For each pe M\A, there is a neighborhood U, such that
7 = {(q, C(V, q)) : g€ M;\A} is analytic in (M N U,) X "; and

(b)) Bach C(V,q) (e M N U, is a union of r-planes containing
Mn U, We will see (b) is an easy consequence of these two facts.

Proof of (a). We recall the



FIBRATIONS OF ANALYTIC VARIETIES 445

DErFINITION 2.5. Let p be any point of V, and suppose an (n — 7)-
dimensional linear variety L,_, intersects V transversally at p. Then
there is a & "-open neighborhood U of p and an integer m(p) so that
at each ge U off a proper analytic subvariety of U, L,_, + q intersects
V N U in exactly m(p) distinct points. We call m(p) the multiplicity
of V at p.

We next note

LEMMA 2.6. The set of points of V with multiplicity greater
than a fixed integer forms a subvariety of V.

(One proof will appear in a forthcoming book on analytic varieties
by Whitney; a general ring-theoretic proof appears in [1, Th. 40.3].)

Now let m,; be the smallest number such that there is a point of
M; having multiplicity m; in V. Then by Lemma 2.6, the set V,,
of points of V having multiplicity greater than m, is a subvariety of
V; since, by [3, Lemma 8.2], M, is also a subvariety of V,

Ai = Mi ﬂ Vmi

is a subvariety of V. And because M, is irreducible, dim 4; < dim M,.
Now by local finiteness of the M;, we see that Uz, 4; is a subvariety
of V having dimension less than » — 1.

REMARK 2.7. From here to the end of the proof of Theorem 2.3
a & "-open neighborhood about a typical point in M\A (which we will
call 0) will be subjected to a finite succession of requirements. To
keep notation simple, denote by U a neighborhood small enough so
all requirements at any stage are satisfied.

Proof of (b,). Let 02" be a typical point of M\A. We show
that for some U (0e U), &% N (M N U) x €") is analytic. (Assume
UNA= @.) Since the proof is a bit long, we divide the proof into
three parts:

First, we show there is an open neighborhood N in the Grass-
mannian G, ,_,_, of all (n — r — 1)-subspaces of & *, so that the cylindri-
zations V(L}_._) of V at 0 along each L} , , in N are all analytic in
some Z"open U, and such that the multiplicity of each point in
M N U is the same in any V(L}_,_) as it is in V. Second, using this
fact we show o7 (L}_,_) = {(g, C(V(L}_,_), 9)|ge M N U} is analytic
in (M\A) N U) x " for any L} _,_, above.

Finally, using the analyticity of each .&(L}_._,), we prove (b,).

To establish the first assertion, let L}, , be a subspace of any
L, . in (2.5) so that for almost every qec U,n(UN VN (L._, + Q)
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consists of m points, where m = multiplicity of 0 in V, and 7 = pro-
jection of L, _, to L¥ , ,. From intersection theory it is clear that
the conclusion holds for some N about LZ*_._,, and possibly smaller U.

To prove the analyticity of each .o7(L}_. ), we note there is a
function f holomorphic in U and vanishing on V and such that at
any gqe M 0 U, V(L:_,_) has multiplicity equal to the order of f at
g (essentially [1, (40.8)]). Therefore the order of f is m at each point
of M n U, so the initial form is always the m-th-degree term of f.
The analyticity of the coefficients of any term then implies each
&7 (L}_,. ) is analytic in (M\A) N U) x &

We now prove (b). We begin by showing

2.8) C(V(L}_,_),0)=(C(V,0) (Li_._) forany L}_,_, transverse to C(V,0).

Write " = L,., x L¥_,_, for some (r + 1)-space L,.,; let p be
the natural projection onto the first factor. Since 0 is isolated in
Ly ....NnC(V,0),

Clo(V(Li-,-)) = p(C(V(Li_,—))) -

(This is just a restatement of [4, Lemma 9.7].) If &, ..., =
L} ., no germ in I(V(L}_,_)), 0) involves any of the variables z,.,,
-+, %,. The characterization in (1.7) of tangent cones in terms of

initial forms then gives (2.8).
Using this result, one easily checks that for each ge M N U, there

are subspaces
(L:f—r—l)u MR} (L:——r—l)nq
such that the analytic set

o = 0 (T-))

has fiber C(V, q) above q. Furthermore, the fiber of .o/, over any
point ¢' in M N U contains the tangent cone at ¢’. (Each V(Li_,_);
contains V, so

CV(Li-,.)i @h2C(V, ¢') ;
hence

Q CV(Li—,-)s ¢)2C(V, ¢').)

It then follows that the analytic set
N (L, )n(MnU) x &™)

*
Ly 1 &

is just & N((MNU) x &"). We have thus proved (b).
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NoTAaTION 2.9. By local finiteness, for some U, & N((MNU) x €™)
is defined by finitely many cylindrizations; we denote them by £, -+ -, f..
We next prove (b,). (b) will follow easily from (b,) and (b,).

Proof of (b,). Let U be a common neighborhood in which all the
cylindrizations above are defined. Now if the initial polynomial at
peMNnU of any f, defining any cylindrization of V involved any
variables z,, -+, z,_,, the order of f, at » could not be a constant m
on points of M N U. Therefore if e &7 (L}_._,), then

0,C) + 97 (Li.) .

Hence a similar relation holds for .o N (M N U) x ™). This, together
with the fact that C(V, p) is homogeneous of pure dimension 7, shows
that C(V, p) Nz7~'(p) is the union of finitely many 1-subspaces of
7~(p) (mw being the projection (%, Z) — (Z).) This in turn gives (b,).

Proof of (b). From (b,) we may clearly assume that the z in
(2.1, (iii)) is contained in 7—'(0). (b) is then obvious when we observe
that the variety in (M N U) x & obtained from

7 N (M U) x 7(M))

is of pure dimension 1 and its fiber above any Z ¢ M; N U has dimension
0.

We now assume V is stratified as in Theorem 2.1. A proof of
Theorem 2.3 can be given following Lemmas 2.10 and 2.11 which give
information on tangent spaces near, but off, any (r — 1)-stratum M.

Let 0 be a typical point of M, and suppose &, ,,......, is transverse
to C(V,0). Let dist(,) be the usual distance on &% and let = be as
above.

LEMMA 2.10. For € > 0, there is a 0 > 0 such that if
@, zeV, | <6,[x| <o
and 0 < |Z| < d, then

dist<(-£—), C(V, @) N n*%a?')) <e.
12|

Proof. We may choose 6 > 0 so C(V, Z') intersects #—*(z') properly
for each Z', |%’'| < ¢ (using (b,)). The family C(V, %) N #~'(Z’) is then
easily seen to be continuous at all Z’ close to 0. We may therefore
assume ¥’ = 0.
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Let g¢;; denote the initial polynomial of f; expanded about Z. Let
S be the unit sphere in z—* (0), center 0. For ¢ >0, the set A of
all points in S at a distance =& from C(V, 0) Nz~ (0) is compact;
let @ > 0 be the minimum of

|g1,0| + e + |gs,0i
on A. Then

senl =i

~
+
_|_

oo

|z

implies

dm«g)ammmrmg<a

|Z]

One can easily find such a ¢ so this holds; if (%, ) e V, then

02l - oo )]
+ [1Z]7"fu@, &) — |Z["ig,,.(F, T)]

(m; = deg (9;)). The first difference is small for (#, ) near 0 by the
continuity of g, the other difference is too, since fi(Z, %) — ¢:.(%, Z)
is holomorphic of order at least m,; 4+ 1 at all Z sufficiently near 0.

Now let P(q) be as in (2.4), and let d(,) be a metric in G, .

LEMMA 2.11. There is a & "-open neighborhood V about 0 such
that iof e (V\M)N U, then

(1) d(C(V, q), P(g)) is small; and

(2) d(P(g), C(V,0) is small.

Proof. (1) is obvious, since 0 is regular. (2) follows easily from
Lemma 2.10 since C(V, 0) and P(q) are just the cylindrizations in "
along &; of C(V, 0) N #*(0), and the analytic line through (0, 0) and
q, respectively.

Proof of Theorem 2.3. Suppose U has diameter o; denote it by
U@©). Then Lemma 2.11 shows
(2.12) for any ¢ > 0, there is a ¢’ > 0 so that for

ge (VAM) N U@), d(C(V,q),C(V,0) <¢.

Let W be the image in 7" of a homogeneous variety W< &,
and d*, a metric in <#**; then
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(2.13) For ¢ > 0, there is a § > 0 such that if ¢ V N U(9), then
for each pe C(V, g), there is a point of C(V, 0) within & of p.

When p¢ M, this follows easily from (2.12) and the compactness of
C(V, q) and C(V, 0); when pe M, this is just (2.1, (ii)).

Now let P be any (n — r)-plane of %" transverse to V at 0.
P + g is transverse to V at ge M N U if and only if P and C(V, q)
are disjoint. Now let d, be the infimum of d*(x, y) over x ¢ P, y ¢ C(V, 0);
then d, > 0. Choose ¢ in (2.13) to be % d,; any corresponding U(d) then
serves as the required U in the statement of Theorem 2.3.

3. Proof of the fibering theorem. Using Theorem 2.3, one
may now prove our main result, Theorem 1.5. Let 0 be a typical
point of any (r — 1)-stratum M (MNA = ), and suppose &, ,,,....s,
is transverse to V at 0. Then (e.g., from [2, p. 273, Zusatz II))
there is a &€ "-open U about 0 with the following property:

(8.1) There is a neighborhood N(g) open in U N <%,.,, about any
qe UnN %%,.,\M, such that the points in (V\M) N U above N(q) are
given by holomorphie functions «; = @;(%, -+, 2,) G=r+1, -+, n;
j=1, .-, m for some fixed m).

Now when z, # 0, define v;(0, ---, 0, z,, z;) to be

< i i'Oy"'ywar)I ~
2 |xz g’f( ]
[k'_'l 'xi - g)ik(oy M) O’ xr)l

when for each k =1, -+, m, z; # ¢,;(0, ---, 0, z,); let
'1//‘.,-5(0, *cy 0, Loy @ik(os M) Ov x'r)) = aik .
It easily follows from [3, §§11, 12] that for ¢ =r + 1, ---, m,

h.-(ﬁ?,_, sy Ty, xj) = ];1 {n,h,-(O, ttty 0) Loy wi)'[@ﬁ(xl! %y 1‘)

- @H(O, cy 07 xr)]}

when z, = 0, and hy(x,, -+, ®,_;, 0, ;) = x; define a semi-analytic fibra-
tion in a & "-open neighborhood of 0. (An individual fiber is obtained
by setting z, and x; equal to constants.)

4. A theorem on points of V near a submanifold. Using
some of the above ideas (particularly Theorem 2.3) we can answer
another question raised by Whitney concerning the structure of V near
points of a submanifold M of codimension 1 in V. He showed the
sheets of V attach smoothly to M (Definition 4.1) off a closed nowhere
dense subset of M. We prove this nowhere dense may be taken to
be an analytic subvariety of M.
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DEFINITION 4.1. Let 0 be a typical point of M above. Then V
attaches smoothly to M mnear 0 if there is a & "open U of 0 such
that:

(a) Representation (3.1) holds;

(b) If V, is any irreducible component of V' N U, then there is
a holomorphic vector field v'(%) = (0, ---, 0, 1, v, (&), - -+, vi(X)) such
that C(V,, &) = &% X L(v;(Z)) (L(v,(Z)) is the 1-subspace of &, through
v(Z));

(¢) 0 is a regular point; and given & > 0, there is a ¢ > 0 so that
if ye VN (@& + &%) and 0 < |y — Z| < 4, then

i Y=  v(X)
iy Toan) < ¢

THEOREM 4.2. Lzt M bz any submanifold of codimension 1 in
V. Then there is a proper subvariety W of M so V attaches smoothly
to V near point of M\W.

Proof. (a) Let A’ be the variety of § 2 having dimension <r —1,
containing A and the nonregular points; we saw in § 3 that repre-
sentation (3.1) holds at any point of M\A.

(b) To find a proper subvariety of M off which (b) holds, let
F =7 N[MnU) x 5] (with co-ordinates %, T as before). Assume
Z,% are such that for each pe M N U, the part in (&= + p) N U of
the hyperplane K defined by . = 1, intersects each of the 1l-subspaces
of the fiber above p (see (2.1, (iii, b,))). Using standard arguments,
one may then show there is a proper subvariety D of M so that if
0e M\(D U A’), the part of <& above a small neighborhood in %,.. N K
about the point # = 0, 2. = 1 is representable by holomorphiec functions
hpsi(®), =+« b (®). D will be a “diseriminant”—the union of

M 0 Clos [S(Z)\M x (0)]

(S(&#) = singular variety of <#) and the set of points ¢ of M where
< fails to intersect (¢, &%) transversally. That there is an analytic
subvariety of V coinciding with this last set on V\S(<Z) may be seen
by noting that the closures of the set of tangent cones of any variety
VE HS & ™ is analytic in V x & *, the fiber above any simple point
pe V being just the tangent space to V at p [3, Th. 5.1]. Hence D
is intrinsically defined. Hence (b) holds at each point of M\(D U A’').

(¢) Any point of M\A’ is regular; further, one may verify that
the proof of the last part of (c) given in [4, §14] at any point off
the dense set considered there, may be used at any point of M\(D U 4’).
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