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ACTIONS OF FUNCTIONS IN BANACH ALGEBRAS

FRrRANCES F. GULICK

This paper introduces the concept of a function f (defined
on the open unit disk U of the complex plane) acting in a
Banach algebra U. In general, f acts in o if there exists a
mapping 2 — f(x) from {xreU: o(x) c U} =¥, into A such that
for every maximal commutative subalgebra & of ¥, {f(x):x€
A, N &} is contained in & and (f(x))" = fod (xe & N U;) on
the maximal ideal space of &°. After some properties of
actions in general Banach algebras are established, attention
is restricted to a subalgebra 2 of the algebra C, of compact
operators on a Hilbert space such that % contains a normal
operator of infinite rank, If A cC. and ¥ contains only normal
operators, then a necessary and sufficient condition for f to
act in ¥ is that f be continuous at zero and f(0) =0. For a
more restricted class of subalgebras of C,,1 =< p < o, it is
shown that f defines an action in ¥ if, and only if, f is Hélder-
continuous at zero with f(0) = 0.

Let 2 be a commutative Banach algebra with identity e, let %,
be the open unit ball in U and let x — % be the Gelfand map. In
addition, let f be a function defined and analytic on the open unit
disk D of the complex numbers. Under these conditions a Banach
algebraic analogue of the Cauchy integral formula appears which
asserts that for each x e 2, there is an element f(x) e A satisfying the

equation f(x) = S F(O) (e — x)'d{, where v denotes the boundary of
7
D. This equation promptly yields the important functional equation

(f@)" = foz,

which verbally says that homomorphisms on U commute with f. All
this belongs to the basic theory of Banach algebras (see, for instance,
page 203 of [10]).

What is important for us is that if we are given a commutative
Banach algebra 2 with identity e, and a function f analytic on D,
then we can define a natural map x — f(x) of %, into 2 such that
(f(®))” = fox. It is this result which forms the starting point for
our paper. In order to transform the result into our final framework,
let us tamper with the hypotheses we have assumed and then we will
alter the conclusions so that they will make sense and be relevant.

The requirement that 20 possess an identity can be dropped if the
analytic function f has the property that f(0) = 0; then f(x) is still
in A and the functional equation remains valid and in the process one
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need only alter the integral formula slightly (see p. 79 of [7]).

If A is not necessarily commutative, then of course there need
not exist complex-valued homomorphisms defined on the whole of 2A.
Nevertheless, if we require that f(x) be in a maximal commutative
subalgebra % which contains %, and if the map x — % denotes the
Gelfand map on the commutative algebra & rather than on A, then
for f analytic on the unit disk D, the functional equation (f(x))” = fo%
holds and the map x — f(x) of 2, into 2 has the required properties.
Note that the Gelfand map in general depends upon the element z, a
natural circumstance if 2 is not commutative.

Finally, if we relax the condition that f be analytic, then it is
not clear that the integral formula need be defined at all, let
alone yield an element of UA. Indeed, we must ask if we can define
the map x — f(x) satisfying the equation (f(x))” = f-Z, and for what
f such a map exists. The question of existence is a difficult one and,
without restriction, much too general. Only in concrete cases can one
hope to conclude anything definitive about the existence of maps
x — f(x) satisfying the functional equation. One such example already
studied concerns the algebra of periodic functions with absolutely
convergent Fouries series. Wiener [14] and Levy [6] began the study
and Katznelson [5] completed it. Later the quartet consisting of
Helson, Kahane, Katznelson and Rudin [4] studied the same question
for the group algebra over a locally compact abelian group.

In order to facilitate our discussion, let us say that f acts in A
(or f defines an action in %) if there is a map x — f(x) from the open
unit sphere 2, of 2 into 2 such that for any maximal commutative
subalgebra & of A and xe & N YU, f(®)e & and (f(®))" = foZ. This
paper is devoted to analyzing properties of actions and studying those
actions in algebras of operators on Hilbert space.

More explicitly, in § 3 we show that if 2 is semi-simple and
commutative, then any action must necessarily be unique (Proposition
3.8). In addition, if 2 contains no identity, then either f(0) =0 or
else 9 must contain a nonzero central idempotent (Proposition 3.6).
Finally, the action of one function in 2 gives rise to the notion of
an algebra of functions defining an action in 2, as we mention at the
end of the section.

The remainder of the paper concerns itself with a study of actions
in certain subalgebras of compact operators on a Hilbert space. Our
theorems concern algebras which contain at least one normal operator
of infinite rank.

In §4 we prove for the well-known class C, (1 < p < o) of com-
pact operators on Hilbert space some elementary properties that we
need in the sequel and we discuss actions on closed subalgebras of C,.
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This leads us to § 5, where we show that if 2 is a closed subalgebra
of C, which contains a normal operator of infinite rank and if f acts
in A, then f is continuous at 0 and f(0) = 0 (Proposition 5.1). The
converse to this theorem we prove for p = o« (Theorem 5.2). On the
other hand, if 1 < < -, then we can show that if ¥ is a closed
subalgebra of C, which contains only normal operators, then a function
defined on the open unit disk, Holder-continuous at 0 with f(0) =0
does in fact define an action in 2 (Proposition 5.3). Under additional
hypotheses on 2 we prove that Holder-continuity of f at 0 and f(0) = 0
characterizes all actions in % (Theorem 5.4). Thus we see that if
f(0) = 0, then continuity of f at 0 is in general too weak to ensure
that f act in A, while Holder-continuity at 0 is stronger than is
usually needed to ensure that f act in 2.

Further results for functions acting in certain closed subalgebras
of C, have been obtained. Some of these deal with the relationship
between continuous functions and a limit property of their action in
2. Since these were only by-products of the work to determine the
class of functions which act in closed subalgebras of C,, they were
omitted for the sake of greater conciseness.

2. Preliminary discussion. Let 2 be a Banach algebra over
the complex numbers C. If 20 has an identity e, then the spectrum
of x in A is o(x) = {\: Ae — = has no inverse in 2}; if U has no inverse,
then the spectrum of x in A is o(x) = {\ # 0: /7 has no quasi-inverse
in A} (see [11]). We let o,(x) denote the nonzero elements of o(x).
One theorem we shall refer to repeatedly is that for each decomposi-
tion of o(x) into nonempty, disjoint, relatively open and closed sets
g, 0, there exists an idempotent ¢, (x) defined by the Cauchy integral
formula such that the spectrum of wxe, () is precisely a,.

Throughout the paper the symbol U denotes the open unit disk
in the complex plane. For a given Banach algebra, we let 2, be the
set {x e o(x) c U}, or equivalently, 2, is the open unit ball in the
topology generated by the spectral radius seminorm.

We write the maximal ideal space of a commutative Banach
algebra U as My, and we let © — & be the Gelfand map on U defined
by Z(h) = h(x), h € My, for each xecA. We note that if 2 has an
identity, then the range of Z is o(x), while if 2 does not have an
identity, then o(x) = Z(My) U {0} [10, 11]. Let C,(My) be the space
of all functions continuous on My and vanishing at infinity.

Let H be a Hilbert space with norm ||-|l. Denote by L(H) the
Banach algebra of continuous linear operators T: H — H under the
operator norm || 7'||. We let C.(H) be the norm-closed two-sided ideal
of compact operators in L(H). If we fix the H, then we usually will
abbreviate C.(H) to C.. The subalgebra C, of C.. which consists of
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operators of finite rank is dense in the operator-norm in C..

3. Definition of action and properties of actions. We now
present the definition basic to the entire paper.

DEFINITION 3.1. If a function f is defined on the unit disk, then
f acts in the Banach algebra A if there exists a map x — f(x) of U,
into U such that whenever & is a maximal commutative subalgebra
of A and xez N, then f(x)e ¥ and (f(x))” = fo& on M.. The
mapping x — f(x) (xe?,) is called an action of f in A.

We depart from previous usage of “f operates in 2” in order to
have a name for the mapping 2 — f(x) and yet keep our terminology
related.

Examples of actions are well-known as we see by the following
examples.

ExAMPLE 3.2. Let % be a Banach algebra with an identity e and

f a function analytic on U. For each x e, define f(x) by means of

the Cauchy integral formula f(x) = % S f(©) (e — x)~'dC, where v is
7 Jr

a circle of radius r with o(x) in its interior. As a result of the

homomorphism theorem [10, p. 203] the mapping x — f(x) is an action

of f in 2L

ExaMPLE 3.3. Let % = L,(G), G a locally compact abelian group,
and let 7" be the dual group. In this case Definition 3.1 reduces to
the statement that f acts in 2 if for every x e 2, there exists f(x)
in A such that (f(x))” = fo% on I". This is essentially the definition of
a function operating in L,(G) given in [4], [5], [13]. It is shown in
[4] and [13] that a function f with domain the interval (—1, 1) oper-
ates in L,(G) if, and only if, f is real-analytic and f(0) = 0 when G
is not compact. Thus a function f defined on the unit disk acts in
L,(G) if, and only if, f is analytic.

ExAMPLE 3.4. Let T be a normal, bounded, compact linear oper-
ator defined on a Hilbert space and let 2 be the C*-algebra generated
by T. Let f be a function defined on the unit disk which is continuous
at zero with f(0) = 0. Since o,(7T) and My are homeomorphic with
zero and the zero homomorphism corresponding [10, p. 202] we can
regard f as an element of C,(My). The algebra Cy(My) is isometrically-
isomorphic to 2 [10, p. 230] and hence for every SeQl, there exists
F(S)e A such that (F(S))” = foS on My. (For a characterization of
functions acting in 2 see §5.)
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In the definition of f acting in 2 we require that f be defined
on the unit disk U. All theorems we prove hold if U is an arbitrary
complex domain with only minor modifications in the proofs.

The spectral mapping theorem [1, p. 569] shows that for the action
of Example 3.2 the spectrum of f(x) is the set {f(\): veo(x)}. The
following proposition shows that in general we have o(f(x)) = {f(\): e
o(x)} if 2 has an identity.

PROPOSITION 3.5. Let f be a function which acts in A. Then f
acts in any maximal commutative subalgebra of A. If A has an
identity, then for each xc 2, o(f (@) = {f(\):rea@)}. If A does not
have an identity, x € A, and & is a maximal commutative subalgebra
of A such that xe &, then o(f(x)) = {f(h(x)): he M.} U {0}.

Proof. The fact that f acts in any maximal commutative sub-
algebra of A follows immediately from Definition 8.1. If ze ¥, and
& is a maximal commutative subalgebra of 2 such that e &, then
fw)e = and oy(f(@) = 0.(f() = (f(®) (M) (U{0} if A does not
have an identity), while oy(x) = Z(M.) (U {0} if 2 does not have an
identity).

ProOPOSITION 3.6. Suppose A does not contain an identity but does
contain an element with monzero spectrum. ILf f acts in U, then
either (i) f(0) = 0 and the image of 0 is in the radical of A or
(ii) A contains a nonzero central idempotent.

Proof. Choose x ¢ A such that o(x) # {0} and let & be a maximal
commutative subalgebra of A such that xe &. Since 0e &, f(0) is
in € and a(f(0)) = {f(0), 0} (Proposition 3.5). If f(0) ++ 0, then f(0)
is an isolated point of o(f(0)) so there exists an idempotent e¢c A
which commutes with all elements of 20 since f(0) commutes with all
elements of 2 [10, p. 203; 1, p. 568]. On the other hand, if f(0) = 0,
then o(f(0)) = {0}. To show that f(0) is in the radical of 2 we need
to show that f(0) + yf(0) has a quasi-inverse for all y e, [1, p. 55].
This follows from the fact that f(0) is in every maximal commutative
subalgebra of 20 and that in each such algebra its spectrum is {0}
[11, p. 112].

Suppose y and z commute and that f(z) is defined. Then do ¥
and f(x) also commute? If 2 is a x-algebra and « is normal in 2,

then is f(x) normal? These questions are answered by the following
proposition and its corollary.

PRrOPOSITION 3.7. If f acts in U and xe A, commutes with yec U,
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then f(x) and y commute.

Proof. If xe U, and y commute, then there exists a maximal
commutative subalgebra & of 2 which contains ¢ and y. By defini-
tion of action f(x) e € and hence f(x) and y commute.

COROLLARY 3.7.1. If U s a *-algebra, f acts in A and xec A, is
normal, then f(x) is normal.

Proof. As a result of Proposition 3.7 f(x) and «* commute. But
then (f(@))*x = (z*f(@)* = (f(@)x*)* = a(f(x))*. Since (f(x))* thus

commutes with z, f(x) and f(x)* commute (Proposition 3.7).

A natural question to ask about the action of a function in an
algebra is whether a mapping satisfying Definition 3.1 need be unique.
The answer is given in part in the following proposition (which is an
immediate consequence of the definition of a function acting in )

and two examples.

ProposITION 3.8. If A 1s a semisimple, commutative Banach
algebra, then a function f can act in A in at most one way.

To emphasize the importance of the hypothesis in Proposition 3.8
we present two examples which show that it is possible to define
more than one action of a function in an algebra which is commuta-
tive but not semisimple or an algebra which is semisimple but not

commutative.

ExAMPLE 3.9. Let % be the algebra of 2 x 2 matrices of the

form (8 2), a,beC. Then A is a commutative algebra which is not

semisimple <e.g., <8 é) has zero spectrum). Choose a differentiable

function fe C(U) and a function g: U — C. Regard f to be a function
of two real variables and set f,(2) = df/0x. Define the mapping 7 —
JA(T) on A, by setting

1 b
J(T) = f(a)[ -+ fl(a)g(a)(T__ al) = <f(a/) f(a)g(a) )
0 Sl

for T = (g 2)@91 Clearly, £,(T)e %% and (f,(T))" = foT on My,

ExaMPLE 3.10. Let U be the full algebra of 2 x 2 matrices. Then
2 is simple (and hence semisimple) but not commutative. Let fe C(U)
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be differentiable. For each function g: U — C define a map T — f,(T)
on ¥, as follows: if 6(T) = {\} < U, set £,(T) = fOM\I + fiN)g)(T — AD),
while if o(T) = {\, gy, N #= 1, set f(T) = (v — ) [fONT — pI) —
S()(T — \I)].  For each g: U— C the mapping T'— f(T), Te, is
an action of f in A. Thus, in this example, as well as in Example
3.9, we have defined many different actions of f in 2.

Suppose two functions f and g act in 9 with actions z — f(x) and
x— g(x), xe A, respectively. Then the mappings = — af(x) + g(x)
(¢e C) and z — f(x)g(x) from A, into A are actions of the functions
af + g and fg (pointwise product), respectively, in 9. Thus the set
of all functions which act in U is itself an algebra _#. Is there a
map from _#Z x 2, into ¥ which is an algebra homomorphism on _#
when restricted to the set _Z x {x} (xe?) and an action of fe _#
in 2 when restricted to {f} x A,? These questions lead to a conside-
ration of the problem of functions with finite range and the next
proposition.

PROPOSITION 3.11. Let f be a function which acts in A. Let a
be an tsolated point of the range of f with a = 0 if A does not have
an identity. Then the characteristic function ¥, of the set f~'(a)=
{te U: f(t) = a} acts in A and the action is uniquely determined by
the condition Y.(%)* = Y.(®).

Proof. 1f o(@)c U and aco(f(x)), then ¢ is an isolated point
(different from zero if A does not have an identity). Hence there
exists an idempotent e,(x) € A such that if & is a maximal commuta-
tive subalgebra of A with xe & then e,(®) e Z and (e,(x))” is the
characteristic function of the set { € M.: f(h(z)) = a}. Thus (e,(x))” =
YeoZ on M. (cf. §2). Define y,(x) (xe,) by setting x,(x) = e, ()
if aeo(f(x)) and X, (x) = 0 otherwise. This mapping & — ¥, (x) (x € )
is an action of ¥, in U such that x,(®)* = x.(x) for all zec ..

If x—e(x) (xe,) were another action of ¥, in 2 such that
(e(x))* = e(x) for all xc?,, then we would have (e(x))” = (X.(%))" on
M. for any maximal commutative subalgebra % of A such that
xe%. Thus e(®) — x.(@e(x) and . (x) — Y.(®)e(x) are commuting
idempotents with zero spectrum; hence e(x) = x,(x) for all ze? [9,
p. 41].

COrROLLARY 3.11.1. If a function f with finite range {a,, a,, - -,
a,} acts in W, then for each xec U, there exist pairwise orthogonal
wdempotents e,(x), ex(x), «++, e,(®) such that the mapping v — .2, a.e;(x),
xe, is an action of f in W with the property that (3, a;e:;(x))* =
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., ate(x) for all € =1,2, «+-.

Proof. For each a;, 1 =1,2, ..., n, the characteristic function y;
of the set f~!(a;) defines an action x — ¢;(x) in 2 which is uniquely
determined by the condition (e;(x))* = e;(x). From the construction in
the proof of Proposition 3.11 we see that e;(x)e;(x) is zero if 7 = j.
It then follows that the map x — >\~ a.e;(x), x € 2, is an action of f
in 2 with the desired property.

If f has finite range {a,, a., - -+, a,}, then the characteristic function
of each set f~(a;) is in the algebra of polynomials in f and the action
of this characteristic function is uniquely determined by the idem-
potency which is consistent with multiplication. Thus for a function
f which has finite range and acts in 2, the action of Corollary 3.11.1
is the only one which is consistent with multiplication.

Now we return to the question of extending the action of a func-
tion f, to a mapping ¢ from _#Z x U, into A which is an algebra
homomorphism on _# when restricted to _#Z x {#}. While we may
not be able to obtain the mapping ¢ for all of _#Z we can obtain the
desired type of mapping for subalgebra of _Z.

Let _# be the algebra of all functions which act in 2. Choose
foe # and an action x— fi(x) of f, in 2A. If f, has finite range
{a;, as, -+, a,}, choose the action . — f(x) = D7, a;e;(x) where e, (x)e;(x) =
0;;e:(x) (0;; the Kronecker delta). A standard Zorn’s lemma argument
shows that there exists a subalgebra _~; of _# and a mapping o
My x A, —A such that the pair (_~#, ¢,) is maximal in the set of
all pairs (&, ¥) with the properties (1) &~ is a subalgebra of .7,
foe & and 4 is a mapping from _Z x 2, into A; (2) ¥(f,, @) = fo(@)
for all e ¥,; (8) for each fe.&¥ the mapping (f, +): A, — A is an
action of f in 2; (4) for each x ¢ 2, the mapping (-, x): &¥ — A is
an algebra homomorphism on &~.

If A is a commutative, semisimple Banach algebra, then the action
x— f(x) of each fe_# 1is unique. In this case we define p: #Z X
A, — A by setting o(f, 2) = f(x) for all (f,x)e Z x A.

In this way we see that if f, acts in U, then there is an
algebra _#, of functions and a mapping ¢: _#; x %, — A such that
foe #, and _#, and @ satisfy conditions (2)-(4) above. Thus we can
make a meaningful definition of an action of an algebra of functions
in A.

DEFINITION 3.12. An algebra _# of functions defined on the unit
disk U acts in a Banach algebra 2 if there exists a mapping ¢:
A X A, — A such that

(1) for each fe ., the mapping o(f, -): A, — A, is an action
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of fin U;

(2) for each ze A, the mapping o(-, x): #Z — 2 is an algebra
homomorphism on _Z.

The mapping ¢ is called an action of _#Z in 2L

ExaMPLE 3.13. Let 2 be a Banach algebra with identity e and
# the algebra of functions analytic on the open disk U. The map-
ping @: #Z x A, — A defined by setting

P(f,0) = oo | AQe — o)dL
21y Jigi=r

where (f,x)e #Z x 2, and 1 > » > max {{\|: veo(x)}, is an action of

# in A. If A does not have an identity, let _#, be the algebra of

analytic functions on U which vanish at zero and restrict ¢ to _#; x

A,. This restriction is an action of _#, in 2.

4. Preliminary properties for subalgebras of C,. The concept
of functions acting (or operating) in a Banach algebra was first pre-
sented for the group algebras of locally compact abelian groups. For
these algebras a complete characterization was obtained of the func-
tions which act in the algebra. The trace class of compact operators
serves as a fairly manageable noncommutative analogue of these group
algebras and hence a logical choice for a study of functions which
act in noncommutative Banach algebras. The classes C,, 1 < p < o,
which have been studied in [1] and [8] are amenable because of the
properties of compact operators (for example, a countable point spec-
trum with zero as the only limit point, finite index for every nonzero
eigenvalue). If we restrict our attention further to subalgebras of
C, which contain normal operators, then we can describe the elements
in terms of their eigenvalues and orthogonal projections and we can
obtain an explicit expression for the C,-norm of each normal operator.
With these properties available we are able to characterize those
functions which act in certain classes of subalgebras of C,. (In a later
paper [2] we consider actions of functions in more general subalgebras
of C,.)

In this section we present notation, definitions and propositions
which will be needed in the sequel.

If TeC. is normal, then the index of M e d(T) is one, the spaces
ker (W — T), ne o(T), are pairwise orthogonal and for each »eoa(T),
H is the orthogonal sum of the subspaces ker (W — T') and \[ — T)H
[1, p. 563]. We call the orthogonal projection E;(T) onto ker (W[ — T)
the Riesz projection onto ker W — T'). For neo(T), EXT) is an
element of the closed algebra generated in C, by T [1, p. 573]. If
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% is a closed commutative subalgebra of L(H) containing 7T, then
(Ex(T))” is the characteristic function of the set {he My: h(T) = \}
(§2). It is an easily checked consequence of the spectral theorem for
normal operators (see p. 897-899 of [1]) that if Te C. is normal, then
T = > ME(T), with convergence in the operator norm.

Suppose TeC. and p(T), #(T), -+ are the distinct nonzero
eigenvalues of the self-adjoint operator v/ 7T*T. Let %k, be the dimen-
sion of ker (p,(T)I — V' T*T). For each pe[l, ) the set C, = {T¢
Cot Doy (a(T))k, < o} is a x-subalgebra of C.. which contains the
algebra C, of operators of finite rank. Setting

@D 1T = [ £ (k|

for each TeC,, 1 <p < o, and |T|. = || T|| for T e C., defines a norm
on C,,1 < p < o, which has the following properties:

) [T],=|T*, = VTT|, for 1 <p < oo;

2) |TS],=||S||IT|, and |ST|, < ||S|| | T|, for all Se L(H), T € Cp;

@ [T, =|T|, for all TeC,, 1 =p =<q = oo.

The algebra C, is complete with respect to the norm |-|, [1, p. 1088
ff: 8].

If TeC. is normal, then VT*T = S [N E(T) and the dimen-
sion of ker (u;,I —V/'T*T) is the sum 3 {dim Ey(T)H: » = p,;}. Thus
a normal, compact operator T is in C,, 1 < p < o, if, and only if,
S INP(dim E(T)H) < oo, in which case

T, = [0%1) I\]? dim EX(T)H]W :

We denote by 2,(T) the closed subalgebra of C, generated by
TeC,.

The spectrum of 7 in C, is again the set o(T) [1, p. 1014]. If
9 is a closed subalgebra of C,, 1 < p < oo, then gy(T) = o(T) because
the spectrum of T does not separate the plane [11, p. 34]. For every
operator T'e C, we identify o,(T') and the maximal ideal space of A, (T).

LEMMA 4.1. Let TeC, be normal with o(T) = {\, Ny, ++-}, E;
the Riesz projection onto ker (\;I ——AT) and k; = dim E;H. Then
SeA(T) if, and only if, S = 35, SONE; and 35, |SO) Ple; < oo
if1<p< oo or limj.SN\;) =0 if p= oco.

Proof. Suppose S = 3.5, p;E; with 205, | ¢ 17k; < 0 if 1 S0 <
o or lim; . p; =0 if p = c. Then lim, .. |S — 2}, p;E;], =0 so
that S is the limit of the sequence {37, p;E;> C A, (T). Thus SeA,(T)
with .§(7»j) = p;. Conversely, if Seq,(T), then SeA.(T) so that
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S=>7 §(7uj)E,- as a consequence of the spectral theorem for normal
operators [1, pp. 897-899]. The sum or limit condition follows from

the fact that Se (7).

Our second lemma allows us to construct normal operators in C,
with given multiplicities for their eigenvalues.

LEMMA 4.2. Suppose <{k,> is a sequence of positive integers, p €
{1, ), H an infinite-dimensional Hilbert space and {\,) a sequence
of monzero complex numbers such that >y [N, [Pk, < o0 3f 1L S p < o0
or lim,—wX, = 0 if p = co. Then there exists a normal operator Te C,
such that 6(T) = (Mt =1,2, ---} and dimker AW — T) = > {k;: \; =
A} for each neo(T). If (P,> is a sequence of pairwise orthogonal
self-adjoint projections and dim P,H = k,, then the operator T =
= MP, has the desired properties. For each sequence <{k,) of mon-
zero inmtegers there exists a normal operator T = S NP, ecC, 1
» < oo) such that <P,) is a family of pairwise orthogonal self-adjoint
projections, |[N,| > [Ny | >0 and dim P,H = K, = dimker (\,I — T)
n=12 ---).

Since the proof of the lemma is straightforward, it 'is left to the
reader.

If 90 is a closed subalgebra of C, and T U is normal, then 7* € 9
(Lemma 4.1) and whenever f(T) is defined, f(T) is normal. The fol-
lowing proposition establishes a useful expression for f(7T) in terms
of the Riesz projections E,(T).

ProprosITION 4.3. Let A be a closed subalgebra of C,, T a normal
operator wn A, and f a function which defines an action S— f(S) in
A If SeU(T)N W, then f(S) = Xz, FSMNE,(T) and |f(S)[ =

71 | f(SOn) [P dim B, (T)H.

Proof. Suppose Se 2 N U(T), 0i(T) = {Xy Ny, ---} and E, is the
Riesz projection onto ker (A\,I — T'). Since S is normal, f(S) is normal
(Corollary 3.7.1) with

4.2) f(8) = ZA{pE(F(S)): pre oo(f(S))}

and a(f(S)) = {(FSN)):n=1,2, .- -} U {0} (Proposition 3.5 and Lemma
4.1). Therefore f(S)*eU and there exists a maximal commutative.
x-subalgebra & of 2 such that Se & and hence f(S)e & (Definition
3.1). The projections E,.(f(S)), rca,(f(S)), and E,,n=1,2, ..., are
in €. Moreover, [E.(f(S))]” is the characteristic function of the set
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{he M :h(f(S)) = p} (¢ + 0) but the function 3 {E;:f(§(7\n)) = p}
also is the characteristic function of this set. Since & is semisimple
[10, p. 309], we have E,(f(S)) = > {FE,.: £SO = ¢} for each pe
0,(f(S)). On rearranging terms in (4.2) we obtain f(S) = %=, F(SNV)E,.
The equation for the C,-norm of f(S) follows from this equation and
Lemma 4.1.

5. Functions with actions in subalgebras of C,. Suppose U is
a subalgebra of C, which contains only normal operators of finite rank.
Let f be any function defined on U with f(0) = 0 if dim H = <. For
Te set f(T) = S {fONE(T): n€0,(T)}. Then the mapping T — f(T),
Te, is an action of f in A. Thus we see that if A contains only
normal operators of finite rank there are no restrictions on functions
which can act in  except the condition that f(0) = 0 if dim H = o
which is necessary if 2 contains no nonzero central idempotents.

The case when 2 contains a normal operator of infinite rank is
of more interest. Our first proposition shows that not all functions
can act in a subalgebra of C, which contains a normal operator of
infinite rank.

ProrosiTiON 5.1. If f acts tn a closed subalgebra A of C, 1 <

p = oo, and tf W contains a nmormal operator of infinite rank, then.
fis continuous at zero and f(0) = 0.

Proof. Let Te? be a normal operator such that o,(7T) = {\,
Ny * -} is infinite. Let E, denote the Riesz projection onto ker (\,I— T').

Suppose lim,_, f(z) = 0. Then there exists ¢ > 0 and a sequence
{z,y such that |z,| < (n*k,)~"* (k, =dimE,H) if 1 <= p < = or |z, <
1/n if p= c and |f(z,)|=¢ for n=1,2,.--. The sum >\7,z,E,
defines an element S of A, (T) with o,(S) = {z,, 2,, - --} (Lemma 4.1 and
Lemma 4.2). Thus f(S) is defined and f(S) = >\, f(z,) E, (Proposition
4.3). But for any integer N > 0 we have |f(S)]53 = S, [f®) Pk, =
FNIf1<p<e and |f(S)l =) Z¢ m=1,2 ) if p= co.
Since f(S)e A, (T) we arrive at a contradiction (Lemma 4.1). Thus
lim,_, f(z) = 0.

Choose Te 2, such that 7T is normal and of infinite rank. Then
f(T) e A,(T) (Proposition 4.3). Hence f(T') is continuous at zero with.
(f(T))"(0) = 0. But if f(0) = 0, we would have a contradiction.

Only for a restricted class of subalgebras of C.. can we obtain a
converse to Proposition 5.1.

THEOREM 5.2. Let U be a closed subalgebra of C. such that the
elements of A are normal operators. Suppose W contains an operator
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of wnfinite rank. Then f acts in A if, and only if, f is continuous
at zero and f(0) = 0.

Proof. We have already seen that if f acts in 2, then f(0) =0
and f is continuous at zero (Proposition 5.1). If f is continuous at
zero with f(0) = 0, then for each Te U, foT is in Cy(o(T)), an algebra
which is isomorphic to .(7T) under the Gelfand mapping. Hence
there exists f(T)e UA.(T) such that (F(T))" = foT on 0,(T) and, in
fact, f(T) = D {fNE(T): neo0(T)}. It is easily checked that the
mapping T — f(T), Te A, defined in this way is an action of f in 2.

The preceding theorem completely characterizes those functions
which act in a closed subalgebra of C., which contains only normal
operators if one of those operators has infinite rank. The correspond-
ing problem for C,, 1 < p < <, is not as simple as we shall see. We
can, however, show the existence of actions for a much larger class
of functions than those analytic on the unit disk.

A function f is said to be Holder-continuous at z, if there exist
positive constants B and ¢ (both depending on z,) such that |f(z) —
f(z)| < B|z — z,| whenever zc¢ U and |z — z,| < §. For the algebra
of funetions which are Holder-continuous at zero we have the follow-
ing proposition.

ProposITION 5.3. Let A be a closed subalgebra of C, (1 < p < <o)
which contains only mormal operators. If f is defined on the umwit
disk and Hoélder-continuous at zero with f(0) = 0, then f acts in A.

Proof. If f is Holder-continuous at zero with f(0) = 0, then there
exist constants B > 0, 0 > 0 such that |f(z)| < B|z| whenever |z| < /.
Suppose T'€ A, with 6(T) = {\, N\, +++}, E, = E; (T) and k, = dim E,H.
Since

3ok S

Tz

NSODP ke + BP S Dl k< o

the operator f(7T) = 3, f(\)E, is in A (T) (Lemma 4.1). It is easily
checked that the mapping that takes 7 = 37, \,E, into A(T) =
e fOWE, (Te?) is an action of f in 2.

Our main result in characterizing those functions acting in closed
subalgebras of C, which contain only normal operators in a sense
completes Proposition 5.3 and we get that the functions which operate
in a restricted class of subalgebras of C, are exactly those which
vanish at zero and are Holder-continuous at zero.

THEOREM 5.4. Let U be a closed subalgebra of C, (1 < p < )
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such that the elements of U are all mormal. Suppose there exists
TeA with o(T) = Ay Ny, +++} and constants K, K, > 1 and r, r, > 0

such that

(5.3) Kpoe > i
and
(5.4) Ky < dimker (A, — T) < Kp»ty

for n=1,2, «--. Then a necessary and suffictent condition for the
existence of an action of a function f in W is that f be Holder-
continuous at zero with f(0) = 0.

Proof. The sufficiency of Holder-continuity at zero with f(0) = 0
is proved in Proposition 5.3. We prove the necessity of this condition.

Suppose Te A satisfies the hypothesis of the theorem and E, =
E, (T). Since T is a normal operator of infinite rank, f(0) = 0 (Pro-
position 5.1).

If f is not Holder-continuous and f acts in A, then there exists
a sequence <{z,»> C U such that

(6.5 |z] < K7 and |z,| < lz,H{( " — 1)(””“’1{72/:1 (n = 2)
n

(5.6) | f(z)| > mlz,| for n =1,2, «-+ .
Define m, to be the largest integer not greater than

—1

2

logg, (|2,|™n?") .

As a consequence of (5.5) m, is a strictly increasing sequence of posi-
tive integers. Set R = > 2,E,,. As a result of inequality (5.4)
with m, replacing n, Re % (Lemma 4.2). Thus f(R) is in 2 and
f(R) = >, f(z,)E,., (Proposition 4.3). But from condition (5.3) we
obtain 7,/r, = log,, K, and hence

AR >3 (nlz, K

—r1lr9) 10z Ky (|2, | PaPt1)

= K3, (n2,))°K,

= K 5, (]2, )KL

= Kl—ﬂ g__“l%_ s



ACTIONS OF FUNCTIONS IN BANACH ALGEBRAS 671

which is an obvious contradiction. Therefore, f must be Holder-
continuous at zero.

It is clear that the hypothesis of Theorem 5.4 is satisfied if A
contains an operator T'with o,(T) = {\,, Ay, - -} such that dim ker (\,I —
T) = K™ for some integers K =2 and r = 1. For the case of an
operator with bounded multiplicities we have the following corollary.

COROLLARY 5.4.1. Let 2 be a closed subalgebra of C, (1 £ p < =)
which contains only mormal operators. Suppose Te N and that the
sequence {dimker AWI — T):xe€o0(T)} is uniformly bounded. Then a
function f acts in A if, and only if, f 1s Holder-continuous at zero with

£(0) = 0.

Proof. Choose T'e 2 such that o,(T) = {\, Ay, - - -} and {dimker (A, I —
T)> is a bounded sequence. Set k, = dimker (\,J — T) and choose
K = 2 such that K=k, for n =1,2, ---. Then we can choose by
induction two sequences <r,> and {m,) of integers such that m, =
S{kr,,<j=r)} and K*""—K<m,<K"". Set P,=>{E:
Ty < J = 71,}, where E, = E; (T). Then there exists Re 2 such that
R=37.2P, 0(R) = {7, 2, +--} and dimker (2, — R) = m, (Lemma
4.2). This operator R satisfies the hypotheses of Theorem 5.4.

In studying the conditions of Theorem 5.4 one might ask whether
the bounds of (5.4) are as strong as possible. The following examples
show that the upper bound cannot be altered much before a larger
class of functions can act in 9 nor can the lower bound be omitted.

The hypothesis of Theorem 5.4 is satisfied by all subalgebras of
C, which contain normal operators, one of which has multiplicities
k,=2" forn=1,2,---, N and k, = 2™ for some fixed » >1 and
all » < N. The theorem, however, is no longer true if 2 is the
algebra generated by a normal operator T'e C, with o(T) = {A, Ay, +- -}
and dimker (\,J — T) = 2" for n =1,2, ---.

To see this let f be the function defined on the unit disk by setting
f(z) = 0 for |z| = 27*/* and f(2) = g(n)|z| for |z| = 27**/?, where {g(n))>
is an unbounded sequence of positive numbers and lim,_.., g(n)2-"*/* = 0.
Then f is continuous at zero but not Holder-continuous at zero.

If the sequence {g(n)” ") is summable then f acts in A. To prove
this we need only consider operators Se 2 such that S = >\7., 2K, ,
where E, is the Riesz projection onto ker (\,] — T), |2,| = 2~"a/* for
some positive integers r,, and m, < m, < ---. Since Se U, there exists
N > 0 such that r, — m, =1 for n = N (Lemma 4.1) and we can

assume without loss of generality that this inequality is true for all
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n. But then we have

2

S 1er™ =2 5 )

2

< oo,

On the other hand, if the sequence {g(n)** ") is not summable,
then f does not act in . To see this let z, = 2-"+*» and S =
>z, E,. Then S is in A (Lemma 4.1) but

2

S @) =2 gm)”

2 oo
(n+1) 271,2 — _;_;1 2—2n(g(n))p — oo
so that f(S) cannot be in C, (if it were, then f(S) would be the
operator >, f(z,)F, as a consequence of Proposition 4.3).

Now suppose we delete the lower bound condition of Theorem 5.4.
In this case we construct an algebra and a function f such that the
multiplicities of elements of the algebra are bounded above by 2" and
f acts in the algebra and is not Holder-continuous.

Denote by [n] the integer in the interval (7 — 1,17 n]. Let
T be a normal operator in C, (1 < p < o) such that o (T) = {\, Ny, -+ -},
and k, = dimker (\,I — T) = [r]* (Lemma 4.2 ensures that 7' exists).
For each integer » we have k, <2 but k., = 2" < 2™ for
n =238, --.

Let U be the algebra (7). Denote by E, the Riesz projection
onto ker (\,J — T). Define f(2) to be 0 for |z| # 27/* and (n2-"")!*
for |z| = 2-**/», Qbviously, f is continuous, but not Holder-continuous,
at zero.

As before we need consider only operators Se€ such that S =
S 2B, with |z,| = 277 If Se?, we must have », = [m,] + 1
for all large » and we can assume the inequality is true for all » > 1.
Since the function g(t) = t2-* is decreasing for ¢ = 0 and there are
2n + 1 integers in the sequence <{k;> equal to 2, we have

S, 1f @) P, = 3 ([m,] + Lyg-maoigina

=322 + 1)(g + 1) < oo

!
q=1
In view of Lemma 4.1 the operator f(S) = >i7., f(z,)E,, is in 2.

We have determined the algebra of functions which acts in certain
classes of subalgebras of C, (1 < p < ). The problem of character-
izing those functions which act in other classes, however, is still open.
For example, which functions act in the algebras 2, (7) if T is a
normal operator with multiplicities k" for some k = 2?

We wish to thank Professors J. Gil de Lamadrid and C. A. McCarthy
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