Vol. 34, No. 3, 1970

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
On S-units almost generated by S-units of subfields

John H. Smith

Vol. 34 (1970), No. 3, 803–805
Abstract

Let K∕k be a finite galois extension of number fields, S a finite set of primes of K, and Φ a set of intermediate fields. We assume that S and Φ are closed under the action of G(K∕k) and that S contains all the archimedean primes. This paper determines conditions under which the S-units of fields of Φ “almost generate” those of K (i.e., generate a subgroup of finite index).

Mathematical Subject Classification
Primary: 10.65
Milestones
Received: 10 February 1969
Published: 1 September 1970
Authors
John H. Smith