FINITE TRANSFORMATION FORMULAE INVOLVING THE LEGENDRE SYMBOL

KENNETH S. WILLIAMS
Let p denote an odd prime. The following three identities (transformation formulae) involving the Legendre symbol $\left(\frac{a}{p} \right)$ are known to be valid for any complex-valued function F defined on the integers, which is periodic with period p:

$$
\sum_{x=0}^{p-1} F(x) + \sum_{x=0}^{p-1} (\frac{x}{p}) F(x) = \sum_{x=0}^{p-1} F(x^2),
$$

$$
\sum_{x=0}^{p-1} F(x) + \sum_{x=0}^{p-1} \left(\frac{x^2-4a}{p} \right) F(x) = \sum_{x=1}^{p-1} F\left(x + \frac{a}{x} \right), \quad a \not\equiv 0 \pmod{p},
$$

$$
\sum_{x=0}^{p-1} F(x) + \sum_{x=0}^{p-1} \left(\frac{x^2-4x}{p} \right) F(x) = \sum_{x=1}^{p-1} F\left(x + 2 + \frac{1}{x} \right).
$$

We consider a general class of transformation formulae, which includes the above examples.

Let p denote a fixed odd prime and let $GF(p)$ denote the Galois field with p elements. If X denotes an indeterminate we let

$$
\Theta[X] = \left\{ \vartheta(X) = \frac{aX^2 + bX + c}{AX^2 + BX + C} \mid a, b, c, A, B, C \in GF(p),
\right. $$

$$
(aC - cA)^2 - (AB - bA)(bC - cB) \neq 0 \right\}
$$

and

$$
\Phi[X] = \{ \phi(X) = qX^2 + rX + s \mid q, r, s \in GF(p), r^2 - 4qs \neq 0 \}.
$$

Corresponding to any element $\vartheta(X) \in \Theta[X]$ (often just written $\vartheta \in \Theta$) we define

$$
\vartheta^*(X) = DX^2 + JX + d,
$$

where

$$
D = B^2 - 4AC, \quad J = 4aC - 2bB + 4cA, \quad d = b^2 - 4ac.
$$

It is clear that $\vartheta^*(X) \in \Phi[X]$ as

$$
D^2 - 4Dd = 16((aC - cA)^2 - (AB - bA)(bC - cB)) \neq 0.
$$

For any element $\phi(X) \in \Phi[X]$ (often just written $\phi \in \Phi$) its value at $x \in GF(p)$ is just $\phi(x) = qx^2 + rx + s \in GF(p)$. For any element $\vartheta(X) \in \Theta[X]$, $\vartheta(x)$ will be defined provided $Ax^2 + Bx + C \neq 0$ and its value is

$$
\vartheta(x) = \frac{ax^2 + bx + c}{Ax^2 + Bx + C} = (ax^2 + bx + c)(Ax^2 + Bx + C)^{-1} \in GF(p).
$$
Throughout this paper whenever we write \sum the summation is taken over all $x \in \text{GF}(p)$. If we write \sum' the summation is over all $x \in \text{GF}(p)$ for which the summand is defined.

Further we let \mathcal{C} denote the complex number field and we denote by \mathcal{F} the set of all functions with domain $\text{GF}(p)$ and range $\subseteq \mathcal{C}$. The particular function $\chi \in \mathcal{F}$ defined for any $x \in \text{GF}(p)$ by

$$\chi(x) = \begin{cases}
0, & \text{if } x = 0, \\
1, & \text{if } x \neq 0 \text{ and there exists } y \in \text{GF}(p) \text{ such that } y^2 = x, \\
-1, & \text{if } x \neq 0 \text{ and no such } y \text{ exists},
\end{cases}$$

plays a special role in what we do. χ is the Legendre symbol on $\text{GF}(p)$. Finally for $(F, \theta) \in \mathcal{F} \times \Theta$ we define

$$\delta(F, \theta) = \begin{cases}
F(a/A), & \text{if } A \neq 0, \\
0, & \text{if } A = 0.
\end{cases}$$

We are now in a position to define what we mean by the transformation formula $T(\theta, \phi)$.

DEFINITION. If $(\theta, \phi) \in \Theta \times \Phi$ is such that

$$\sum_x F(x) + \sum_x \chi(\phi(x))F(x) = \sum_x' F(\theta(x)) + \delta(F, \theta),$$

for all $F \in \mathcal{F}$, we say that the transformation formula $T(\theta, \phi)$ is valid. If on the other hand there is some $F_0 \in \mathcal{F}$ such that

$$\sum_x F_0(x) + \sum_x \chi(\phi(x))F_0(x) \neq \sum_x' F_0(\theta(x)) + \delta(F_0, \theta),$$

then we say that $T(\theta, \phi)$ is not valid.

In some special cases it is well-known that $T(\theta, \phi)$ is valid. For example ([1; p. 159], [4; p. 101]) it is known that $T(\theta, \phi)$ is valid if

(1.1) $\theta(X) = X^2, \phi(X) = X$

or

(1.2) $\theta(X) = \frac{X^2 + c}{X}, \phi(X) = X^2 - 4c \quad (c \neq 0)$.

(We identify the elements of $\text{GF}(p)$ with the residues modulo p and the elements of \mathcal{F} with functions defined on the integers which are periodic with period p). The name transformation formula is justified as (1.1) (resp. (1.2)) gives the well-known transformation property of the Gauss (resp. Kloosterman) sum, if we take $F(x) = \exp(2\pi i x/p)$, [3], [4]. Both examples mentioned above have $\delta(F, \theta) = 0$. An example with $\delta(F, \theta) \neq 0$ in general, is given by the following
FINITE TRANSFORMATION FORMULAE

\(\sum_x F(x) + \sum_x \chi(4x + 1)F(x) = \sum_x F\left(\frac{x+1}{x^2}\right) + F(0) . \)

Here

\[\theta(X) = \frac{X+1}{X^2} \quad \text{and} \quad \phi(X) = 4X + 1. \]

The main objective of this paper is to give necessary and sufficient conditions for \(T(\theta, \phi) \) to be valid. We prove in § 4 that if \((\theta, \phi) \in \Theta \times \Phi \) then \(T(\theta, \phi) \) is valid if and only if there exists \(e(\neq 0) \in \text{GF}(p) \) such that \(\phi = e\theta^* \). (We note that in (1.1) \(\theta^*(X) = 4X = 4\phi(X) \), in (1.2) \(\theta^*(X) = X^2 - 4c = \phi(X) \) and in (1.3) \(\theta^*(X) = 4X + 1 = \phi(X) \)).

The proof of these necessary and sufficient conditions requires a useful lemma concerning quadratic polynomials possessing the same quadratic nature. This lemma is proved in § 3. In § 2 a number of properties of \(\Theta[X] \) and \(\Phi[X] \) are noted, which together with the main theorem enable us to deduce that there are only two essentially different transformation formulae \(T(\theta, \phi) \).

2. Properties of \(\Theta[X] \) and \(\Phi[X] \). We first consider \(\Theta[X] \). The elements \(\theta(X) = aX^2 + bX + c/AX^2 + BX + C \) of \(\Theta[X] \) are well-defined, as \(A, B, C \) cannot all be zero. Further they do not reduce to the form \(lX + m/LX + M \), as not both of \(a, A \) are zero and \(aX^2 + bX + c \) and \(AX^2 + BX + C \) do not have a nonunit common factor.

Any element of \(\Theta[X] \) gives rise to another element of \(\Theta[X] \) in the following way. If \(t, u, v, w, k, l, m, n \in \text{GF}(p) \) are such that

\[tw - uw \neq 0, kn - lm \neq 0 , \]

and if \(\theta(X) \in \Theta[X] \) then so does

\[\theta_1(X) = \frac{t\theta(kX + l)}{v\theta(kX + n)} + u . \]

The proof of this just consists of showing that

\[\theta_1(X) = \frac{a_1X^2 + b_1X + c_1}{A_1X^2 + B_1X + C_1} , \]

where

\[a_1 = (ta + uA)k^2 + (tb + uB)km + (tc + uC)m^2 , \]
\[b_1 = 2(ta + uA)kl + (tb + uB)(kn + lm) + 2(tc + uC)mn , \]
\[c_1 = (ta + uA)l^2 + (tb + uB)ln + (tc + uC)n^2 , \]
\[A_1 = (va + wA)k^2 + (vb + wB)km + (vc + wC)m^2 , \]
B_1 = 2(va + wA)kl + (vb + wB)(kn + lm) + 2(vc + wC)mn,
C_1 = (va + wA)t^2 + (vb + wB)ln + (vc + wC)n^2,

and noting that

\[(a_iC_i - c_iA_i)^2 - (a_iB_i - b_iA_i)(b_iC_i - c_iB_i)\]
\[= (tw - uv)^2(kn - lm)\left[(aC - cA)^2 - (aB - bA)(bC - cB)\right]
\[\neq 0 .\]

We can thus define an equivalence relation on \(\Theta[X]\) by saying that \(\theta(X), \theta_1(X) \in \Theta[X]\) are equivalent if there exist \(k, l, m, n, t, u, v, w \in GF(p)\) with \(kn - lm \neq 0, tw - uv \neq 0\) and such that (2.1) holds. We write \(\theta_1 \sim \theta\).

Let \(c_1\) and \(c_2\) be fixed elements of \(GF(p)\) such that \(\chi(c_1) = +1, \chi(c_2) = -1\), so that there exists \(d_i(\neq 0) \in GF(p)\) with \(c_i = d_i^2\). Then any element

\[\theta(X) = \frac{aX^2 + bX + c}{AX^2 + BX + C} \in \Theta[X]\]

is either equivalent to \(\theta_{c_1}(X) = X + (c_1/X)\) or \(\theta_{c_2}(X) = X + (c_2/X)\). More precisely we have

\[\theta \sim \theta_{c_1},\text{ if } \chi((aC - cA)^2 - (aB - bA)(bC - cB)) = +1\]

and

\[\theta \sim \theta_{c_2},\text{ if } \chi((aC - cA)^2 - (aB - bA)(bC - cB)) = -1 .\]

This is clear as we have

\[\theta(X) = \frac{t\theta_{c_1}(\frac{kX + l}{mX + n}) + u}{v\theta_{c_1}(\frac{kX + l}{mX + n}) + w},\]

where

(i) \(t = ah, u = b - 2ag, v = Ah, w = B - 2Ag, k = 1, l = g, m = 0, n = h,\) if \(\chi((aC - cA)^2 - (aB - bA)(bC - cB)) = +1, aB - bA \neq 0,\) and \(g \in GF(p)\) are defined by

\[g = \frac{aC - cA}{aB - bA}, c,h^2 = \left(\frac{aC - cA}{aB - bA}\right)^2 - \left(\frac{bC - cB}{aB - bA}\right);\]

(ii) \(t = aA(1 - d), u = 2aAd_1(1 + d), v = A^2 - a^2D, w = 2d_1(A^2 + a^2D), k = 2ad_1, l = (b + 1)d_1, m = 2a, n = (b - 1),\) if \(\chi((aC - cA)^2 - (aB - bA)(bC - cB)) = +1, aB - bA = 0, aA \neq 0;\)

(iii) \(t = a^2C^2 - d, u = 2d_1(a^2C^2 + d), v = 4aC, w = -8d_1aC, k = 2ad_1, l = d_1(b + aC), m = 2a, n = b - aC,\) if \(\chi((aC - cA)^2 - (aB - bA)(bC - cB)) = +1, aB - bA = 0, A = 0;\)
(iv) \(t = 4Ac, u = -8d_1Ac, v = A^2c^2 - D, w = 2d_1(A^2c^2 + D), k = 2d_1A, l = d_1(B + Ac), m = 2A, n = B - Ac, \) if \(\chi((ac - cA)^2 - (AB - bA)(bC - cB)) = +1, \) \(AB - bA = 0, a = 0; \)

and

\[
\theta(X) = \frac{t\phi_2\left(\frac{kX + l}{mX + n}\right) + u}{v\phi_2\left(\frac{kX + l}{mX + n}\right) + w},
\]

where

(v) \(t = ah, u = b - 2ag, v = Ah, w = B - 2Ag, k = 1, l = g, m = 0, n = h, \) if \(\chi((ac - cA)^2 - (AB - bA)(bC - cB)) = -1 \) and \(g, h \) are defined by

\[
g = \frac{aC - cA}{AB - bA}, c_h = \frac{(aC - cA)^2 - (bC - cB)}{ab - bA}.
\]

This shows that there are at most two equivalence classes in \(\Theta[X]. \)

We show that there are exactly two by proving that \(\theta_{\phi_1}(X) \not\sim \theta_{\phi_2}(X). \)

For suppose that \(\theta_{\phi_1}(x) \sim \theta_{\phi_2}(x) \) then there exist \(k, l, m, n, t, u, v, w \in GF(p) \) with

\[
kn - lm \neq 0, tw - uv \neq 0
\]

and such that

\[
\theta_{\phi_1}(X) = \frac{t\phi_2\left(\frac{kX + l}{mX + n}\right) + u}{t\phi_2\left(\frac{kX + l}{mX + n}\right) + w}.
\]

Thus from (2.2) we have

\[-c_1 = (tw - uv)^3(kn - lm)^3(-c_2),\]

which contradicts that \(\chi(c_1) = +1, \chi(c_2) = -1. \)

We now consider \(\Phi[X]. \) The elements \(\phi(X) = qX^2 + rX + s \) of \(\Phi[X] \) are either genuinely quadratic or linear, as \(q, r \) are not both zero. Moreover they are not of the form \(q(X + k)^2, \) for any \(k \in GF(p) \). Corresponding to (2.1) we have

\[
\theta^*_1(X) = (kn - lm)^2(-vX + t)^3\theta^*_2\left(\frac{wX - u}{vX + t}\right) \in \Phi[X].
\]

3. A useful lemma. We prove the following lemma which is needed in the proof of our theorem.

Lemma. If \(qX^2 + rX + s, q'X^2 + r'X + s' \in \Phi[X] \) are such that \(\chi(qx^2 + rx + s) = \chi(q'x^2 + r'x + s'), \) for all \(x \in GF(p), \) then there exists
Proof. As \(qX^2 + rX + s \in \Phi[X] \) it is not of the form \(q(X + k)^2 \) and not both of \(q, r \) are zero, similarly for \(q'X^2 + r'X + s' \). The condition \(\chi(qx^2 + rx + s) = \chi(q'x^2 + r'x + s') \) implies that a zero of \(qx^2 + rx + s \) is a zero of \(q'x^2 + r'x + s' \) and vice-versa. Thus, unless both \(qX^2 + rX + s \) and \(q'X^2 + r'X + s' \) are irreducible in \(GF(p)[X] \), that is, unless \(\chi(r^2 - 4qs) = \chi(r'^2 - 4q's') = -1 \), we have for some \(e_i, e_2 \in GF(p)(e_1 \neq e_2) \) either

\[
qX^2 + rX + s = q(X - e_i)(X - e_2), q'X^2 + r'X + s' = q'(X - e_i)(X - e_2),
\]

or

\[
qX^2 + rX + s = r(X - e_i), q'X^2 + r'X + s' = r'(X - e_i), q = q' = 0.
\]

In the former case taking \(x \neq e_i, e_2 \) in

\[
\chi(qx^2 + rx + s) = \chi(q'x^2 + r'x + s')
\]

we obtain \(\chi(q) = \chi(q') \), so that there exists \(e(\neq 0) \in GF(p) \) such that

\[
q = e^2q'.
\]

Hence

\[
r = -q(e_i + e_2) = -e^2q'(e_i + e_2) = e^3r',
\]

and so we have

\[
qx^2 + rX + s = e^3(q'X^2 + r'X + s').
\]

In the latter case taking \(x \neq e_i \) in \(\chi(qx^2 + rx + s) = \chi(q'x^2 + r'x + s') \) we obtain \(\chi(r) = \chi(r') \), so that there exists \(e(\neq 0) \in GF(p) \) such that

\[
r = e^3r'.
\]

Hence \(s = -re_i = e^3r'e_i = e^3s' \) and we have

\[
qX^2 + rX + s = e^3(q'X^2 + r'X + s').
\]

If \(\chi(r^2 - rqs) = \chi(r'^2 - rq's') = -1 \) then \(q, q', r^2 - 4qs, r'^2 - 4q's' \) are all nonzero and

\[
\sum_s \chi(qx^2 + rx + s) = \sum_s \chi(q'x^2 + r'x + s')
\]
gives \(\chi(q) = \chi(q') \). Hence there exists \(e(\neq 0) \in GF(p) \) such that \(q = e^3q' \).

Now as \(qq' = (eq')^2 \neq 0 \) we have

\[
\sum_s \chi\left(\left(x^2 + \frac{r}{q}x + \frac{s}{q}\right)\left(x^2 + \frac{r'}{q'}x + \frac{s'}{q'}\right)\right) = \sum_s \chi((qx^2 + rx + s)(q'x^2 + r'x + s'))
\]
\[\begin{align*}
&= \sum x \chi((qx^2 + rx + s)^2) \\
&= \sum x \chi((x^2 + \frac{r}{q}x + \frac{s}{q})(x^2 + \frac{r'}{q'}x + \frac{s'}{q'}))
\end{align*} \]

and so

\[(3.1) \quad \sum x \chi((x^2 + \frac{r}{q}x + \frac{s}{q})(x^2 + \frac{r'}{q'}x + \frac{s'}{q'})) = p. \]

If \(X^2 + (r/q)X + (s/q) \neq X^2 + (r'/q')X + (s'/q') \) then by a deep result of Perel'muter [2] we have

\[\left| \sum x \chi((x^2 + \frac{r}{q}x + \frac{s}{q})(x^2 + \frac{r'}{q'}x + \frac{s'}{q'})) \right| \leq 2p^{1/2}. \]

For \(p \geq 5 \) this clearly contradicts (3.1). Thus for \(p \geq 5 \) we have

\[X^2 + (r/q)X + (s/q) = X^2 + (r'/q')X + (s'/q'), \]

that is \(q = e^t q' \),

\[qX^2 + rX + s = e^t(qX^2 + r'X + t'), \]

as required. When \(p = 3 \) the theorem is easily verified by examining the values of \(qx^2 + rx + s \) for \(x \in \text{GF}(p) \) (see table).

When \(p = 3 \), \(\Phi[X] \) consists of all polynomials of \(\text{GF}(3)[X] \) of degree atmost 2 except the 9 polynomials \(q(X + k)^2 \), \(q, k \in \text{GF}(3) \), which have discriminant equal to zero. The table shows that there do not exist 2 elements of \(\Phi[X] \), say \(\phi(x) \), \(\phi'(X) \) with \(\chi(\phi(x)) = \chi(\phi'(x)) \), for all \(x \in \text{GF}(3) \).

Table.

<table>
<thead>
<tr>
<th>(\phi(X) \in \Phi[X])</th>
<th>(\chi(\phi(0)))</th>
<th>(\chi(\phi(1)))</th>
<th>(\chi(\phi(2)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X)</td>
<td>0</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>(X + 1)</td>
<td>1</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>(X + 2)</td>
<td>-1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(2X)</td>
<td>0</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>(2X + 1)</td>
<td>1</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>(2X + 2)</td>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(X^2 + 1)</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>(X^2 + 2)</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(X^2 + X)</td>
<td>0</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>(X^2 + X + 2)</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>(X^2 + 2X)</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>(X^2 + 2X + 2)</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>(2X^2 + 1)</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(2X^2 + 2)</td>
<td>-1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(2X^2 + X)</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(2X^2 + X + 1)</td>
<td>1</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>(2X^2 + 2X)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(2X^2 + 2X + 1)</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>
4. Main result. We prove

THEOREM. If \((\theta, \phi) \in \Theta \times \Phi\) then \(T(\theta, \phi)\) is valid if and only if there exists \(e(\neq 0) \in \text{GF}(p)\) such that

\[
(4.1) \quad \phi = e^2\theta^*.
\]

Proof. (i) We let \(\phi = e^2\theta^*\), where \(e(\neq 0) \in \text{GF}(p)\) and

\[
\theta(X) = \frac{aX^2 + bX + c}{AX^2 + BX + C} \in \Theta[X],
\]

and prove that \(T(\theta, \phi)\) is valid. For all \(F \in \mathcal{S}\) we have

\[
\sum_x' F(\theta(x)) = \sum_y \sum_{\theta(x) = y} F(\theta(x))
\]

\[
= \sum_y F(y) \sum_{\theta(x) = y} 1.
\]

Thus for given \(y \in \text{GF}(p)\) we require the number of solutions \(x \in \text{GF}(p)\) of \(\theta(x) = y\), that is of

\[
(4.2) \quad (Ay - a)x^2 + (By - b)x + (Cy - c) = 0.
\]

This is a genuine quadratic in \(x\) unless \(Ay - a = 0\). Thus we must consider two cases according as \(A = 0\) or \(A \neq 0\).

Case (a). \(A = 0\), (so that \(\delta(F, \theta) = 0\)).

In this case \(a \neq 0\) so that \(Ay - a \neq 0\), for all \(y \in \text{GF}(p)\). Thus the number of solutions of (4.2) is

\[
1 + \chi((By - b)^2 - 4(Ay - a)(Cy - c))
\]

\[
= 1 + \chi(Dy^2 + dy + d)
\]

\[
= 1 + \chi(\phi(y)), \text{ as } e \neq 0.
\]

Hence we have

\[
\sum_x' F(\theta(x)) = \sum_y F(y) + \sum_y \chi(\phi(y))F(y),
\]

proving that \(T(\theta, \phi)\) is valid in the case.

Case (b). \(A \neq 0\), (so that \(\delta(F, \theta) = F(a/A)\)).

In this case, for all \(y \in \text{GF}(p)\) except \(a/A\), (4.2) is a genuine quadratic and the number of solutions of it, for such \(y\), is as in case (a). For \(y = a/A\), (4.2) becomes

\[
(aB - bA)x + (aC - cA) = 0,
\]
which since \(aB - bA \) and \(aC - cA \) cannot both be zero, has one solution if \(aB - bA \neq 0 \) and no solutions if \(aB - bA = 0 \). This number is expressible as \(\chi((aB - bA)^2) \). Hence

\[
\sum x' F(\theta(x)) + \delta(F, \theta) = F(a/A)\chi((aB - bA)^2) + \sum_{y \neq a} \{1 + \chi(Dy^2 + \Delta y + d)\}F(y) + F(a/A)
\]

\[
= \sum \{1 + \chi(e^2\theta^*(y))\}F(y)
\]
as required, since

\[
A^2\left(D\left(\frac{a}{A}\right) + \Delta\left(\frac{a}{A}\right) + d\right) = (aB - bA)^2.
\]

(ii) Conversely we show that if \((\theta, \phi) \in \Theta \times \Phi\) is such that \(T(\theta, \phi) \) is valid then \(\phi(X) = e^2\theta^*(X) \). For all \(F \in \mathcal{F} \), as \(T(\theta, \phi) \) is valid, we have

\[
\Sigma' F(\theta(x)) + \delta(F, \theta) = \Sigma F(x) + \Sigma \chi(\phi(x))F(x).
\]

From (i) we know that \(T(\theta, \theta^*) \) is valid, so that also for all \(F \in \mathcal{F} \) we have

\[
\Sigma' F(\theta(x)) + \delta(F, \theta) = \Sigma F(x) + \Sigma \chi(Dx^2 + \Delta x + d)F(x).
\]

Hence form (4.3) and (4.4) we have

\[
\Sigma \chi(\phi(x))F(x) = \Sigma \chi(Dx^2 + \Delta x + d)F(x),
\]

for all \(F \in \mathcal{F} \). In particular taking \(F = F,(r \in \text{GF}(p)) \) in (4.5) where \(F_r \) is defined for \(x \in \text{GF}(p) \) by

\[
F_r(x) = \begin{cases} 1, & x = r, \\ 0, & x \neq r, \end{cases}
\]

we have

\[
\chi(\phi(r)) = \chi(Dr^2 + \Delta r + d),
\]

for all \(r \in \text{GF}(p) \). By lemma as \(\phi(X), DX^2 + \Delta X + d \in \text{GF}(X) \), we have, for some \(e(\neq 0) \in \text{GF}(p) \),

\[
\phi(X) = e^2(DX^2 + \Delta X + d) = e^2\theta^*(X),
\]

which is (4.1).

5. An application. We use the theorem to evaluate the Salié sum [4]. Let \(\theta(X) = (X + 1)^2/X \) so that \(\theta^*(X) = X^2 - 4X \). By the
theorem we know that $T(\theta, \theta^*)$ is valid. If $G \in \mathcal{F}$ so does χG. Taking $F(x) = \chi(x)G(x)$ in $T(\theta, \theta^*)$ we obtain

$$
\sum_x \chi(x)G(x) + \sum_x \chi(x^2(x - 4))G(x) = \sum_x' \chi\left(\frac{(x + 1)^2}{x}\right)G\left(\frac{(x + 1)^2}{x}\right)
$$

that is,

$$(5.1) \quad \sum_x \chi(x)G(x) + \sum_x \chi(x - 4)G(x) = \sum_x' \chi(x)G\left(x + 2 + \frac{1}{x}\right).$$

Taking $G(x) = \exp\left(2\pi ikx/p\right)$ and noting that this choice makes the two sums on the left hand side of (5.1) Gaussian sums we obtain Salié's result [4]

$$
\sum_{x=p} \chi(x) \exp\left(\frac{2\pi ik}{p}\left(x + \frac{1}{x}\right)\right) = 2\left(\frac{k}{p}\right)^{1/2} (p-1)^{1/2} p^{1/2} \cos\left(\frac{4\pi k}{p}\right).
$$

6. Conclusion. The properties of $\Theta[X]$ indicated in § 2 and the theorem of § 4 show that there are only two essentially different transformation formulae $T(\theta, \phi)$ given by $(\theta, \phi) = (\theta_1, \theta_2^*)$ and (θ_1^*, θ_2), where we have identified $T(\theta, \theta^*)$ and $T(\theta, e^{i\theta^*})$. It would be interesting to know if this work could be generalized to give results concerning identities of a type similar to $T(\theta, \phi)$ but where θ, ϕ are elements of larger sets than Θ, Φ respectively and/or where χ is replaced by a more general character.

I would like to finish by thanking an unknown referee for a number of valuable suggestions. In particular he suggested the proof of the lemma given in § 3, which considerably shortened my original proof.

References

Received August 26, 1969, and in revised form January 30, 1970. This research was supported by a National Research Council of Canada Grant (No. A–7233).

Carleton University

Ottawa, Canada
Shair Ahmad, On the oscillation of solutions of a class of linear fourth order differential equations ... 289
Leonard Asimow and Alan John Ellis, Facial decomposition of linearly compact simplexes and separation of functions on cones 301
Kirby Alan Baker and Albert Robert Stralka, Compact, distributive lattices of finite breadth .. 311
James W. Cannon, Sets which can be missed by side approximations to spheres ... 321
Prem Chandra, Absolute summability by Riesz means ... 335
Francis T. Christoph, Free topological semigroups and embedding topological semigroups in topological groups 343
Henry Bruce Cohen and Francis E. Sullivan, Projecting onto cycles in smooth, reflexive Banach spaces ... 355
John Dauns, Power series semigroup rings ... 365
Robert E. Dressler, A density which counts multiplicity ... 371
Kent Ralph Fuller, Primary rings and double centralizers ... 379
Gary Allen Gislason, On the existence question for a family of products ... 385
Alan Stuart Gleit, On the structure topology of simplex spaces ... 389
Gerald William Johnson and David Lee Skoug, Operator-valued Feynman integrals of finite-dimensional functionals ... 415
(Harold) David Kahn, Covering semigroups ... 427
Keith Milo Kendig, Fibrations of analytic varieties ... 441
Norman Yeomans Luther, Weak denseness of nonatomic measures on perfect, locally compact spaces ... 453
Guillermo Owen, The four-person constant-sum games: Discriminatory solutions on the main diagonal ... 461
Stephen Parrott, Unitary dilations for commuting contractions ... 481
Roy Martin Rakestraw, Extremal elements of the convex cone \(A_n \) of functions ... 491
Peter Lewis Renz, Intersection representations of graphs by arcs ... 501
William Henry Ruckle, Representation and series summability of complete biorthogonal sequences ... 511
F. Dennis Sentilles, The strict topology on bounded sets ... 529
Saharon Shelah, A note on Hanf numbers ... 541
Harold Simmons, The solution of a decision problem for several classes of rings ... 547
Kenneth S. Williams, Finite transformation formulae involving the Legendre symbol ... 559