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Let S;, Sz, ---, S, be a set of commuting contraction opera-
tors on a Hilbert space H, let U, U, ---, U, be a set of com-
muting unitary operators on a Hilbert space K containing H,
and let P be the projection from K to H, Theset Ui, ---, U,
is called a set of commuting unitary dilations for S;, ---, S,
provided that

PUMU2 -+ Upne =SS5z - - Syne

for all « in H and for all nonnegative integers m;, ms, - - -, My.
Sz.-Nagy proved that a single contraction has a unitary dila-
tion, and Ando showed that any two commuting contractions
possess a pair of commuting unitary dilations, This note
presents several counterexamples which disprove the corre-
sponding conjecture for three or more contractions,

In §3, three commuting contractions, K, S, T are con-
structed which do not have commuting unitary dilations. The
operators B and S each have norm one, while the operator T
may be chosen to have any norm between zero and one,
However, the proof yielding the counterexample fails complete-
ly if the operators R,S,T are replaced by iR, AS, T with
0 < 2 < 1, and this raises another question.

It is known that a finite or infinite set of commuting con-
tractions S;, S;, --- which satisfies > || S;||2 <1 possesses a
set of commuting unitary dilations, Thus it appears that the
“size’’ of a set of contractions may be relevant to the ex-
istence of commuting unitary dilations; and since two of the
contractions in §3 have norm one, it is conceivable that this
example might be only a peculiar ‘‘boundary’’ phenomenon.
In §4 this notion is dispelled by a more complicated example
showing that three commuting contractions, each of norm
strictly less than one, can fail to have commuting unitary
dilations, Although the example of §4 is in most (but not all)
respects more powerful than that of §3, the latter is presented
separately because of its simplicity,

Section 3 also observes that a recent result of Sz.-Nagy and
Foias is equivalent to Ando’s theorem, Section 5 shows that the
counterexamples constructed in this paper to the unitary dila-
tion conjecture cannot be used as counterexamples to another
well-known conjecture concerning spectral sets,

2. Notation and preliminaries. If H is a subspace of a Hilbert
space K, the orthogonal projection from K to H will be written as
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P,, and the restriction of an operator S to H will be written as S|H.
A contraction operator S on a Hilbert space is a linear operator with
[|S]] £1; a proper contraction satisfies || S| < 1.

We shall require a well-known result of Sz.-Nagy which states
that the minimal unitary dilation of a contraction is unique up to
unitary equivalence.

THEOREM (Sz.-Nagy). Let S be a contraction operator on a
Hilbert space H, and let U and U’ be wunitary dilations of S to
Hilbert spaces K and K’, respectively, containing H. Let K, (resp.
K3) be the smallest subspace of K (resp. K’') which contains H and
reduces U (resp. U’). Then there is a wumitary operator W from
K, onto K| such that W|H is the identity operator, and W(U|K)W =
U’ | K.

The operator U|K, is called the minimal unitary dilation for
the operator S.

3. A simple example. In this section we present a very simple
example of three commuting contraction operators which do not pos-
sess commuting unitary dilations. Let H, be a Hilbert space of di-
mension at least two, and let H = H, H,. Let V be any unitary
operator on H, which is not a scalar multiple of the identity operator
I, and let A be any contraction on H, which does not commute with
V. Define operators R, S, T on H by the operator matrices:

[ o s=lv o 7= lh o)

Notice that R, S, T commute no matter how V and A are chosen; in
fact, the product of any two of them is 0. We shall show that these
operators cannot have commuting unitary dilations.

The proof is more natural when expressed in functional, rather
than sequential, notation and for this reason we introduce the Hilbert
space K, of all Fourier series .7 _., 2"x,, with the Fourier coefficients
x, in H, and 3,||2,]* < . The inner product <{-, -> on K, is de-
fined, as usual, by ) 2"x,, > 2", = 32(%us Ya), Where (-, -) is the inner
product on H,. Such a Fourier series may be considered to define an
honest square-integrable function from the unit circle into H, (see [8]
for details), or it may be considered as merely a convenient way of
keeping track of the components of a conventional infinite sequence
of elements of H,. For our purposes it makes no difference.

Let U be the operator on K, defined by: U, z"x,) = >, 2"*'x,.
When expressed in sequential notation, U is just the familiar bilateral
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shift acting on a direct sum of copies of H,. Further, if H = H,§ H,
is identified in the obvious way with the subspace of K, consisting of
all functions of the form =, + 2z, with =z, x, in H,, then it is very
eagsy to check that U is the minimal unitary dilation of the operator

R defined above.
Now suppose R, S, T have commuting unitary dilations Uy, Us, U,

acting on a Hilbert space K containing H, and let K| be the smallest
subspace of K which containg H and reduces U,. Then the theorem
of Sz.-Nagy quoted in §2 shows that we may identify K| with the
space K, of Fourier series in such a way that H is identified with
{x, + 22, |2, 2, € H} and Ur|K, = U.

Given z in H, let £ be the Fourier series 3, z"x, with #, = x and
z, =0 for n = 0. Since PyU;|H = S, Us% = w + >, 2"y, with y, = 0,
¥, = V&, and w orthogonal to K,. Then, ||z|} = ||UZ|®=|Vz|?+
Hwll* + s || .15, and since V is an isometry, we must have ¥y, = 0
for n=#1 and w=0. Since U, commutes with U, Us(z"x) =
U U%8) = UrUsZ = 2"*'Vx. Thus Ug; maps K, onto itself (which
implies that K, reduces Uy because Uy is unitary), and Uy is uniquely
determined on K, by the equation above. In fact, Us|K, may be
considered as multiplication by the operator-valued function z — zV.

Now let E be the projection on K,, and let T = EU,|K,. Then,
since K, reduces both U, and Us, E commutes with Up and Us, and
hence T commutes with both U = U,|K, and U,|K,.

Let T# = 3, 2"L,x, where this defines L, as operators from H, to
H, Since T commutes with U, it is eagy to see that T acts as
multiplication by the operator-valued function z— >,2"L,, and it is
obvious that this will commute with multiplication by z —zV if and
only if each operator L, commutes with V.

More explicitly, we compute: TU &= T(zVa)=TU( ﬁc) =UT( @c) =
S 2L, Ve and UT% = UyS 2" L) = 3, 2" VL.

But finally we notice that P,T|H = P,EU,|H = P,U,|H = T,
and hence L, =0 and L, = A. Thus if 4 is chosen to be any con-
traction which does not commute with V, we have a contradiction,
and it is impossible to find commuting unitary dilations for R, S, T.

A. Lebow and R. Douglas have observed that a weaker example can
be obtained more simply by taking the operator A to be unitary. Also,
the reader may have noticed that the dilation condition P, ULU» U | H =
R*S™T™ was not fully used. Actually, the counterexample is valid
under the much weaker assumption that P,Ug|H = S, P,U,|H = T,
and P,U%|H = R" for n = 0. Further, the assumption that U, be
unitary was not used at all, and there are several ways that the ex-
ample can be strengthened at the expense of minor complications.
However, 1 do not know of any simple modification which will produce
three proper contractions without commuting unitary dilations.
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A simple idea contained in the proof above sheds light on a recent
result of Sz.-Nagy and Foiags [9]. Let R and T be commuting con-
tractions with || T|]| = 1, acting on a Hilbert space H, and let U, U,
be a pair of commuting unitary dilations acting on a Hilbert space K
containing H. (The existence of Uy, U, is guaranteed by Ando’s
theorem [1], [8, Chapter 1].) Let K, be the smallest subspace of K
which contains H and reduces Ug, let E be the projection on K,, and
let T = EU,| K, Then it is an elementary exercise to verify that T
commutes with U,|K, (the minimal unitary dilation for R), ||T|| =
|| T|| =1, and the pair U,|K, T dilates the pair R, 7. The first two
statements are trivial, and the last will be evident to anyone familiar
with the structure of unitary dilations. For the reader’s convenience
a proof of the last statement is sketched in the next paragraph.

By definition, the space K, is the closed linear span of the spaces
UtH, — < mn < . Let K be the closed linear span of the spaces
UyH,n =0, and let M = K{ © H. Then the following facts (a) and
(b) are well-known and easy to verify:

(a) K,© K is the closed linear span of all vectors (U3 — R**)x,
with xe H and n = 0

(b) M is the closed linear span of all vectors (U% — R")x, with
xe H and n = 0.

From (a) and (b) we deduce:

(¢) TKfcK;. This follows from (a) and a routine computation
showing that for all @, ye H and m, n = 0, (TUzx, (Ui — R*")y) =
EU, Uz, (Ui"—R*)y)=(EU, Uz "z, y) — (EU,U%x, R*"y) = (TR™* "z,
y) — (TR"z, R*"y) = 0.

(d) TMcM. This follows from (b) and a similar computation
showing that for all z, ye H and m, n = 0, (T(Un — R™z, Uk"y) = 0.
Finally we compute, for %, ye¢ H and m, n > 0,

(T*Us, y) = (TR, y) + (T~(U% — Rz, y)
= (TmRnx: y) = (T"R*z, y) .

The vanishing of (T™(U% — R")x, y) follows from (b) and (d), and the
last equality follows from (c) and (d) (see [7], Lemma 0, for a com-
plete proof.)

The relation || T|| = || T|| depended on the assumption ||T| =1,
but if we replace T by T/|| T'|| and apply similar reasoning, we obtain
the following result, which is equivalent to the main result of [9]
(see [3] for details).

THEOREM (Sz.-Nagy and Foias). Let R and T be commuting
contractions on a Hilbert space H, and let U be the minimal unitary
dilation of R to a Hilbert space K. Then there exists an operator
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T on K such that:

(i) The pair U, T dilates the pair R, T.
(i) UT=1TU
i) T =1Ti.

Therefore, the result of Sz.-Nagy and Foias may be viewed as a
consequence of Ando’s theorem on the existence of unitary dilations
for a pair of commuting contractions. Conversely, it is easy to deduce
Ando’s theorem from the theorem above, and in effect, the two re-
sults are equivalent. However, the clever proof of Sz.-Nagy and Foias
in [9] proceeds from first principles, and does not rely on Ando’s
theorem (as does the proof above.) Another proof, written in matricial
notation and also independent of Ando’s theorem, may be found in [3].

4. Proper contractions without commuting unitary dilations.
In this section we give an example of three commuting proper con-
tractions which fail to have commuting unitary dilations. Unfortun-
ately, this example is not conveniently expressable in functional
notation, and we are forced to use the more cumbersome sequential
notation.

We begin as in the preceding example. Let H, be a Hilbert space
of dimension at least two, and let H = H, H,. Choose noncommut-
ing isometries V, and V, on H,, and define operators S, S,, S; on H
by the operator matrices:

S, = [O O] ’
V., 0

where V, is the identity operator on H,. We shall show that the
operators AS;, ¢ =1, 2,3, do not have commuting unitary dilations
when X\ is sufficiently close to 1,0 < » < 1. The idea is that com-
muting unitary dilations for AS, would have to converge, as » —1,
to commuting unitary dilations for S;, and this would contradict the
result of §3.

The minimal unitary dilation U(\) for AS, 0 <A <1, may be
realized as follows on the space K, of all sequences {.--, (z_, %_,),
](wo, x,) |, (3 %), +-+} of elements of H = H,P H,. (The zero’ the
component is boxed, and the space H is identified with the subspace
of K, consisting of all sequences which vanish outside the box.)

UM+ ey (@ @), ,(xo, ) ’: (% @3)y » -}

= {oee, Xy @), | (@_sy V1= Ny 4 A) ‘y

(l/ 1 - )\:2{1)0 — NT_y ml)’ (xzr xs): b '} .
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Note that U(1l) is a unitary dilation (but not the minimal unitary
dilation) for S,, and the operators U(\) converge uniformly to U(1)
as »— 1. Let M denote the smallest subspace of K, which contains
H and reduces U(l). Expressed concretely, M is the space of all
sequences

{re @ 0), (@, 0), [ (@5 w) ], (0, @), (0, ), -}

Now for each fixed », 0 <A <1, we assume the existence of
commuting unitary dilations U,(\) for AS;, 7 = 1, 2, 3, and there is no
loss of generality in assuming that for all \, 0 < » < 1, the operators
U.\) act on a fixed Hilbert space K containing H. If K,(\) is the
smallest subspace of K which contains H and is invariant under U,(\),
then by the uniqueness theorem of Sz.-Nagy quoted in §2, we may
assume that K,(\) = K, for all 0 <x < 1, and that U\)| K, is the
operator U(\) defined above. (Given unitary operators W(\) which
map K,(\) onto K,, fix all elements of H, and satisfy

WONU.M) [ KW = UM,

one can embed K, in a larger Hilbert space K’ and choose arbitrary uni-
tary operators W’'(\) mapping K onto K’ and satisfying W'(\) | K,(\) =
W(). Then one can replace the operators U,\) by their unitary
transforms W'A)U;(N\)W'(XN)~*. For fixed A\, these new operators are
again commuting unitary dilations for AS;, 7 =1, 2, 3, and, by con-
struction, W N)UNMW'(N)H K, = UX).)

The unit ball of operators is compact in the weak operator topology,
and hence there exists a sequence {\,}, \, — 1, such that the operators
P,U,(\,) P, converge weakly, as n — <, to operators @,, 1, 2, 3. Since
U)K, = U(\), the wuniform convergence of U(\) implies that
P,UMN)P, converges uniformly to @, and that Q,|M = UQ)|M.
Further, it is routine to verify that P,Q;,|H = S,;, 71 =1, 2, 3.

Now we show that @, commutes with @, and Q,. Writing F = P,
and using the notation [4, B] = AB — BA, we first note:

(1) [Qu @] = weak lim [EU,(\,)E, EU(\)E]
(2) lim |1 — E)U.(M)E| = 0
(3) lim [[EU(\)(L — E)|| = 0.

Equation (1) holds because EU,(\,)E converses uniformly to Q,, and
(2) and (3) follow immediately from the expression for U(\) above.
Now the identity

(4) [EUMME, EUMNE] = E[U\), UMMJE + EUM{(1 — E)U.(ME}
— {EU.(MQ — ENfUME
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together with (1), (2), (3), and [U,(\), U,(\)] = 0 imply that [@,, @] =0.

The contractions @, leave M invariant, @;|M commutes with
QM= UQl)|M, and P,Q;|H =S,,1,2,3. From this we conclude
(the argument is identical to one in §3) that the action of Q; on M
is given by:

Qif-- -, (r_y 0), [(900, x,) l: 0, 25), +++}
= {eoes (Vi O), [ (Vi Vi) |y (0, Vi), +++}

Of course, @, and @, do not commute because V, and V, do not com-
mute. However, we will now show that the method of construction
of @, and @, implies that they must commute. This is a contradic-
tion, and therefore, the commuting unitary dilations U;(\) cannot
exist when A is sufficiently close to 1,0 < )\ < 1.

To see that @, and @, must commute, first note that their re-
presentation above shows that each is isometric on M. As is well-
known, a sequence of contractions which converges weakly to an
isometry also converges in the strong operator topology. Since the
isometry @Q;|M is a weak (hence strong) limit of the contractions
P,U,N,)Py| M, elementary properties of the strong operator topology
imply that for all z in M,

(a) @Q:x = lim P, U,(\,) Py Us(N)x
() Im@1 — P)U\)x=0.
From this we obtain, for all z in M,

Q.05 = lim Py U,(\) Py Us(Ny)2
= lim Py U,(\a) Us(Np)z + lim Py Uy (V) (Py — D Us(N)2
= lim P, U,(\) Us(Mp)2 = lim Py Uy(\) U(M)2 = @Qu@u «

The proof is complete.

5. Remarks on an open problem. It has long been known
that questions involving unitary dilations are often closely related to
questions involving spectral sets. For instance, Von Neumann’s
theorem stating that the unit disc is a spectral set for every contrac-
tion is a simple consequence of the existence of a unitary dilation for
a gingle contraction together with the easy fact that the disc is a
spectral set for any unitary operator. Conversely, if a simply con-
nected subset of the plane is a spectral set for an operator, then the
operator has a normal dilation with spectrum in the boundary of the
set [2, 4, 5]. (When the set in question is the unit dise, this says
that Von Neumann’s theorem implies that every contraction has a
unitary dilation.)
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One can try to generalize Von Neumann’s theorem to apply to
several commuting contractions as follows. Let D be the unit disc
{zlz] £ 1} in the complex plane, and let D" denote the n-fold direct
product of D with itself. We shall say that D" is a spectral set for
7 commuting contractions S,, ---, S, if for each polynomial »(z,, ---, z,)
in n variables,

DSy -+ -, Sl = llplleo,

where ||plle> denotes the maximum of |[p(z, ---,2,)| on D*. The
following conjecture is a natural generalization of Von Neumann’s
theorem.

Conjecture. The n-polydisc D" is a spectral set for any » com-
muting contractions on a Hilbert space.

It is easy to employ the spectral theorem to show that this con-
jecture is true if the commuting contractions are normal operators.
From this, it follows that the existence of commuting unitary dilations
for n commuting contractions implies the conjecture for that n. Thus
Ando’s theorem implies that the conjecture is true for n = 2. For
n = 3, the conjecture is still open, and the results of this paper show
that its proof (if, indeed, it is true) cannot rely on the existence of
commuting unitary dilations for commuting contractions.

Also, the operators of §3 cannot be used to construct a counter-
example to the conjecture, for D® is a spectral set for any three con-
tractions defined on H = H, P H, by operator matrices

0 0] .
Sl:[Q% Ojiyq”—ly 27 SrHQz”él-

This also shows that the spectral set problem and the commuting
unitary dilation problem are not equivalent for n = 3.

To see that I is a spectral set for the operators S,, S,, S, con-
sider an arbitrary polynomial p in three variables:

3
(21 25y 23) = @ + Z a:%; + Q= % %)
&

where ¢ is a polynomial containing only terms of second or higher

degree. Then
a, 0
Su Szy S3 = 3 .
»( ) {g 0.0, %J

The first step, left to the reader, is to verify that
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ay 0 |, 0
|:ga'zQz ao:' |:§31I%| |a0J

Hence to show that D? is a spectral set for S, S,, S;, we need only
show that the norm of the latter matrix is no larger than

=

co

inf l

3
Qo + 2 a2 + 42, 2 2)

where the infemum is taken over all polynomials ¢ containing only
terms of degree two or higher.
Now a clasgical result of Caratheodory and Fejer states that

b, OJ
b, b,
where the infemum is taken over all polynomials 7(z) (in one variable)
which contain only terms of degree two or higher. (For a modern
proof, see Sarason’s beautiful paper [6], where the result is derived

as a consequence of a special case of the theorem of Sz.-Nagy and
Foias discussed in §3.) Using this fact, we have:

inf [[b, + bz + 7(2) [0 = l

12(S,, Sy Syl = I

[_]a0| 0
LgMIMJ

= int||la,| + (3 la:])z + 1) =

\%

A

3
inf || la| + 3 aslz; + a6z, 2 2)

oo

= inf ||a, + iZ:aizi + QR 2e 25) ||o0

where, again, r and ¢ range over all polynomials, in one and three
variables, respectively, containing only terms of degree two or higher.
The second inequality was obtained by setting all three variables
equal in the polynomial |a,| + D&, |a;12; + ¢(z, 2, %), and the last
equality was obtained by multiplying by a./|a,| and replacing 2, by
@] ao])+ (@i /|a;))z:.

Thus D? is a spectral set for three commuting contractions which
admit no commuting unitary dilations, and it appears that the econ-
nection between spectral sets and unitary dilations may not be as
close as has been assumed.
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