Pacific Journal of Mathematics

EXTREMAL ELEMENTS OF THE CONVEX CONE A_n OF FUNCTIONS

ROY MARTIN RAKESTRAW

Vol. 34, No. 2

June 1970

EXTREMAL ELEMENTS OF THE CONVEX CONE A_n OF FUNCTIONS

ROY M. RAKESTRAW

Let A_1 be the set of nonnegative real functions f on [0, 1]such that $\nabla_h^1 f(x) = f(x) - f(x+h) \leq 0$, h > 0, for $[x, x+h] \subset [0, 1]$, and let A_n , n > 1, be the set of functions belonging to A_{n-1} such that $\nabla_h^n f(x) = \nabla_h^{n-1} f(x) - \nabla_h^{n-1} f(x+h) \leq 0$ for

$$[x, x + nh] \subset [0, 1]$$
.

Since the sum of two functions in A_n belongs to A_n and since a nonnegative real multiple of an A_n function is an A_n function, the set of A_n functions forms a convex cone. It is the purpose of this paper to give the extremal elements (i.e., the generators of extreme rays) of this cone, to prove that they form a closed set in a compact convex set that does not contain the origin but meets every ray of the cone, and to show that for the functions of the cone an integral representation in terms of extremal elements is possible. The intersection of the A_n cones is the class of functions alternating of order^{∞}. Thus, the set of these functions, which will be denoted by A_{∞} , forms a convex cone also. The extremal elements for the convex cone A_{∞} are given too.

Let f be a function in A_1 which assumes exactly one positive value in [0, 1]; that is, f(x) = 0, $x \in [0, \xi)$, f(x) = c > 0, $x \in [\xi, 1]$ where $0 \leq \xi \leq 1$, if $f = f_1 + f_2$, where f_1 and $f_2 \in A_1$, then $0 = \mathcal{V}_h^1 f(x) =$ $\mathcal{V}_h^1 f_1(x) + \mathcal{V}_h^1 f_2(x)$ implies $\mathcal{V}_h^1 f_i(x) = 0$ for i = 1, 2 and $[x, x + h] \subset [\xi, 1]$. Therefore, $f_i(x) = 0$, $x \in [0, \xi)$, $f_i(x) = c_i \geq 0$, $x \in [\xi, 1]$, i = 1, 2, where $c_1 + c_2 = c$. Hence, f is an extremal element of A_1 . On the other hand, if f assumes at least two positive values in [0, 1], then a nonproportional decomposition can be given by taking

$$f_1(x) = \min \{f(x), (1/2)[f(0) + f(1)]\}$$

and $f_2 = f - f_1$. Therefore, the extremal elements of A_1 are precisely the functions in A_1 which assume exactly one positive value in [0, 1].

Since a function in A_n , n > 1, is nonnegative, nondecreasing, and concave on [0, 1], it must be continuous on (0, 1] (cf. [6], p. 148). It follows that the only extremal elements of A_1 which are in A_n are those functions f such that f = c > 0 on (0, 1] while f(0) = 0 or f(0) = c and these functions are again extremal in A_n . If $f \in A_n$, n > 1, f is not constant and f(0) > 0, then a nonproportional decomposition can be given by taking $f_1 = f(0)$ and $f_2 = f - f_1$. If $f \in A_n$, f(0) = 0, f is not constant on (0, 1] and f is not continuous at 0 (that is, f(0+) > 0), then take $f_1 = f(0+)$ on $(0, 1], f_1(0) = 0$ and $f_2 = f - f_1$. In so doing, f_1 and $f_2 \in A_n$ and f_1 and f_2 are not proportional to f. Therefore, for n > 1, the only extremal elements of A_n such that f(0) > 0 are the positive constant functions, and the only extremal elements of A_n which are discontinuous at 0 are those functions fsuch that f(0) = 0 and f = c > 0 on (0, 1]. It will be shown that the remaining extremal elements of A_n , n > 1, are indefinite integrals of the extremal elements of a cone which is similar to A_1 . This cone is given in the following definitions.

DEFINITION 1. If g is a real function continuous almost everywhere on (0, 1] and n is a positive integer, then g is said to satisfy property P(n) if

$$\lim_{\delta\to 0} \inf \int_{1}^{\delta} \int_{1}^{t_{n-1}} \cdots \int_{1}^{t_2} \int_{1}^{t_1} g(t) dt dt_1 \cdots dt_{n-1}$$

exists and is finite.

DEFINITION 2. Let K(n) denote the convex cone of nonnegative, nonincreasing real functions on (0, 1] which satisfy property P(n).

In the same manner that the extremal elements of A_1 were found, it can be shown that the extremal elements of K(n) are precisely these functions which assume exactly one positive value in (0,1]. Preliminary to the determination of the extremal elements of A_n , it is shown in the following two lemmas how the A_n functions are related to the functions in K(n-1), where n > 1.

LEMMA 1. If
$$f \in A_n$$
, then $(-1)^n f_+^{(n-1)} \in K(n-1)$, where $n > 1$.

Proof. The proof will be by induction on n. If $f \in A_2$, then f is nonnegative, nondecreasing and concave. It follows that f'_+ is nonnegative and nonincreasing on (0, 1], where $f'_+(1) = f'_+(1-)$ [6]. Also,

$$f(x) = \int_0^x f'_+(t) dt + f(0+)$$

which implies that f'_+ satisfies property P(1) [4].

Assume that $f \in A_n$ implies $(-1)^n f_+^{(n-1)} \in K(n-1)$ for $n \ge 2$. If $f \in A_{n+1}$, then

$$\nabla_h^2 \nabla_h^{n-1} f(x) = \nabla_h^{n+1} f(x) \leq 0$$

for $[x, x + (n + 1)h] \subset [0, 1]$, which implies that

$$\nabla_h^2 \nabla_{\delta_1}^1 \nabla_{\delta_2}^1 \cdots \nabla_{\delta_{n-1}}^1 f(x) \leq 0$$

for
$$[x, x+2h+\delta_1+\delta_2+\cdots+\delta_{n-1}]\subset [0,1]$$
 [2]. It then follows that $(-1)^{n-1}\mathcal{V}_h^2f_+^{(n-1)}(x)\leq 0$

for $[x, x + 2h] \subset (0, 1]$, and hence, $(-1)^{n-1}f_{+}^{(n-1)}$ is concave on (0, 1]. Therefore, $f^{(n-1)} = f_{+}^{(n-1)}$, since $f_{+}^{(n-1)}$ is continuous. It follows that $f_{+}^{(n)}$ exists on (0, 1], where $f_{+}^{(n)}(1) = f_{+}^{(n)}(1-)$, and $(-1)^{n+1}f_{+}^{(n)}$ is non-negative and nonincreasing. It remains only to show that $f_{+}^{(n)}$ satisfies property P(n). If $f \in A_{n+1}$, then $f \in A_n$, and

$$\begin{split} \lim_{\delta \to 0} & \lim_{\delta \to 0} \int_{1}^{\delta} \int_{1}^{t_{n-1}} \cdots \int_{1}^{t_{2}} \int_{1}^{t_{1}} f_{+}^{(n)}(t) dt dt_{1} \cdots dt_{n-1} \\ & = \lim_{\delta \to 0} \int_{1}^{\delta} \int_{1}^{t_{n-1}} \cdots \int_{1}^{t_{3}} \int_{1}^{t_{2}} f^{(n-1)}(t_{1}) dt_{1} dt_{2} \cdots dt_{n-1} \\ & - f^{(n-1)}(1) \int_{1}^{0} \int_{1}^{t_{n-1}} \cdots \int_{1}^{t_{3}} \int_{1}^{t_{2}} dt_{1} dt_{2} \cdots dt_{n-1} \end{split}$$

exists and is finite, since $f^{(n-1)}$ satisfies property P(n-1) by the induction hypothesis.

DEFINITION 3. If g is a real function on (0, 1] which satisfies property P(n), then define the function I(g, n;) by the equation

$$I(g, 1; x) = \int_{0}^{x} g(t) dt ,$$

$$I(g, n; x) = \int_{0}^{x} \int_{1}^{i_{n-1}} \cdots \int_{1}^{t_{2}} \int_{1}^{t_{1}} g(t) dt dt_{1} \cdots dt_{n-1} ,$$

 $n = 2, 3, 4, \dots, \text{ for } x \in [0, 1].$

LEMMA 2. If $g \in K(n-1)$, then $(-1)^n I(g, n-1;) \in A_n$, where n > 1.

Proof. The proof will be by induction on n. If $g \in K(1)$, then

$$I(g,\,1;\,x)=\int_{_0}^{^x}\!g(t)dt\geqq 0$$
 ,

for $x \in [0, 1]$. If $[x, x + h] \subset [0, 1]$, then

$$\mathcal{V}_h^{\scriptscriptstyle 1}I(g,1;x) = \int_{x+h}^x g(t)dt \leq 0$$

since $g(t) \ge 0$, where $x \le t \le x + h$. Since g is nonincreasing on (0, 1], then I(g, 1;) is concave on [0, 1] and it follows that $\mathcal{P}_{h}^{2}I(g, 1; x) \le 0$, for h > 0 and $[x, x + 2h] \subset [0, 1]$ [4]. Hence, $I(g, 1;) \in A_{2}$ whenever $g \in K(1)$.

Assume that $(-1)^n I(g, n-1;) \in A_n$ for $g \in K(n-1)$ and n > 1. If $g \in K(n)$, then let

$$f(x) = \int_{1}^{x} g(t) dt ,$$

for $x \in (0, 1]$. Since $g \in K(n)$, it is easily seen that $-f \in K(n-1)$ and it follows from the induction hypothesis that

$$(-1)^{n+1}I(g,\,n;)=(-1)^nI(-f,\,n-1;)\in A_n$$
 .

By a repeated application of the mean value theorem for a Riemann integral, it can be shown that

$$\nabla_{h}^{n-1}I(g, n; x) = (-h)^{n-1}f(\xi)$$

for $[x, x + (n-1)h] \subset [0, 1]$, where $x < \xi < x + (n-1)h$. It follows that

$$egin{array}{l} & arPi_h^{n+1}(-1)^{n+1}I(g,\,n;\,x) \ &= (-1)^{n+1}arPi_h^2arPi_h^{n-1}I(g,\,n;\,x) \ &= (-1)^{2n}h^{n-1}arV_h^2f(\hat{\xi}) \leq 0 \end{array}$$

for $[x, x + (n + 1)h] \subset [0, 1]$, since f is concave on (0, 1] [4]. This inequality, together with the fact that $(-1)^{n+1}I(g, n;) \in A_n$, implies that $(-1)^{n+1}I(g, n;) \in A_{n+1}$.

It is a consequence of Lemmas 1 and 2 that $f = I(f_{+}^{(n-1)}, n-1;)$ whenever $f \in A_n$, n > 1, f(0+) = 0 and $f^{(k)}(1) = 0$ for $1 \le k \le n-2$. If $f \in A_2$, then f is concave on [0, 1] and

$$f(x) = \int_0^x f'_+(t) dt = I(f'_+, 1; x) .$$

If $f \in A_n$, n > 2, then $(-1)^{n-2} f^{(n-2)}$ is concave on (0, 1] (cf. proof of Lemma 1). It follows that

$$f^{(n-2)}(x) = \int_{1}^{x} f^{(n-1)}_{+}(t) dt$$
 ,

which implies that $f = I(f_{+}^{(n-1)}, n-1;)$ [4].

PROPOSITION 1. The function f defined by

$$f(x) = m[\hat{z}^{n-1} - (\hat{z} - x)^{n-1}]$$

for $x \in [0, \xi]$ and $m\xi^{n-1}$ for $x \in [\xi, 1]$, where $0 < \xi \leq 1$ and m > 0, is an extremal element of A_n , n > 1.

Proof. If f is such a function, then

$$f_{+}^{(n-1)}(x) = (-1)^n m(n-1)!$$
,

 $x \in (0, \xi)$ and 0 for $x \in [\xi, 1]$, which implies that $(-1)^n f_+^{(n-1)}$ is an ex-

494

tremal element of K(n-1). Since f(0) = 0 and $f^{(k)}(1) = 0$ for $1 \le k \le n-2$ (whenever n > 2), then $f = I(f_+^{(n-1)}, n-1;)$ and it follows from Lemma 2 that $f \in A_n$.

If g and $h \in A_n$ such that f = g + h, then $(-1)^n g_+^{(n-1)}$ and

$$(-1)^n h_+^{(n-1)} \in K(n-1)$$

and $f_{+}^{(n-1)} = g_{+}^{(n-1)} + h_{+}^{(n-1)}$. Since $(-1)^n f_{+}^{(n-1)}$ is extremal in K(n-1), there are constants $\lambda_i \ge 0$, i = 1, 2, such that $g_{+}^{(n-1)} = \lambda_1 f_{+}^{(n-1)}$ and $h_{+}^{(n-1)} = \lambda_2 f_{+}^{(n-1)}$. Since f(0) = 0 and $f^{(k)}(1) = 0$ for $1 \le k \le n-2$, it follows that $g(0) = g^{(k)}(1) = 0$ and $h(0) = h^{(k)}(1) = 0$ for $1 \le k \le n-2$. Hence

$$egin{aligned} g &= I(g_+^{(n-1)},\,n-1;) = I(\lambda_1 f_+^{(n-1)},\,n-1;) \ &= \lambda_1 I(f_+^{(n-1)},\,n-1;) = \lambda_1 f \;, \end{aligned}$$

and similarly, $h = \lambda_2 f$. Thus, if $f(x) = m[\xi^{n-1} - (\xi - x)^{n-1}], x \in [0, \xi]$ and $m\xi^{n-1}$ for $x \in [\xi, 1]$, where $0 < \xi \leq 1$ and m > 0, then f is extremal in $A_n, n > 1$. Denote this latter function by $e(m, \xi, n - 1;)$.

If $f \in A_2$ such that f(0+) = f(0) = 0, $f \neq 0$ and $f \neq e(m, \xi, 1;)$, for m > 0 and $0 < \xi \leq 1$, then f'_+ is not extremal in K(1), since f'_+ assumes at least two positive values in (0, 1]. It follows that there are functions g_1 and $g_2 \in K(1)$ such that $f'_+ = g_1 + g_2$ and g_1 and g_2 are not proportional to f'_+ . Since f(0) = 0, then $f = I(f'_+, 1;)$ and it follows that

$$f = I(f'_+, 1;) = I(g_1 + g_2, 1;) = I(g_1, 1;) + I(g_2, 1;)$$
.

Thus, if $f_i = I(g_i, 1;)$, then $f_i \in A_2$, i = 1, 2, and $f = f_1 + f_2$. This gives a nonproportional decomposition of f. Therefore, the extremal elements of A_2 are the positive constant functions, the functions which are a positive constant on (0, 1] and zero at 0 and the functions $e(m, \xi, 1;)$, where m > 0 and $0 < \xi \leq 1$. The remaining extremal elements of A_n , n > 2, are given in the next proposition.

PROPOSITION 2. If m > 0, the function e(m, 1, k;) is an extremal element of A_n for n > 2 and $1 \le k \le n - 2$.

Proof. Since A_n is a subcone of A_{k+1} and e(m, 1, k;) is an extremal element of A_{k+1} , it is sufficient to show that $e(m, 1, k;) \in A_n$. If f = e(m, 1, k;), then $f = I(f^{(k)}, k;)$ where

$$f^{(k)}(x) = (-1)^{k+1} m(k!)$$

for $0 < x \leq 1$. Since $f^{(k)}$ is constant on (0, 1], it follows from a repeated application of the mean value theorem for a Riemann integral that

ROY M. RAKESTRAW

$$\nabla_{h}^{k+1} f(x) = \nabla_{h}^{1} \nabla_{h}^{k} f(x) = (-h)^{k} \nabla_{h}^{1} f^{(k)}(\xi) = 0$$

for h > 0, $[x, x + (k + 1)h] \subset [0, 1]$, and thus, $\mathcal{P}_h^p f(x) = 0$ for h > 0, $[x, x + ph] \subset [0, 1]$ and $p \ge k + 1$. Hence, $f \in A_n$ for every n, which implies that f is extremal in A_p , for $p \ge k + 1$.

It will follow, as a consequence of the next three lemmas, that no other functions in A_n are extremal elements of A_n , n > 2.

LEMMA 3. Let $f \in A_n$, n > 2, such that f(0+) = f(0) = 0 and $f \neq e(m, 1, k;)$, where m > 0 and $1 \leq k \leq n - 2$. If there is an integer k such that $1 \leq k \leq n - 2$ and $f^{(k)}(1) \neq 0$, then f is not an extremal element of A_n .

Proof. Let k denote the smallest integer such that $f^{(k)}(1) \neq 0$ Then $f \in A_n \subset A_{k+2}$ implies that $(-1)^k f_+^{(k+1)} \in K(k+1)$, and it follows from Lemma 2 that $I(f_+^{(k+1)}, k+1;) \in A_{k+2}$. Since f(0) = 0 and $f^{(p)}(1) = 0$ for $1 \leq p < k$, then $I(f_+^{(k+1)}, k+1;) = I(f^{(k)}, k;) - f^{(k)}(1)I(1, k;) = f - e(m, 1, k;)$, where $m = (-1)^{k-1}[1/(k!)]f^{(k)}(1) > 0$. Since

$$\nabla_h^p e(m, 1, k; x) = 0$$

for h > 0, $[x, x + ph] \subset [0, 1]$ and $p \ge k + 1$ and $f \in A_n$, it follows that

$$abla_h^p I(f_+^{(k+1)}, k+1; x) =
abla_h^p f(x) \leq 0,$$

for $[x, x + ph] \subset [0, 1], k + 1 \leq p \leq n$. Hence, $f - e(m, 1, k;) \in A_n$, where $m = (-1)^{k-1}[1/(k!)]f^{(k)}(1)$, and a nonproportional decomposition of f can be given by taking $f_1 = e(m, 1, k;)$ and $f_2 = f - f_1$. Thus, fis not extremal.

LEMMA 4. Let $f \in A_n$, n > 2, such that $f \neq 0$, f(0+) = f(0) = 0and $f \neq e(m, 1, k;)$, where m > 0 and $1 \leq k \leq n - 2$. If $f_{+}^{(n-1)} = 0$ on (0, 1], then f is not an extremal element of A_n .

Proof. If $f_{+}^{(n-1)} = 0$, then there is a positive integer $k \leq n-2$ such that $f^{(k)} \neq 0$ and $f^{(k)}$ is constant on (0, 1]. Thus, $f^{(k)}(1) \neq 0$ and it follows from Lemma 3 that f is not extremal.

It follows from Lemmas 3 and 4 that if f is an extremal element of A_n , n > 2, such that f(0+) = f(0) = 0 and either $f_+^{(n-1)} = 0$ or $f^{(k)}(1) \neq 0$ for some $k, 1 \leq k \leq n-2$, then f = e(m, 1, k;), where m > 0and $1 \leq k \leq n-2$.

LEMMA 5. Let $f \in A_n$, n > 2, such that f(0+) = f(0) = 0, $f_+^{(n-1)} \neq 0$ and $f^{(k)}(1) = 0$ for $1 \leq k \leq n-2$. If f is an extremal element of A_n , then $f = e(m, \xi, n-1;)$, where m > 0 and $0 < \xi \leq 1$.

Proof. Since $f(0) = f^{(k)}(1) = 0$ for $1 \leq k \leq n-2$, then $f = I(f^{(n-1)}_+, n-1;)$

and it follows from Lemma 1 that $(-1)^n f_+^{(n-1)} \in K(n-1)$. If g_1 and $g_2 \in K(n-1)$ such that $(-1)^n f_+^{(n-1)} = g_1 + g_2$, then

$$egin{aligned} f &= I(f_+^{(n-1)},\,n-1;) = (-1)^n I(g_1+g_2,\,n-1;) \ &= (-1)^n I(g_1,\,n-1;) + (-1)^n I(g_2,\,n-1;) \ . \end{aligned}$$

Then $f_i = (-1)^n I(g_i, n-1;)$, i = 1, 2, implies that f_1 and $f_2 \in A_n$ and $f = f_1 + f_2$. Since f is extremal in A_n , there are numbers $\lambda_i \ge 0$ such that $f_i = \lambda_i f$, i = 1, 2, which implies that $g_i = \lambda_i (-1)^n f_+^{(n-1)}$, i = 1, 2, and $(-1)^n f_+^{(n-1)}$ is therefore extremal in K(n-1). Thus,

$$(-1)^n f_+^{(n-1)}(x) = c > 0, \, x \in (0, \, \hat{\xi})$$

and 0 for $x \in [\xi, 1]$, which implies that

$$f=I(f_{+}^{_{(n-1)}},\,n-1;)=e(m,\,\xi,\,n-1;)$$
 ,

where m = c/(n - 1)!.

Therefore, the extremal elements of A_n , n > 2, are the positive constant functions, the functions which are a positive constant on (0, 1] and zero at 0, the functions e(m, 1, k;), where $m > 0, 1 \le k \le n-2$, and the functions $e(m, \xi, n-1;)$, where m > 0 and $0 < \xi \le 1$.

Since A_{∞} is a subcone of A_n , it follows that the function e(m, 1, n;), m > 0, is an extremal element of A_{∞} for every positive integer n. It is shown in the following proposition that A_{∞} has no other extremal elements which are continuous and zero at 0.

PROPOSITION 3. If $f \in A_{\infty}$ such that f(0+) = f(0) = 0 and $f \neq e(m, 1, k)$, where m > 0 and k is a positive integer, then f is not an extremal element of A_{∞} .

Proof. Since $f \in A_{\infty}$ is a function of class C^{∞} on (0, 1], it follows from a theorem of Bernstein, Theorem 13-31 in [1], that

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(1)}{n!} (x - 1)^n$$

for 0 < x < 1 by noting that the function g defined by

$$g(x) = f(1) - f(1 - x)$$

satisfies the hypothesis of the theorem. If there is a positive integer k such that $f^{(k)}(1) \neq 0$, then assume, without loss of generality, that

k is the least such integer. Then $f \in A_{\infty} \subset A_{k+2}$ implies that

 $(-1)^{k} f^{(k+1)} \in K(k+1)$

from which it follows that $I(f^{(k+1)}, k+1;) \in A_{k+2}$. Hence,

$$I(f^{(k+1)}, k+1;) = I(f^{(k)}, k;) - f^{(k)}(1)I(1, k;) = f - e(m, 1, k;)$$

where $m = (-1)^{k-1}[1/(k!)]f^{(k)}(1) > 0$. If $f_1 = e(m, 1, k;)$ and $f_2 = f - f_1$, then $f_1 \in A_{\infty}$ since $f_1 \in A_n$ for every *n* and $f_2 \in A_{\infty}$ since $f_2 \in A_{k+2}$ and

$$\nabla_{h}^{n} f_{2}(x) = \nabla_{h}^{n} [f(x) - e(m, 1, k; x)] = \nabla_{h}^{n} f(x) \leq 0,$$

for h > 0, $[x, x + nh] \subset [0, 1]$ and $n \ge k + 3$. Since f_1 is not proportional to f, this gives a nonproportional decomposition of f, and f is therefore not extremal. On the other hand, if $f^{(k)}(0) = 0$ for each positive integer k, then f(x) = f(1) for $0 < x \le 1$, and f(0+) = f(0) = 0 implies that f = 0.

The results to this point are summarized in the following theorem.

THEOREM. The extremal elements of A_1 are the functions which assume exactly one positive value in [0, 1]. The positive constant functions and the functions which are a positive constant on (0, 1]and zero at 0 are extremal elements of A_n , n > 1, and are therefore extremal in A_{∞} . The functions $e(m, \xi, n - 1; x) = m[\xi^{n-1} - (\xi - x)^{n-1}]$, $x \in [0, \xi]$ and $m\xi^{n-1}$ for $x \in [\xi, 1]$, where m > 0 and $0 < \xi \leq 1$, are extremal elements of A_n , $n \geq 2$. The only other extremal elements of A_n , $n \geq 3$, are those functions e(m, 1, k;), $1 \leq k \leq n - 2$. The extremal elements of A_{∞} which are continuous and zero at 0 are the functions e(m, 1, k;), $k \geq 1$.

The set of functions $A_n - A_n$, $n \ge 1$, forms the smallest linear space containing the convex cone A_n . With the topology of simple convergence, $A_n - A_n$ is a Hausdorff locally convex space. Let C_n be the set of functions $f \in A_n$ such that f(1) = 1. Then C_n is a convex set which meets every ray of A_n once and only once but does not contain the origin, that is the zero function. It then follows that fis an extreme point of C_n if, and only if, f is an extremal element of A_n which lies in C_n . A proof similar to that found on page 992 of [5] can be used here to show that C_n is compact. It follows from the next proposition that the set of extreme points of C_n is compact.

PROPOSITION 4. The set of extreme points of C_n is closed in C_n , $n \ge 1$.

Proof. Since the topology of simple convergence is equivalent to

the topology of pointwise convergence, it will suffice to show that if $\{f_i\}$ is a net of functions in ext C_n which converges pointwise to a function f, then $f \in \text{ext } C_n$, $n \ge 1$, where $\text{ext } C_n$ denotes the set of extreme points of C_n . The proof for n = 1 is obvious. Since all except a finite number of the functions in ext C_n , n > 1, are of the form $e((1/\hat{\xi})^{n-1}, \hat{\xi}, n-1;)$, where $0 < \hat{\xi} \le 1$, it can be assumed without loss of generality that $f_i = e((1/\hat{\xi}_i)^{n-1}, \hat{\xi}_i, n-1;)$, for each i.

If the net $\{\xi_i\}$ of real numbers converges to 0, then it is easily seen that

$$\liminf_i f_i(x) = 1$$

for $x \in (0, 1]$. Since the topology is Hausdorff, it follows that f(0) = 0 and $f(x) = 1, x \in (0, 1]$, which implies that $f \in \text{ext } C_n$.

On the other hand, if $\{\xi_i\}$ does not converge to 0, then there is a positive real number ξ_0 and a subnet $\{\xi_j\}$ of $\{\xi_i\}$ such that $\{\xi_j\}$ converges to ξ_0 . If $0 \leq x < \xi_0$, then

$$\liminf_{j} f_{j}(x) = \frac{1}{\xi_{0}^{n-1}} \left[\xi_{0}^{n-1} - (\xi_{0} - x)^{n-1} \right];$$

whereas

$$\lim_{j} f_j(x) = 1$$

if $\xi_0 \leq x \leq 1$. Therefore, since the topology is Hausdorff,

$$f = e((1/\hat{\xi}_0)^{n-1}, \hat{\xi}_0, n-1;)$$

and it follows that $f \in \text{ext } C_n$.

Since ext C_n and C_n are both compact subsets of the locally convex space $A_n - A_n$, $n \ge 1$, it follows from Theorem 39.4 of Choquet [3] that for any function $f_0 \in C_n$ there exists a probability measure μ_0 on ext C_n such that

$$f_{\scriptscriptstyle 0}(x) = \int f(x) d\mu_{\scriptscriptstyle 0}$$
 ,

for $x \in [0, 1]$. Since C_n meets every ray of A_n and does not contain the origin, it follows that each function of A_n is a scalar multiple of such a representation.

References

1. T. M. Apostol, *Mathematical analysis*, Addison-Wesley, Reading, Massachusetts, 1957.

^{2.} R. P. Boas, Jr. and D. V. Widder, Functions with positive differences, Duke Math. J. 7 (1940), 496-503.

3. G. Choquet, *Theory of capacities*, Annales de l'Institut Fourier 5 (1953 and 1954), 131-296.

4. M. A. Krasnosel'skii and Ya. B. Rutickii, Convex functions and Orlicz spaces, P. Noordhoff Ltd., Groningen, The Netherlands, 1961.

5. E. K. McLachlan, Extremal elements of the convex cone B_n of functions, Pacific J. Math. 14 (1964), 987-993.

6. D. V. Widder, The Laplace transform, Princeton Mathematical Series 6 (1946).

Received October 15, 1969. This work was done to partially fulfill the requirements for the degree of Doctor of Philosophy at Oklahoma State University under the direction of Professor E. K. McLachlan. During this time the author was an NDEA. Graduate Fellow.

OKLAHOMA STATE UNIVERSITY UNIVERSITY OF MISSOURI AT ROLLA

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON Stanford University Stanford, California 94305

J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, California 90007

RICHARD ARENS

University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH	B. H. NEUMANN	F. WOLE	K. YOSHIDA
	SUPPORTING	INSTITUTIONS	5
UNIVERSITY OF BRI	TISH COLUMBIA	STANFORD UN	IVERSITY
CALIFORNIA INSTIT	UTE OF TECHNOLOGY	UNIVERSITY C	OF TOKYO
UNIVERSITY OF CALIFORNIA		UNIVERSITY O)F UTAH
MONTANA STATE UNIVERSITY		WASHINGTON	STATE UNIVERSITY
UNIVERSITY OF NEW	ADA	UNIVERSITY C	F WASHINGTON
NEW MEXICO STATE	UNIVERSITY	* *	*
OREGON STATE UNI	VERSITY	AMERICAN MA	ATHEMATICAL SOCIETY
UNIVERSITY OF ORE	GON	CHEVRON RES	EARCH CORPORATION
OSAKA UNIVERSITY		TRW SYSTEMS	
UNIVERSITY OF SOU	THERN CALIFORNIA	NAVAL WEAP	ONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal. but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. **39**. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published monthly. Effective with Volume 16 the price per volume (3 numbers) is \$8.00; single issues, \$3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues \$1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

RICHARD PIERCE University of Washington Seattle, Washington 98105

Pacific Journal of Mathematics Vol. 34, No. 2 June, 1970

Shair Ahmad, On the oscillation of solutions of a class of linear fourth order differential equations	289
Leonard Asimow and Alan John Ellis, <i>Facial decomposition of linearly</i>	
compact simplexes and separation of functions on cones	301
Kirby Alan Baker and Albert Robert Stralka, <i>Compact, distributive lattices of</i>	211
	311
James W. Cannon, Sets which can be missed by side approximations to	221
spheres	321
Prem Chandra, Absolute summability by Riesz means	335
Francis T. Christoph, Free topological semigroups and embedding topological	2.42
semigroups in topological groups	343
Henry Bruce Cohen and Francis E. Sullivan, <i>Projecting onto cycles in smooth</i> ,	255
reflexive Banach spaces	300
John Dauns, Power series semigroup rings	365
Robert E. Dressler, A density which counts multiplicity	371
Kent Ralph Fuller, <i>Primary rings and double centralizers</i>	379
Gary Allen Gislason, On the existence question for a family of products	385
Alan Stuart Gleit, On the structure topology of simplex spaces	389
William R. Gordon and Marvin David Marcus, An analysis of equality in	
certain matrix inequalities. I	407
Gerald William Johnson and David Lee Skoug, Operator-valued Feynman	
integrals of finite-dimensional functionals	415
(Harold) David Kahn, <i>Covering semigroups</i>	427
Keith Milo Kendig, Fibrations of analytic varieties	441
Norman Yeomans Luther, Weak denseness of nonatomic measures on perfect, locally compact spaces	453
Guillermo Owen. The four-person constant-sum games: Discriminatory	155
solutions on the main diagonal	461
Stephen Parrott Unitary dilations for commuting contractions	481
Roy Martin Pakestraw Extranal alements of the convex cone A of	401
functions $A_n = A_n = A_n = A_n$	491
Peter Lewis Repz Intersection representations of graphs by arcs	501
William Henry Puckle, Representation and series summability of complete	501
biorthogonal sequences	511
E Dennis Sentilles The strict topology on hounded sets	520
Scheron Sheleh A note on Hanf numbers	541
Sanaron Shehan, A note on Hunj numbers	541
rings	547
Imgs	547
Kenneur S. williams, Finite transformation formulae involving the Legendre	550
<i>symuot</i>	559