Pacific Journal of

Mathematics

THE SOLUTION OF A DECISION PROBLEM FOR SEVERAL
CLASSES OF RINGS

HAROLD SIMMONS




PACIFIC JOURNAL OF MATHEMATICS
Vol. 34, No. 2, 1970
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H. SimMONS

This paper is concerned with the solution of certain decision
problems for classes of associative commutative rings, We
consider several such classes defined by restricting the nature
of the rings, e.g., by specifying the characteristic. If .57 is
any of these classes we consider the problem of deciding which
universal sentences are true in (all members of) .7%~. We
show that this problem is recursively solvable,

In §1 we define our terminology, give a precise description of the
problem, and state the main theorem. In §2 we make certain reduc-
tions of the problem. Basically we show that it is sufficient to be
able to solve linear equations over polynomial domains. In §’s3 and
4 we show that these linear equations can be solved.

The techniques used in this paper can also be used to show that
the word problem for commutative semigroups is solvable.

1. Introduction. Throughout this paper we deal with rings
which are both associative and commutative. Thus, from now on,
“ring’ will mean ‘associative commutative ring’.

By a ring we mean a structure (4, +, -, —, 0) which satisfies the
usual axioms for rings. Let <# be the class of rings. Associated
with <# there is the obvious first order language &, This language
‘has logical symbols 7, Vv, &, —, ¥, 3, =, and extra-logical symbols 4,
X, —, 0, and the the usual punctuation symbols. (It is not necessary
to include ‘—’ in the type of <2 and ‘—’ in the language <, however
it is convenient to do so.)

By a ring with identity we mean a structure (4, +, -, —, 0, 1)
-‘which satisfies the usual axioms. (We assume that these axioms imply
that 0,1 are distinct.) Let .2#(1) be the class of rings with identity.
Associated With 2 (1) there is the obvious first order language <°(1).
‘This is like & except that it has another extra-logical symbol 1.
(Among the axioms for .<#Z(1) will be the sentence (0 = 1).)

We use ‘term’, ‘atomic formula’, ‘formula’, ‘sentence’, ete. in the
usual way to describe certain entities of & and ~°(1). However,
since we have two languages we sometimes have to be more precise
and say ‘<-term’, ‘¥ (1)-formula’, ‘< -sentence’, ete. Notice that
every &£ - term, J—formu]a, &~-sentence, ete. is also an &~(1)-term,

Z(D)-formula, &°(1)-sentence, ete.
It is convenient to introduce into .#(1) the abbrev1at10ns 2,3, 4,
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548 H. SIMMONS

5,¢++, for 14+1,2+1, 341, 4+1, --- respectively.

For each integer ¢ = 2 let <&, be the subclass of <Z of rings
whose characteristics divide ¢. Similarly we define <2,(1). Thus Z,(1)
is the class of rings with identity which satisfy the .&“(1)-sentence
c=0. Let &', &2'(1) be the subclasses of Z,, Z(1) of rings of
characteristic exactly ¢. Thus each member of <Z,(1) satisfies

M=0&"2=0&---&(d =0&(c = 0)
where d = ¢ — 1. Notice that <Z’ < <, < .<# and
Z/ ) s 2 01)S#(1).

Let &%, (1) be the subclasses of &2, .2 (1) of rings which satisfy
all the sentences

Vo)[x + +++ m times -+« + 2 =0—2 = 0]

for m = 1. We say these rings are torsion free (since their additive
groups are torsion free). Also let <2/, &&’'(1) be the subclasses of
“#, #(1) of rings of characteristic zero. Notice that «# & &' = #
and Z(1) = #(1) = H(1).

Let 22" be any of the above defined classes of rings. Let T(%")
be the elementary theory of .2  (i.e., the set of sentences which are:
true in all members of .%7). From the works of Tarski, Rabin, Ersov
it easily follows that T(°#") is undecidable (i.e., not recursive). For
details see [1]. We are going to show that a certain subset U(%¥")
of T(>¢") is recursive.

A universal sentence is a sentence in prenex normal form contain--
ing no existential quantifiers.

For each class 22" of rings let U(#") be the set of universal
sentences which hold in all members of 227 Thus U(2%") & T(%)..
In this paper we prove the following theorem.

MAIN THEOREM. Let 22 be any of the following subclasses of
K78

%1 k@c! %1 %c’, %,

for ¢=2, and let 22°(1) be the corresponding subclass of H(1).
Then

@) U(Z¥") s recursive,

(by U(2£ () is recursive if 22 + ).

Three remarks about this theorem:
(1) The theorem gives us no information about U(<Z'(1)).
(2) The methods we use show that most of the above sets.



THE SOLUTION OF A DECISION PROBLEM 549

are primitive recursive. In fact only U(#Z(1)), U(<#), U(<Z') are not
shown to be primitive recursive.

(3) The corresponding results for fields and integral domains
follows from the decidability of the theory of algebraically closed
fields.

2. Some preliminary reductions. In this section we show that
for the main theorem to be true it is sufficient to be able to solve
Tlinear equations over certain polynomial domains. We do this by
making several reductions of the problems, most of which are fairly
:standard.

Sections 3 and 4 and the last part of this section are devoted to
proving the following theorem.

THEOREM 1. The following sets of & (1)-sentences are recursive:
(i) UZQ)).

(1) U(zz(1)).

(iii) U(Z.Q)) for any integer ¢ = 2.

Once we have Theorem 1 the remainder of the main theorem is
fairly easy. We use the following lemma.

LEMMA 2. Let 27 be any of the above defined subclasses of 2,
and let 27 (1) be the corresponding subclass of #Z(1). Let ¢ be any
integer =2.

(a) If U2 (1)) is recursive then so is U(2%).

(b) If U(=2) is recursive then so is U(ZZ)).

() If U(Z.)) ts recursive then so is U(#/'(1)).

To obtain the main theorem from Theorem 1 and Lemma 2 we
wse the following chains of implication.

4
l(b)
() — .2 (1) -2 o
(i) —> 2,(1) -2 7,
(ifi) — 2 (1) - 2,
1(6)
211) -2, o

Proof of Lemma 2. (a) Let o be any universal .&~-gentence.
Bince every member of 2¢°(1) is a (reduct of a) member of 2% we
have
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F o= %) Eo.

It is well known that every member of .2~ can be embedded in a
member of .27°(1). Thus, since universal sentences are preserved under
passage to substructure, we have

GV Eo=2" Eo0.
Hence, for any universal <“-sentence o,
celU(r)=0e U 1),

which gives (a).

(b) Every ring can be embedded in a ring of zero characteristic,.
hence (b) follows in the same way as (a).

(¢) Let a be the quantifier-free .~ (1)-sentence

1#0&---&d=+#0

where d = ¢ — 1. Let o be any universal %7 (1)-sentence. Then
F o= =Ea—0o.

Thus, since &« — o is (equivalent to) a universal sentence, we get (c).

In order to extend the main theorem to include the class o~ =
/(1) it would be sufficient to extend Lemma 2 by adding the im-
plication

(d) If U(##(1)) is recursive then so is U(=Z/(1)),
and prove this by the method of proof of (b). However this will not work
since there are rings with identity which cannot be embedded in rings.
with identity of characteristic zero. (Such an embedding must pre-
serve the indentity.)

Another way to extend the main theorem would be to add

(e) If U(=#(1)) is recursive then so is U(ZZ'(1)),
to Lemma 2. This could be proved by the method of proof of (c), i.e.,
we describe an effective method which, for each universal sentence o,
produces a universal sentence ¢’ such that

VD) Eo=2z1Eod.

However I do not know how to construct such a o’.

We must now prove Theorem 1. To do this we first use a result
of McKinsey [3].
A conditional sentence is a sentence of the shape

(le, ces, xn)[fl = 0& “o &f1 P 0-——)]“: O]
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where f,, ---, f,, f are terms in the variables =z, ---,2,. For each
class of rings with identity, .%°(1), let C(.2¥°(1)) be the set of condi-
tional sentences which hold in .277°(1). We will eventually prove the
following theorem.

THEOREM 3. The following sets of & (1)-sentences are recursive.
(1) C(21)).

(i) C(z&(1)).

(iii) C(2.1)) for any integer ¢ = 2.

Once we have proved Theorem 3 we can obtain Theorem 1 using
the following lemma.

LemMMmA 4. Let 22°(1) be any of #(1), (), () for ¢= 2.
If C(2 (1)) 1is recursive then so is U(27(1)).

Proof. Let o be any universal .&(1)-sentence. o is logically
equivalent to a sentence of the shape
(V& -+, 2)[D, & -+ &D,]

where each D, is a disjunction of literals (i.e., atomic formulas or
negations of atomic formulas). For each 1 <7< m let o, be the
sentence

(VCCI, cty m’n)Dz .
Clearly we have
FV)Eo=9%(1)Eo, and ---and % (1) = o, .

Using the constants 0, 1, and the abbreviations 2, 3, ---, we can
write each term of o; as a “polynomial” in the variables z, ---, x,
with coefficients from 0, 1,2, ---. Also, since ‘—’ occurs in F (1),
each atomic formula can be written as f = 0 for some “polynomial”
f. Thus each o; can be rephrased in the shape

(vxlr"°7xw)[f17l:0v Tt \/fri()\/_%:()\/ e \/gs‘_"O]

where f,, -+, 9, are “polynomials”. We may assume that » > 1 and
s = 1, for if not we introduce a new formula 0 =0 or 1 = 0.
For 1 < j < s let o;; be the sentence

(Vi woe 2 ) f,=0& - &f, =0—g, = 0] .

Clearly we can obtain the o;; from ¢ in a recursive fashion. Thus
the proof is completed by using the following lemma.
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Lemma 5. With 22 (1), 0;, 0;; as above

FV)Eo, <= 5A)Eo, or--o0r (1) = o0, .

Lemma 5 is proved in McKinsey [3, Th. 1, p. 66]. It should be
pointed out that Lemma 5 depends on the fact that <#(1), <#(1) and
(1) are closed under (finite) direct products.

The rest of the paper is devoted to proving Theorem 3. To do
this we first translate the statement ‘c e C(2¢°(1)) (where o is any
conditional sentence and 2#°(1) is any of .#(1), .Z& (1), #,(1)) into a
statement concerning the membership of polynomial ideals. We will
concentrate on one particular sentence,

O-E(qu "',xn)[flz()&"'&frzo'—_’f=0] ’

although this sentence can be arbitrarily chosen. The technique we
use was used by Shepherdson in [4].

Let Z be the ring of integers, @ the field of rational numbers,
and Z, the ring of integer modulo ¢. With each of f, .-, f.,f we
associate, in the obvious way, polynomials F,, -.., F',, F' of the poly-
nomial domain Z[X,, ---, X,]. Thus

(i) X, ---,X, are associated with =, ---, 2, respectively,

(ii) 0,1,2, --- are associated with 0, 1, 2, ---, respectively,

(iii) if G,, G, are associated with g¢,, g, then G, + G,, G,-G,, G, — G,
are associated with ¢, + ¢,, ¢, X ¢., g, — ¢», respectively. Let a be the
ideal generated by F, ---, F,.

Although F,, --., F,, F are defined to be polynomials in Z[X, - --,
X,] they can be construed as polynomials in Q[X, ---, X,] or Z,[X,
-+, X,]. In the same way a can be construed as an ideal of
AX, -+, X,] or Z]JX, ---,X,]. We will use the phrases ‘over Z’,
‘over @', ‘over Z,', to indicate the polynomial domain we are con-
sidering.

The following theorem completes our translation of the problem.

THEOREM 4. With o, F, a defined as above,
(1) 0eC(#FQ)) = Fea, over Z,
(i1) oceC(# Q) = Fea, over @,
(iiil) e C(# (1)) = Fea, over Z,.

Proof. Since the proofs of (i), (ii), and (iii) are similar we will
prove only (iii), and sketch the proof of (ii).

Consider first the implication = of (iii). If Fea, over Z, then,
for some polynomials G,, ---, G,,
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F=GF + - +G,F,,

over Z,. Let G, ---, G, be associated with the terms g¢,, +--, g,, SO
that
f: (gl ><f‘l)_*- te +(gr Xfr)

holds in .<Z,(1). The implication is now clear, for if
i=0&--- &S, =0

holds in some Re (1), then automatically f = 0 holds in R.

To prove the implication = of (iii) suppose o € C(Z,(1)) and con-
sider the ring R = Z,[X,, --+, X,]/a. Clearly Re .2Z,(1), and so ¢ holds
in R. Now consider the elements z, = X,/a, +--, %, = X,/a of R, and
with these elements form f,, «+-, f., f The elements of R so formed
are, in fact, F\/a, ---, F,/a, F/a respectively. Since F,caq, ---, F,ca
we have

fi=0&---&f, =0

holds in R, and so (since R satisfies o) we have f = 0 holds in R.
Thus Fea, as required.
Now for the implication = of (ii). If F'ea, over @ then

F=HF + --- + HF,
where H,, ---, H, are polynomials with rational coefficients. Hence
dF =GF, + --- + G.F,

for some integer d and integral polynomials G, ---, G,. Thusd x f=
0 holds in .&#,(1). But each member of .<Z(1) is torsion free, hence
S =0 holds in ZZ(1).

For the implication = of (ii) we consider the torsion free ring
R = Q[X, ---, X,]/a and argue as above.

This completes the translation. To complete the proof of Theorem
3 (and hence the main theorem) we must show how to test member-
ship of polynomial ideals.

3. The solution of linear equations over polynomial domains.
Let F\, ---, F,, F be polynomials in D[X,, ---, X,], where D is any
of Z,Q,Z,, ¢c=2. We must consider the solution of equations of the
form

(3.1) Foa + -« + Fa. =F
and

(3.2) Fa,+ - +Fa =0,
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where «,, -+-, &, are unknown polynomials of D[X, ---, X,]. As in
the previous section we will assume where possible that all polynomials
are written as polynomials in Z[X, ---, X,], and, where necessary,
we will use the phrases ‘over Z’, ‘over Q’, ‘over Z,” to indicate how
they should be interpreted.

With equations like (3.1) the problem is first to test whether or
not a solution «,, --+, «, exists, and then to find such a solution if
one exists. With equations like (3.2) the problem is to find a com-
plete solution, i.e., a finite matrix [G;;;1 <+ < », 1 <7 < s] of poly-
nomials such that «, ---, a, satisfies (3.2) if and only if

a, B,
)= [G“-] :
a, B,

for some polynomials 5, ---, 8,. Of course, these solution procedures
must be carried out in a recursive fashion.

Let a be the ideal over D generated by F, ---, F,. Notice that
as soon as we can test the solvability of (3.1), we can test whether
or not Fca; hence we have a proof of Theorem 3 for the correspond-
ing class of rings.

For each polynomial G we denote the degree of G by dG. Also
we let d = 0F, ¢ = max (oF,, ---, 0F,).

Methods of solving equations like (3.1), (3.2) have been considered
by Hermann in [2]. We state the following results of that paper.

LEMMA 5. There are recursive functions m,(-, +, «, ) and my(-, +)
such that if D is a field then:

(1) Equation (3.1) has a solution over D if and only if it has
a solution a,, ---, &, such that oo, < m,(d, q, n) for each 1.

(i) Fguation (3.2) has a complete solution [G;;] over D such
that 0G;; < my(q, m) for each %,j.

The proof of (i) is contained in Satz 2 of [2], and the proof of
(i) is contained in Satz 3 of [2]. Both of these proofs are an intricate
use of the division algorithm for polynomial domains.

This lemma gives us an effective method of solving (3.1), (3.2)
over Q or Z, (p prime). We use the method of “comparing coefficients”..
For instance, consider (3.1) over D. We replace each « by an arbitrary

(i.e., with unspecified coefficients) polynomial of D[X,, -.-, X,] of degree
m,(d, ¢, n). If we now compare coefficients of the various products
of X, ---, X, we obtain a set of linear equations F with coefficients

in D and unknowns ranging over D. This set E is solvable if and
only if (8.1) is solvable over D. But F can be solved using the usual
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methods of linear algebra.
Thus, using the previous lemma and the method of comparing
coefficients we get the following lemma.

LEMMA 6. Let D be any of Q, Z,, p prime. Fquations like (3.1),
(3.2) over D can be effectively solved.

COROLLARY. Theorem 3 holds for the classes &), #Z,1), p
prime.

To obtain the Theorem 3 for the class Z,(1), ¢ = 2 we must extend
this last lemma. This we now do.

THEOREM 7. Let D be any of Z, ¢= 2. FEquations like (3.1),
(8.2) over D can be effectively solved.

COROLLARY. Theorem 3 holds for the classes <2,(1), ¢ = 2.

Proof of theorem. We prove the theorem by induction on c.
Suppose the result is known for 2, 3,4, -+-,¢ — 1. If ¢ is prime then
the result (for ¢) follows from the previous lemma. (The initial case
¢ = 2 also follows from the previous lemma.) If ¢ is not prime we
can factorize ¢ = d,d, where p, < ¢, d, < ec.

Consider (3.2). First we solve (3.2) over Z,; to get the complete
solution [G;;: 1 <7 =< 7,1 <j < s]. (Remember that the G,; are written
as polynomials over Z.) For each 1 < j < s define G; by

Gj = GU'FI + '(:l° - G'ero'

so that G, is a polynomial over Z. We now solve the equation
GB + -+ +GB, =0

over Z,, to obtain the complete solution [H;21<i<s,1=<j=<¢]. It
is now an easy matter to check that the product [G;;][H;;] gives a
complete solution of (3.2) over Z,.

We use the same technique to solve (3.1) over Z,. First we solve
(3.1) over Z; to get the solution G/, ---, G,. Let [G;;] be the complete
solution of (3.2) over Z,. We define

¢-FG +- - +FG —F
d,

and G,, -+, G, above. It is now easy to show that (3.1) has a solu-
tion over Z, if and only if
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G1B1+ e +GsBs:G

has a solution over Z,. Also any solution of this last equation gives
a solution of (3.1).

4. The test for membership of ideals over Z. To complete
the proof of the main theorem we must show how to test for member-
ship of the ideal a = (F, ---, F,) over Z. To do this we consider an
arbitrary polynomial F, and describe two effective procedures. The
first procedure stops if and only if Feaq, and the second procedure
stops if and only if F ¢ a. Thus, using the two procedures simult-
aneously, we can test whether or not Fea. (All the effective pro-
cedures we have used so far have been primitive recursive, however
the procedure we give for testing membership of a over Z is not
primitive recursive.)

The first procedure is trivial; we enumerate all r-tuples (G, ---, G,)
and for each such 7-tuple we compute F.G, + --- + F.G,. We stop
when F = F.G, + --- + F,G,.

The second procedure is more complicated. We will first describe
it, and then explain its workings.

Stage —1. Is Fea over Q?
No-then F¢a over Z. STOP.
Yes-go to stage 0.

Stage 0. Find an integer m such that
mF ea over Z.
Go to stage 1.

Stage 1. Is FFea + (m) over Z?
No-then F'¢a over Z. STOP.
Yes-go to stage 2.

Stage s. Is Fea+ (m*) over Z?
No-then Fea over Z. STOP.
Yes-go to stage s + 1.

Lemma 6 shows that stages —1, 0 are effective, and Theorem 7
together with the equivalence

Fea+ (k) over Z = Fea over Z,

(for any integer k) show that the remaining stages are effective. If
Feaover Z then FFeaover Q and Fea + (k) over Z for all integers
k, thus the procedure does not stop. We must show that the pro-
cedure does stop whenever F'¢a over Z.
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Suppose F'¢a over Z. If F¢a over @ then the procedure stops
at stage —1. If Fea over @ then we compute an integer m such
that mF eca over Z, and we go to stage 1. Consider the ascending
chain of ideals

aca:(m)C e ai(m) e
where
a:(k) ={G:kGea over Z} .

We know that Fea:(m') over Z for each7>=1. Now Z[X,, -.-, X,]
is noetherian hence the above ascending chain is finite. Thus there
is an integer s such that

a:(m’) =a:(m*
for all + = 0. With this s it is well known that
a=a:(m)Nna+ (m).
Thus, since Fea: (m*), we have
Fea=Fea+ (m).

But F¢a, hence the procedure stops on or before stage s.
This completes the proof of the main theorem.

I would like to thank Professor J. C. Shepherdson who was my
supervisor, John Cleave who read the first draft of this paper. I
would also like to thank the referee for his comments on a previous
draft of this paper.
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