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Let {x;, 2;} be a complete biorthogonal sequence with each
2; in a Banach space X and each x; in the conjugate space
X*, A study is made of the summability properties of the
series ; zj(@)x; and 3; xi(x)x'(x;) as x ranges over X and z’
over X*. Conditions are given for matrix and abstract methods
of series summability for these series in terms of certain
sequence spaces which arise naturally in connection with the
biorthogonal sequence,

Fundamental work on complete biorthogonal sequences in Banach
spaces was done by Banach in Chapter VII of [1] and by Frink in [3].
Further contributions were made by others including Kadets and
Petezynski in [6] where the concept of a norming biorthogonal sequence
was defined. There are various types of biorthogonal sequences which
generalize the Schauder basis and these are discussed in [11].

Let {z;, ;} be a complete biorthogonal sequence with each z; in
a Banach space X and each 2 in the conjugate space X*. In §3 four
spaces of scalar sequences are defined in connection with this biortho-
gonal sequence: (a) S, the associated sequence space, consisting of all
sequences {x(x)} as « ranges over X; (b) S’ which consists of all
sequences {2'(xz;)} as 2’ ranges over X*; (¢) M(S), the multiplier algebra;
(a;) e M(S) if and only if {a;2}(x)} € S whenever zc X; (d) .7(S), the
series space, which is, roughly speaking, the smallest Banach sequence
space which contains all sequences of the form {x}(x)x'(x;)} as x ranges
over X and &’ over X*. Note that these sequences are the terms of
the numerical expansion

L1 (@) ~ 3wy (@) .

The object of this paper is to represent these four sequence spaces,
determine their relationship and apply them to determine properties
of the biorthogonal sequence {x;, «;} and the space X. Particular at-
tention is paid to the series summability of (1.1) and

(1.2) €~ > ®); .

The most important results are Theorem 6.4 where conditions are
noted under which there is a continuous linear functional on S7(S)
which gives to each series {zi(x)x'(x;)} its “correct” sum and Theorem
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7.2 where conditions are given for the existence of a row finite matrix
with w,(j) in the nth row jth column such that

» = lim S () ()

for each x in X.

In §2 it is noted that a norming complete biorthogonal sequence
can always be constructed in a separable Banach space. This strength-
ens a result of Markushevitch [7]. In §4 we derive necessary machi-
nery for what follows and discuss consistency for a subset of o.

Means of constructing all types of spaces S and S are given in
§5. Since S’ is isomorphic to X* and every separable Banach space
admits a complete biorthogonal sequence, 5.4 is a representation for
the dual of every separable Banach space. Also conditions are given
which differentiate between norming and nonnorming biorthogoenal
sequences in terms of S7.

The series space is studied in § 6 and the multiplier algebra in § 7.
For instance, it is noted in 6.2 that .5”(S) consists of the diagonals
of nuclear operaters in X with respect to the biorthogonal sequence
{z;, ;}. Proposition 7.1 (a) generalizes Theorem 4.2 of [8] where
multiplier algebras are also studied. Finally these final two sections.
contain the summability theorems as noted above.

2. Complete biorthogonal sequences. A double sequence {z;, 2}
with each z in a linear topological space X and each z; in the conjugate
space X* ig called a complete biorthogonal sequence (“in X7) if

(a) For each 7 and each j, z;(x,) = d;, (Kronecker );

(b) {«}} is total on X, i.e., zi(z) =0 for z in X only if x = 0;

(e¢) {x;}is total on X*, i.e., o’(x;) = 0 for 2’ in X* only when &’ = 0.

This terminology differs somewhat from that used by Banach in
note §1 to Chapter VII of [1] in that he uses a pair of sequences.
{x;}, {=}} instead of a double sequence. A biorthogonal sequence {w;, #}}
in a Banach space X is called norming if there is a subset 4 of [{x,}],
the span of {x,}, such that the norm

@], = sup {|'(x)|: 2" € A}

determines the topology of X.

THEOREM 2.1. There is a complete norming biorthogonal sequence
in every separable Banach space.

Proof. Let {y,} be a sequence dense in X. By the Hahn-Banach
theorem there is a sequence {y,} in X* such that ¥,(y,) = |/v.|| anb
ly,l] = 1 for each .
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Let 2 € X and ¢ > 0 be given. There is y, such that ||z — y,]| < /2.
Then

0= fle]] = lya(@] = [zl — yu@)]
= el = Nlyalll + [lyall — @) |
Slle —uall Fllvalllly. — 2l <e

which implies that
llz|| = sup,|y.(@)] .

Since {y,} being dense in X is total on X* and {y,} is total on X
there is by Theorem 4 of [4] a complete biorthogonal sequence {x,, x,}
in X such that [{z,}]] = [{¥.}] and [{z.}] = [{¥.}]. If A consists of all
o’ e X* such that ||2'|| =<1 then {y,} € A so that

lo]le = ll=]l

for each x e X. Therefore, {x,, x5} is norming.
The first part of the preceeding argument is frequently encoun-
tered; see, for instance, Lemma 4 of [6].

3. Sequence spaces associated with a complete biorthogonal
sequence. In the following, the letters s, ¢, u, v will always denote
sequences of scalars. If s is the sequence {a,, a,, ---}, s(j) denotes the
jth coordinate ;. Addition, scalar multiplication and product of
sequences is defined coordinatewise. The sequence each of whose
coordinates equals one is denoted by e; the sequence {0,;:5 = 1,2, ---}
by e.. A linear space of sequences on which there is a locally convex
topology is called a K-space if each coordinate functional given by

Ei(s) = s(7)

is continuous. A K-space which is a Banach space is called a BK-space.

For {x;, «;} a complete biorthogonal sequence in a Banach space
X the associated sequence space written S{x;, 2}} or simply S consists
of all sequences

S; = {x;(ﬂ'}):j = 1y 21 "'}

as ¢ range over X. The correspondence of ¢ in X to s, is called the
canonical isomorphism of X onto S. If S is given the topology of
identification, i.e., the norm

fsa]l = fll

then S becomes a BK-space. The canonical isomorphism is one to
one since {z;} is total on X. Under the canonical isomorphism z; cor-
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responds to e¢; and E; corresponds to x; in the sense that
Ejs,) = xj(@) .

The dual associated sequence space written S'{x;, 7} or simply S*
consists of all sequences

t, ={ylz;):d=1,2, -}

as y ranges over X* or equivalently of all sequences
ty ={yle;):d =1,2, .-}

as y ranges over S*. With the norm

e lly = [yl

S” is isometric to X* (or S*) under the canonical isomorphism of y to
t, since {x;} is total on X*.

The multiplier algebra denoted by M({x;, «;}) or more usually by
M(S) consists of all sequences % such that

us€S whenever seS.
According to 3.3 of [8], M(S) with the norm
lully = sup {|Jus]: [|s|] = 1}

is a BK-algebra isometric to the subalgebra < of continuous operators
F from X into X such that

xi(Fx,) =0

for j=k.
The series space of {z;, x;} denoted by .57(S) consists of all
sequences » having the form

(3.1 v = g Suln
such that each s, in ¢, each ¢, is in S/ and
(3.2) Slisalllitally < oo«
The infinite series in (3.1) converges coordinatewise since
; [8.) | 12.0) ] < lle;ll Ilejllfgllsnll ealls

Throughout this paper the familiar properties of BK-space dis-
cussed in 11.8 and 12.4 of [12] are used without citation.
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4. Absolutely convex subsets and BK-spaces. The space of all
sequences which are eventually 0 is denoted by . The space of all
sequences is denoted by @w. The space @ given the Tychonoff topology
as a countable product of scalar fields has many familiar properties
which are assumed in the sequel. For A a subset of ¢ and S an
arbitrary space of sequences A’ is equal to the set of all se S such
that |3, s(/)t(5)| < 1 for each ¢ in A. Thus A" is the absolute polar
of A in S when S and @ are placed in duality by means of the
bilinear form

(s 0) = 3 sG)10) -
For B a subset of w, B denotes the absolute polar of B in ¢, namely
the set of all ¢ in @ such that |(s, ¢)| < 1 for each s in B.
4.1. Let A be a bounded subset of @ which is balanced but not
necessarily convex, and let » be the Minkowski gauge of A4, i.e.,
p(s) = inf{a > 0:seaA}.

(a) If {s,} is a sequence in @ such that 3, p(s,) < o« then

3. 18.(7)| < o for each j.
(b) Let S(A) denote the collection of all sequences s in @ such

that
§ = 218 21 P(8)) < oo
Then S(A4) is a BK-space with the norm
“.1) Is]]* = inf {3 p(s.): Di s = s}

(¢) The absolutely convex hull of A denoted by x(4) is norm
dense in the unit ball of S(4). Thus [A], the span of A, is dense in

S(A4). ,
(d) Every BK-space S is of the form S(A) where A is a balanced

subset of w.

Proof. (a) Since A is bounded in w,
4.2) a; =sup{|s@f)]:se A} < =
for each j. Thus if 3. p(s,) < oo

2lls@)| = X a(s.) < = -

(b) The routine proof that || ||* is a seminorm and that S(A)
is a linear space is omitted.
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If ||s}|* = 0 then for each ¢ > 0 there is a sequence {s,} in  such
that 3,s, = s and >, p(s,) < ¢&. Thus if a; is given by (4.2)

Is() | = a;e

for each j. This implies that || [/ is a norm since s(j) = 0 for each j.
For seS(A) and each j

|By(#)] < 0, 5 p(5.)
whenever >),s, =s. Thus
| E;(s)| = a;|Is|[*

so that S(4) is a normed K-space.

Let {s,} be a sequence in S(A4) such that >),||s,||* < . For
each n let

= 5,500 3, 0(5) < llsa 14 + ¢/2m,
and let

Then s is in S(4) and {3}, s,,} converges to s since

nMs

k
”S - Z -S’,,,, (Snj)
n=1

< ¢f2* +n§ﬂnsnn** :

Therefore, S(A4) is a complete space.
(e) If ||s]|* <1 there is a sequence {s,} — A such that

nMB

s = 23,, and 21)(3”) <1.

Since A is balanced 3:_ s, is in £(A) for each %k and

[-o.

Thus £(4) is dense in the unit ball of S(A4).

(d) Trivial. Let A be the unit ball of S.

Let A and B be two subsets of w. If there is a number a > O
such that 4 c aB then B is said to absorb A. If A absorbs B and B
absorbs A then A and B are called equivalent. If p is the Minkowski

gauge of a balanced set 4 and || [[* the norm given by (4.1) then
the set

= {seldl:{ls|l* = 1}



REPRESENTATION AND SERIES SUMMABILITY 517

contains £(4), but £(4) may not absorb B. For example, let ¢ denote
the sequence (1, 1/2,1/4, --+) and define » on o @D [{t}] by

pls + af) = S15G)| + lal .

Then 2™t — 321! t()e;) is in B for each n whereas
n+1
n(2(t - by ti)e;)) > 2 .

4.2. Let A be a bounded absolutely convex subset of w; let
T = [A]; let p be the Minkowski gauge of A; and let || |[|* be given
by (4.1). Then the following statements are equivalent

(a) If >r.,s, =s coordinatewise then p(s) < 37, p(s,).

(b) There exists K such that p(s) < K> 7, p(s,) whenever

~_.8, = 8 coordinatewise.

(c) There is K such that p(s) < K||s||* for s in T.

(d) There is a BK-space S of which the normed space (T, p) is
a topological subspace.

(e) If E, denotes the extension of E; to the completion 7 of
(T, p) then {E’,.} is total on 7.

(f) If {s,xmn=1,2, --.} is a Cauchy sequence in (T, p) such that
s,(j) — 0 for each j then lim, »(s,) = 0.

(g) »(s) =|ls||* for s in T.

Proof. First note that (T, p) is a K-space since A4 is bounded in w.

(a)=(b)=(c). Obvious.

(¢)=(d). Let S = S(A). By definition ||s||* < p(s) for s in T so
that (c) implies (7, p) is a topological subspace of S(A).

(d)=(e). By 4.1(c), T is dense in S(A), and if (d) holds, (T, P) is
a topological subspace of S(4). Thus S(A) is isomorphic to 7’ and the
set of functionals {E;} defined on S(A4) as total.

(e)=(f). Let x =lim,s, in 7. If {(E;} is total on T then z = 0
since E'j(m) = lim, E,(s,) = 0 for each j. Thus lim, p(s,) = p(z) = 0.

(f)=(a). It may be assumed that >} p(s,) < o. Then

{i‘,sn:kzl,Z, }
n=k

is a Cauchy sequence in (7, p) such that 3¢ .s.(j) —0 for each j.
Thus lim, p(C. 7. s,) =0 by (f) so that (a) holds by passing to the
limit in the inequality

p® = 30 + (S 5.

n=k+1

(a)=(g)=(c). Obvious.
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DEFINITION 4.3. A bounded absolutely convex subset 4 of ® will
be called consistent if one, hence all, of the conditions of 4.2 is satisfied.
A bounded subset A of w which is balanced will be called consistent

if k(A) is consistent.

See 3.1 of [10] in connection with the idea of consistency.

5. Representation.

THEOREM 5.1. (a) A sequence space is associated with a com-
plete biorthogonal sequence in a Banach space if and only if it is
of the form S(A) where A is a balanced subset of @ which absorbs

each point of .
(b) In addition it may be assumed that A% = A and A is

consistent.
(¢) The complete biorthogonal sequence is norming if and only
if the associated sequence space s of the form S(A) where AP = A.

Proof. (a) If A is a subset of ¢ having the properties listed
in (a) then by 4.1, S(A) is a BK-space in which {¢;, E;} is a complete
biorthogonal sequence.

If S is a sequence space associated with a complete biorthogonal
sequence in a Banach space let A consist of all sep such that ||s]| <1
where || || is the identity norm on S obtained in §3. If p is the
Minkowski gauge of A then p(s) = ||s|| for s in @ so that A is consistent
by 4.2. Since ¢ is dense in S and in S(A) the spaces are equal.

(b) It has already been noted that the set A defined in the
previous paragraph is consistent. Furthermore A is absolutely convex
and closed in the relative topology of S on ¢ so that A« = A4,

(¢) If S has the form S(A) where A = A“® then for s in ¢

(3.3) p(s) = sup {|(s, O)[: e A} .

Here p is the Minkowski gauge of A. Thus by 4.2(a) it follows that
A is consistent and for se S(4)

Isli* = sup {i(s, D) |: t € A¥}

so that {¢;, E;} is a norming complete biorthogonal sequence in S(4).
If S is associated with a complete norming biorthogonal sequence
in a Banach space let B be a subset of @ such that the norm

sl = sup {|{(s, 1) |: £ € B}

determines the topology of S. If A = B"” then S = S(4) and A“® =
Bwwwr = A because of the bipolar theorem.
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For S a BK-space containing ¢, S° denotes the closure of ¢ in S
and S’ denotes the space of all sequences of the form {#'(e;):5 = 1, 2, +++},
where 2’ € S*. Note that if S = S° then S has the same meaning as
in §3.

5.2. Let S be a BK-space containing ¢ and having norm || ||,
and let A = {seqp:|[s|| < 1}.
(a) S =8~

(b) With the norm
(5.1) [[¢]l. = sup {| ¢, 8)|: s € A}

S7 is a BK-space isometric to S°* under the correspondence of 2’ in S*
to {#'(e;)} in S.

(e) S =Usind“.

(d) {e;, E;} is a norming complete biorthogonal sequence in S7°.

Proof. (a) Since each continuous linear functional on S is con-
tinuous and linear when restricted to S°, S — S°/. Since each con-
tinuous linear functional on S° can be extended to S by the Hahn-
Banach theorem S°/ c S7.

(b) Since {¢;, E;} is a complete biorthogonal sequence in S°, S' is
a isometric to S with the norm

2,11y = sup {|y(s)|: s €S and |[[s]| =1}
= sup {|y(s)|: y € 4}

since A is dense in the unit ball of S°. But for s in @
() = X s0)yle) = (s, %) -

(¢) Because of (b) the unit ball of S’ is part of A’ so that
S’ U= nA.
On the other hand let tenA“ for some n. Define the functional
x; on ¢ by
xi(s) = (s, 1) SE@.
Since tenA®

lei(s)| = n ||sl|

for s € p so that #, can be continuously extended to S°. Since xj(e;) = £(j)
for each j7,te S”.

(d) This follows from (b).

Since

tep:lltly <1} = A N g = A®
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5.2(c) can be reapplied to determine that

o

Sff — U nA((P)("))

n=1

Sfff —_ G nA(fﬁ)(qO)(w)
n=1

87955 = (J nAw @@ = S5
n=1

since A®W@@® = AW for a subset A of @ because of the bipolar theorem.

5.3. For S a BK-space in which @ is dense the following state-
ments are equivalent:

(a) {e;, E;} is a norming complete biorthogonal sequence in S.

(b) S/7°=S8.

(e) S =48

Proof. (a)=(b). If {e;, E;} is a norming biorthogonal sequence
there is a subset A of » such that 4 = 4““ and S = S, By 5.2(c)
the norm || ||, on S’/ is given by

t]l7r = sup {| (¢, ) |: s € AV},

But since AV = A, ||t]|;; = ||t]|. for teS. Thus S = S//° since ¢ is
dense in both spaces.

(b)=(c). If S’/° =S then their BK-topologies can be determined
by the same norm || |[. If A = {seqp:|/s|| <1} then both S/// and
S’ are equal to U, nA“.

(©)=(a). If S = S//7 then the absolutely convex sets A and
A@@i@ are equivalent since the first is the closed unit ball of S and
the second is the closed unit ball of S/, Thus A« is equivalent to
Awrerene) — A and g0 S = S(4) = S(A¥*) which implies that
{e;, E;} is norming in S by 5.1.

The following representation theorem is an immediate consequence
of 5.2 and 5.3.

THEOREM 5.4. Let S be a sequence space associtated with a com-
plete brorthogonal sequence inm a Banach space X. If S is equal to
S(A) where A is a consistent balanced subset of @ them X* is
isomorphic to S* = S(A) = Uz, nA. The given complete biortho-
gonal sequence 1s norming if and only if S/77 =S/,

6. The series space and series summable biorthogonal
sequences. Let S be a sequence space associated with a complete
biorthogonal sequence in a Banach space and let A consist of all s in
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@ with ||s|| < 1. Since the Minkowski gauge of the balanced set
AA is

p() = inf {||s|| ||t]|;:s€p, te S and st = v}

&7(S) as defined by (3.1) and (3.2) is the space S(AA'“’) in the sense
of Proposition 4.1. The following statement thus follows immediately.

6.1. With the norm
1ol = int{ 35 s, 1tallr: 5 sata = v, 5069, tae 57}

(S) is a BK-space in which ¢ is dense.
Since @ is dense in S it can be shown that .$”(S) consists of all
sequences v having the form

(6.1) v = 3, 8;t; 8; €8, tjesf?2||35||||tj||f< oo
J J
and that
1olle = it {S lls; 1418 Sty = 0, 5,€ 8, t;e 57} .

For X a Banach space let _#7(X) denote the Banach space of all
nuclear operators F' from X into X with the norm

IF| = it {1y 10,11 ;€ X, 45 X%, S u@)y; = Fo) for we X | .
See 3.1.3 of [9].

6.2. .&7(S) consists of all sequences of the form
vp = {E;(Fe;)}
as F ranges over .#7(S). The function defined by
A(F) = vg

is a continuous linear operator from _#7(S) onto .&7(S).

Proof. It is first shown that if Fe_#"(S) then 4(F)e.&”(S).
Suppose for each se S

F(s) = gyn(S)sm Y. €S* s,€8, 1Yl flsall < oo

Let ¢, in 87 be such that ¢,(j) = y.(¢;) for each n and each j. Then
for each j

;sn(j)tn(j) = ;Ej(sn)yn(ei) = Ej(Fej) = vF(])
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so that 3, s.t, = vy. Since 3, s . . llr < oo, v5 € F(S).

It is clear that 4 is linear. Since F(x) = >\, v.(®)y, implies that
E(Fe;) = >, y.(e;)E(y,) for each j, ||vs||. < || F| because the first
norm is defined as an infimum over a larger set. Therefore, 4 is
continuous.

6.3. .S7(S) = M(S) = M(<”(S)).

Proof. .&2(S)" < M(S). Let B denote the set of all ve e such
that [[v||, <1 and let A be the set of all sep such that |[s|| < 1.

Then AA“ — B so that
L(S) = UnBY < U n(AA@) = M(S) .

M(S) ¢ M(<7(S)). If ueM(S) and ve.s”(S), let v = >, 8,0,
Then uwv = 3, us,t, and since

2 llusall 1]l = 2 llwlla sall ]l < oo

it follows that uve &7(S). Thus ue M(S7(S)).
From equation (6.1) it follows that SS/ < .57 (S).

THEOREM 6.4. Let S be a sequence space associated with a com-
plete biorthogonal sequence in a Banach space and let A be a consistent
absolutely convex subset of @ such that || ||* determines the BK-
topology on S. Then the following statements are equivalent:

(a) AA“ 1is a consistent subset of @;

(b) A(S)! = M(S);

(c) eec.”(S).

(d) There is a continuous linear functional E on S7(S) such
that if s, €S and t,eS’ then

E(st) = 2'(x) .

Proof. (a)=(b). If AA is consistent then by 5.2(c)
LS = S(AAY = U m(AA“) = M(S) .

(b)=(c). ee M(S).

(¢)=(d). If ee.5”(S)” there is a continuous linear functional K
on .&“(S) such that E(e;) = 1 for each j.

Given t e S’ define F, from S into $7(S) by F.s = st. Then F, is
a closed, hence a continuous operator. Thus the functional defined by

V' (s) = E(Fys) = Est)

is continuous linear functional on S. For each s in ¢
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Y'(s) = E(st) = g, s(9)tg) = xi(s)
so that
y'(s) = E(st) = wi(s)

for each s in S because ¢ is dense in S.

(d)=(e). If E is given by (d) then FE(e;) = 1 for each j.

(e)=(b). If ec.2”(S)’ then M(.”(S)) < .&7(S)’ for if u € M(S7(S)?)
then uwe = ue¢.<”(S)’. By 6.3 &°(S)) < M(S) and by 3.5 of [8]
M(T) < M(T') for every BK-space. Thus .&7(S)’ = M(S).

(b)=(a). Let B consist of all » in @ such that ||v].-<1. If
F(S) = M(S) then M(S) = U, nB" by 5.2(c) and B is a bounded
barrel in M(S). Thus B is absorbed by (4A4A“) which implies that
(A4 abgorbs B. Thus (AA) is consistent.

A complete biorthogonal sequence in a Banach space will be called
series summable if the associated sequence space hag one, hence all
four of the properties mentioned in 6.4.

6.5. Let {x;, «;} be a series summable complete biorthogonal

sequence in a Banach space X.
(a) If xe X and 2’ € X* then

(6.2) 2w (wy)ws(@) = o' (w)

whenever the sum has finitely many nonzero terms.
(b) If I, and I, are complementary sets of indices then

(6.3) clfz;:del}] = N{re Xiai(e) = 0,5 L}
(¢l means closure).
Proof. (a) Without loss of generality assume the biorthogonal
sequence in {¢;, E;} in a BK-space S. Then
a'(s) = Est,) = 3. s()H(7)

since st e .

(b) If jeI, and keI, then «i(x;) = 0 so that the set on the left
hand side of (4.6) is contained in that on the right.

If ' in X* is such that 2'(x,) = 0 for j in I, and « is in the set
on the right hand side of (4.6)

2(@) = 30 (e)a(e) = 0

by (a) since each summand is 0. Thus [z,:j¢ I}] is dense in the set
on the right.
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Let Z denote the infinite matrix whose element in the sth row
4th column is given by

1 t=3,5+1 7 odd
a; ={1/29 i=7 J even
0 otherwise.
Let (Z) denote the space of all sequences (z;) such that lim, > 5., a;;2;
exists. On p. 657 of [13] it is shown that {e;, E;} is a complete
biorthogonal sequence. But, as A. K. Snyder has noted, (6.3) does

not hold since N{se(Z): E,(s) = 0} is ¢. Thus {e;, E;} is not series
summable.

6.6. Every Banach space in which there is a series summable
complete biorthogonal sequence has the approximation property (p. 167
of [5D.

Proof. Without loss of generality it may be assumed that the
space is a BK-space S in which {e;, E;} is a series summable complete
biorthogonal sequence. Suppose >, ||8.|| H¥.ll < o, s,€ 8, v, 8* and
NinYa(8)s, = 0 for each s in S. Then ¥, v.(¢;)s, = 0 for each j so that

S ) = S E,,) = E(Ss,,) = BO) = 0.

Thus the trace of a nuclear operator is well defined on S so that by
Proposition 35 of [5] S has the approximation property.

Strongly series summable complete biorthogonal sequences.

7.1. Let S be a sequence space associated with a complete
biorthogonal sequence in a Banach space and let A be an absolutely
convex consistent subset of @ such that || ||* determines the topology
of S (i.e., S = S(4)).

(a) M(S) = U, n(A4“) .

(b) {e;, E;} is a norming complete biorthogonal sequence in M(S)°.

(e) M(S)" < M(S).

Proof. (a) As noted in §3, M(S) is a BK-algebra with the norm
ully = sup {|Jus||*: ||s||* = 1} .
But A is dense in the unit ball of S so that

][y = sup {||us||*: s A}
= sup {|(us, t)|:s€ 4, t ¢ A}
= sup {|(u, v)|:ve A4},
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Hence
(7.1) M(S) C_) W(AA@)@
If wen(Ad“) for some n,— define F, on @ by
Fi(s) = us.
Then F’, is continuous on (@, || ||*) since
llus|l* = sup {[(us, ) [: te A} < n||s][*

for s in . Thus F" can be extended continuously to all of S, and if
F', is this extension

F.,s=us.

Thus e M(S) so that equality holds in (7.1).

(b) This follows from the equality ||u||,, = sup {|(u, v)|: ve AA“}.
(¢) By 5.2(c)

M©B)* = (J n(AA@) @@
which is contained in M(S) sim:e= 1
(AA) @@ — (A@)@
Since AAY c (AA“) @ it follows that
SS7 < &~ (S)  M(S)™.

THEOREM 7.2. Let S be a sequence space associated with a com~-
plete biorthogonal sequence in o Banach space, and let A be a con-
sistent absolutely convex subset of @ such that || ||* determines the
topology of S. Then the following statements are equivalent

(a) M(S)y” = M(S)

(b) eeM(S)”

(¢) There is a sequence {u,} in @ such that lim,u,(j) =1 for
each j and {u,} 1s bounded in M(S).

(d) There is a sequence {u,} in @ such that

lim ||s — u,s]|* =
n

for each seS.

(e) There is a sequence {u,} in ¢ such that lim, (su,, t,) = y(s)
Jor s in S and y e S*.

(f) (AA@)9 @ ghsorbs (AA@) ),

Proof. (a)=(b). Trivial since e e M(S).
(b)=(c). If ec M(S)’/ then ¢ is in a(AA)P¥) for some a > 0
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because (AA@)W @ ig the unit ball of M(S)// by 5.2(c). There is
thus a sequence {u,} in (AA*“)* converging coordinatewise to e since
(AA@) ) ig the closure in @ of (AA™)®. Also each u, is in the
unit ball of M(S).

(¢)=(d). Let {u,} be given by (¢). For s in @

(7.1) lim||su, — s||* =0
since '
Is = suall* S 3% 156) — sG] lles |1
where N, is such that s(j) = ]0— for 5 > N,. Also
s |1 = (|2l |18 11"

for se S. Thus by the Banach-Steinhaus theorem (7.1) holds for each

s in S.
(d)=(e). Let {u,} be given by (d) then for s in S and » in S*

lim (su,, t,) = y(lim su,) = y(s) .

(e)=(d). Let {u,} be given by (e) then (d) follows from II. 3.2
and II. 3.6 in [2] since lim,u,e, = ¢, for each k.

(d)=(f). Let {w,} be given by (d). Given « in M(S) define F,,
on S by

F,. s = uu,s n=12 ...
Then
limF,, s = us
n

for each s in S. By the uniform boundedness principle {F,, } is a
bounded sequence in <. Thus

{uu,n} [ a(AA(w))(w) Ne = a(AA(w))w)

for some a > 0. Since u,e; —e¢; for each j, {uu,} converges coordi-
natewise to u. Thus u e a(4A“) @ This implies that (AA@) @
absorbs each point in M(S). But (AA)@ @ is closed in M(S) since
it is closed in w and M(S) is a BK-space. Thus (AA“)“ @ ahsorbs
(AA“) which is the unit ball of M(S).

(f)=(a). By 7.1(c), M(S)’/ < M(S). But (AA“)¥¥ ig the unit
ball of M(S)’/ so if it absorbs (AA4“)“, M(S) c M(S)//.

A complete biorthogonal sequence in a Banach space is called
strongly series summable if the associated sequence space has one,
hence all of the properties in 7.2.
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7.3. Let {x;, #;} be a strongly series summable complete biortho-
gonal sequence in a Banach space X. Then

(a) {=z;, «j} is norming;

(b) {=;, x5} is a series summable basis;

(e) {x;} is an approximative basis in the sense of Singer ([11],
Definition 3.19).

(d) X has the metric approximation property (Definition 10, p.
178 of [5]).

Proof. (a) Let {u,} be a sequence as in 7.2(d) and let
B = {Su.(w@)in =12, || < 1}.

It follows from 7.2(d) that || ||z determines the topology of X.

(b) By 7.1(a) and 5.2(c) the closed unit ball of M(S)’ is (AA!“)t¥
where A = {se@:||s|| < 1}. This implies that & (S) < M(S)’ and since
the inclusion is continuous, $7(S) < M(S)". Thus if M(S)'" = M(S),
&Z(S) o M(S) so that &7 (S)" = M(S) by 6.3.

(c) Let y,; be defined by

Yoi(®) = ua(G)}(x) xeX.

Let {m,} be any increasing sequence of integers such that u,(j) =0
for 5 > m,. Then 7.2(d) implies that

lim "w - ij, y;j(x)xj” =0

so that {x,} is an approximative basis of X.
(d) This is an immediate consequence of 7.2(d) with F, =F,
for each n.

THEOREM 7.4. Let {x;, x5} and {y;, ¥;} be complete biorthogonal
sequences in Bamnach spaces. If {x;, x}} is strongly series summable
and M({x;}) < M({y;}) then {y;, ¥i} s a strongly series summable.

Proof. Let S be the sequence space associated with {x;, 2} and
T the sequence space associated with {y,, v;}. If M(S) < M(T) the
inclusion is continuous since both are BK-spaces. Thus if (¢) holds
for M(S) it also holds for M(T) with the same sequence {u,}.

I do not know an example of a series summable complete biortho-
gonal sequence which is not strongly series summable. If {z;, «j} is
series summable and {e;, £,} is norming in .&”(S) then $(S) = M(S)’"°
so that {x;, 2]} is strongly series summable.
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