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The author has previously classified semi-translation planes
with respect to (p, I, τro)-transitivity. This paper is concerned
with the determination of the types of semi-translation planes
that can be constructed from certain dual translation planes
by Ostrom's method of "derivation".

If π is a derivable plane that is ((<*>), LJ)-transitive then the
plane derived from π is a semi-translation plane. There are only two
known classes of planes that are ((oo), LJ)-transitive but not (p, In-
transitive for any additional pointline pair. They are the Ostrom-
Rosati planes (and their duals) and the planes derived from the dual
Liineburg planes. With the exception of the above planes and the
translation planes, the only known derivable planes that are ((oo), I n -
transitive are dual translation planes. Ostrom has shown that if π is
a strict semi-translation plane of order q2 and q > 4, which is derived
from a dual translation plane whose coordinate system is of dimension
2 over its (left) kernel, then the full collineation group of the pro-
jective extension of π fixes the line at infinity of π. We shall give a
slightly different proof of Ostrom's theorem which also includes the
case q = 4.

The author has previously classified semi-translation planes with
respect to (p, L, ττo)-transitivity. With the exception of the Hughes
planes, for every known example of a semi-translation plane belonging
to a certain class there is an example of a semi-translation plane
in the same class and which is derived from a dual translation plane.
This suggests that one might look, in general, at the possible semi-
translation planes so derived.

Ostrom has shown that the number of possible translation planes
(and hence dual translation planes) is extremely large. This suggests
that the number of distinct semi-translation planes derived from dual
translation planes may also be very large. However, relative to our
classification, we will show that the number of classes of such planes
is exactly five.

2Φ Background material • We shall present the essential material
necessary for reading this article. However, the reader is referred to
Ostrom's papers [10], [15], [17], [18] and [19] for a complete back-
ground.

DEFINITION 2.1. Let F be a vector space over a field F. Let
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N(V) be the following system of points and lines: the points of N(V)
are the ordered pairs (x, y) of elements of V. For each ce V, the
set of points (x, y) such that x — c, is a line. For each a e F and
for each be V, the set of points (x, y) such that y = xa + b, is a line
(see [18], p. 5). In this case, N(V) will be said to be a derivable
net.

Note that we may coordinatize a net by Hall's method (see [18])
with the restriction that since we may not have enough parallel
classes to form an affine plane, multiplication may not be defined for
all elements of the coordinate system.

If F is GF(q) and V is of dimension r over F, then N(V) is of
order q\ Also, the number of parallel classes of N(V) is q + 1.

DEFINITION 2.2. A net N is said to be replaceable if there is a
net N' defined on the same points such that each pair of points that
is collinear in N is also collinear in N', and vice-versa. We shall call
N' a replacement for N.

The derivable net N{V) of (2.1) is a replaceable net if and only
if V is of dimension 2 over F (see [18]).

Let N(V) be embedded in an affine Desarguesian plane π of order
q\ That is, N{V) and π are defined on the same points and each
line of N{V) is a line of π. Let (C, +, ) be the ternary ring of π.
Hence, (C, +) is a vector space of dimension 2 over F relative to the
product xa as a scalar product. Let teC and g F, then every element
of C may be uniquely represented in the form ta + β for a, β e ί7 (we
identify the vector 1 a with α e F ) .

Let τr0 be the subplane of π coordinatized by F = GF(q). That
is, points of τr0 are of the form (α, /S) for a, β eF. Consider the
images of π0 under the mappings (x, y) —> {ax, ay) for all nonzero aeC.
The translates of these images are the lines of a net N'{V) that is a
replacement for iV(F) (see [18]).

DEFINITION 2.3. Let N{V) U M, M a net defined on the same
points as N{V), indicate the incidence structure of the common points
of N{V) and M and the lines of N{V) and of M. Also, N{V) and
M are assumed to be disjoint; i.e., two points joined by a line of
N{V) are not joined by a line of M and conversely. By (3.3) [18],
N{V) U M is a net. An affine plane π is said to be derivable if it is
of the form N{ V) U M with F of dimension 2 over .F. If π' = N'{ V)l)M
(see above remarks) then π' will be said to be derived from π. (Ostrom
[15] has actually shown that weaker conditions than the above are
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sufficient for derivation, but we know of no planes admitting these
weaker (but not the stronger) conditions.)

Derivation is an involutory process. This is suggested by the
fact that lines of N'(V) are subplanes of N(V) and vice-versa.

DEFINITION 2.4. Let S be a coordinate system (see [18]) with
associative and commutative addition. If S contains a sub field F such
that (1) a(aJ

rβ) = aa + aβ, (2) (aa)β = a(aβ), and (3) (a + b)a = aa + ba
for all a,beS and for all a, β eF, we shall say that S is a right
vector space over F.

If T is the ternary function of S and if T (x, a, b) = xa + b for
all be S and for all ae F, we shall say that S is linear with respect
to F.

Now let S be a coordinate system which is a right vector space
over a subfield F. Let S be linear with respect to F and let the
dimension of S over F be 2. If the coordinate system of a plane TΓ
is as above, then the plane π is derivable (see (2.1) and [10]).

If Q is a right (left) quasifield, it is well known that Q may be
used to coordinatize a (dual) translation plane. The kernel F of Q is a
skewfield and if Q is a left quasifield then Q is a right vector space
over F. If π is a dual translation plane with respect to (•> ) then the
ternary function is linear (see [17]). Therefore, if the coordinate
system of a dual translation plane of order q2 (with respect to (-*•))
is of dimension 2 over its (left) kernel then π is derivable (that is, the
affine version of π is derivable). (We are using L^ to denote the line
at infinity and (oo) = L^ π {(x, y)\x = constant}.)

THEOREM 2.5. (Ostrom [15]). We may choose a coordinate system
C for a semi-translation plane π (of order q2) which contains a sub-
system F which is a quasifield of order q such that

(1) points of τr0 have coordinates in F for some subplane π0 of π
of order q,

(2) lines of π0 have equations of the type y — xa -\- β or x — β
for all a, β eF,

(3) lines of π whose slopes m are not in F have equations of the
form : y = (x — β) m + a for a, β eF,

(4) (x — a) β = xβ — aβ for all xeC and for all a, β eF,
(5) ίfc&F and deC there exist unique a, β eF such that d =

ca + β.

THEOREM 2.6. (Albert [1]). Let π be a derivable plane (recall π is
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now considered as an affine plane). Let t be an element of the coor-
dinate system C of π such that tίF (see (2.1), (2.2), (2.4)). Then the
derived plane πr can be coordinatized by a coordinate system O such
that a point with coordinates (x, y) = (tx1 + x2, ty1 + y2) in C has
coordinates (xf, yr) = (tx1 + ylf tx2 + y2) in C".

Note that π0 = {(a, β) α, βeF} in π has coordinates {(0, ta + β);
a, βeF} in C". That is, the set of points of the subplane πQ in π is
the same as the set of points of xr = 0 in π\

A collineation of π which fixes N(V) also fixes M (see (2.3)).
Such a collineation induces a collineation of πr. In particular, a trans-
lation of π induces a translation of πτ (Theorem 7 [15], (4.8) [18]).

Let L be a line of π which is not a line of π'. If π admits a
group of translations transitive on the points of L, then the pro-
jective extension of π' is a semi-translation plane with respect to LΌ*.
Conversely, if π' is a semi-translation plane there exists such a line L
in r (corollary to Theorem 7 [15]).

Let π be a dual translation plane (order g2) with respect to (oo)
and whose coordinate system is a right 2-dimensional vector space
over GF(q). Thus, π is derivable and if x = 0 in π is the same as
the set of points of πj (π'o some subplane of the derived plane of π')
then by the previous remarks, π' is a semi-translation plane. As
pointed out in the introduction, it will be shown that the full col-
lineation group of the protective extension of π' fixes LL

Note that if (ia?x + a?2, tyx + 2/2) —> (<̂ i + ^ ίwx + w2) is a collineation
of the derivable semi-translation plane π which fixes ikf, x^y^z^Wie F,
i = 1, 2, then, by (2.6), (fĉ  + ^, ίa;2 + y2) —> (tej. + wly tz2 + w2) is a
collineation of 7r' (π' the plane derived from π).

THEOREM 2.7. (Ostrom [15]). Lβί π be a derivable semi-translation
plane coordinatized as in (2.6), then:

(a) Addition in C is isomorphic to addition in C".
(b) Fr is a subsystem of C.
(c) C is linear with respect to Fr.
(d) Multiplication on the right by elements of Fr is the same in

C and C.
(e) If denotes multiplication in C and o denotes multiplication

in C, then: (tx1 + yx) o (tzL + z2) = tx2 + y2 if and only if (tx1 + x2)
(tuL + u2) = ί̂ ! + y2 where zγ (tux -\~ u2) = t -\- z2, provided zx Φ 0 and
^ , 2/i, «», UiβF, ί = 1, 2.

DEFINITION 2.8. We shall say that a system Q satisfying the
following properties is automorphic : Let Q be a set of q2 elements
with the operations of + and such that:
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(1) Addition is an Abelian group.
(2) Nonzero elements of Q form a loop under multiplication.
(3) Q contains a subsystem F which is a field of order q with

respect to addition and multiplication.
(4) Q is a right vector space of dimension 2 over F with respect

to multiplication on the right by elements of F.
(5) a(b + a) = ab + aa for all a,beQ and for all aeF.
(6) Q admits a group of automorphisms of order q which fixes

each element of F. The group maps t-*t + β for all βeF where t
and 1 are basis elements for the vector space.

Notice that the coordinate system S for a dual translation plane
(of order q2 whose kernel is GF (q)) with respect to (oo) is automorphic
if S admits automorphisms of the form ί —• ί + β for each βeF which
fix the kernel elementwise.

THEOREM 2.9. (Morgan and Ostrom [8]). // C is an automorphic
system and if (to:) (ta2) = th (aly a2) + k (a19 a2) where ax Φ 0 and
h(a19 α2), k (aly a2) e F, then: (tat + βλ) (ta2+β2) = t [h(aly a2)-a2βί

.ocT1 h(aίf a2) + k (au a2) - β\aτι a2 + ββ2.

THEOREM 2.10. (Ostrom [15]). Let π be a derivable plane and let
the set of points such that x = 0 in π be the same as the set of points
of the subplane π[ in πr (πf indicating the plane derived from π). If
β is a collineation of π which fixes the set of points (x, y) such that
x = Q pointwise and fixes M (see (2.3)) then β induces an automorphism
of C which fixes Ff pointwise.

ASSUMPTION 2.11. We will assume for the remainder of this article
that π is a strict semi-translation plane which is derived from a dual
translation plane π with respect to (oo) whose coordinate system is
of dimension 2 over its kernel and which is coordinatized as in (2.6)
and (2.7). We denote the coordinate systems of π and π by (C, + , )
and (C, + ,*), respectively. The subfield F of C is actually the same
as the subfield F of C and so we will not distinguish between F and
F (see (2.7)).

Notice that if we have a semi-translation plane with respect to a
line L (see [4]), we can choose L to be the line that is deleted in
obtaining an affine plane. That is, we may choose L — L^. Also, we
may choose π0 as the subplane coordinatized by the subfield F. This
amounts to choosing a line of π and calling it x = 0. Also, the choice
of t in π depends on the arbitrary choice of (0) in π. That is, y = 0
in π is the set of points (x, y) such that x = ta, y — tβ in π. (Note
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that we are denoting the lines {(x, y)\y — f(%)} by y =

DEFINITION. 2.12. Let Σ* be a projective plane of order q2 and
Σo* a projective subplane of order q. Let p be a point of Σo* and L
a line of Σ* such that L Π Σ<f is a line of Σ*. Σ* is said to be
(p, L, Σ*)~transitive if the stabilizer of Σ* in the group of all (p, L)-
collineations of Σ* induces a collineation group of Σ* such that Σ* is
(p, L)-transitive. Let Σ be an aflfine plane of order q2 and ΣQ an afSne
subplane of order q of Σ. Let Σ* and Σ* be the projective extensions
of Σ and Σo, respectively. We shall say that Σ is (p,L,2Ό)-transitive
if and only if I7* is (p, L, Σ*)-transitive.

Thus, a semi-translation plane π is (p, L^, ττo)-transitive for all
points peLeoΠίΓo* for some subplane π* of TΓ* (π*, π$ the projective
extensions of π, π0, respectively). Hereafter we do not formally dis-
tinguish between π0 ane τr0*.

The following mappings represent collineations of the dual trans-
lation plane π:

( i ) (x, y) —> (x, y + a) for all aeC. These are the q2 translations
with center (<χ).

(ii) (x, y) —> (#, τ/α) for all nonzero α e F; ((*> ), τ/ = 0, ^-transitivi-
ty (see (3.4)). These mappings are collineations since C is of dimension
2 over F (see proof of (3.6)).

(iii) (χ9 y) —+ (#, ccα + ?/) for all aeC; ((<χ ), a? = O)-transitivity (see
proof of (3.2)).

The mappings (iii) for aeF induce an automorphism group of
order q fixing F pointwise in C (see (2.10)). It is an easy exercise
to see that these automorphisms are represented by t —> t + a for all
aeF (see (2.6) and the remarks immediately following).

Note also that the relations (2.6) and (2.7) between the coordinate
systems for π and π are reciprocal since the deriving process is in-
volutory.

3* The possible types of semi-translation planes derived from
dual translation planes* The following five lemmas are very useful
and so are included here. Their proofs are very similar to the cor-
responding theorems for {p, L)-transitivity, so we will merely sketch
the proofs.

LEMMA 3.1. If π is ((0), x — 0, πo)-transitive then C is such that
c (am) — (ca)m for all c,meC and for all aeF. Also, (x, y)—>(xa, y)
for all nonzero aeF represents these collineations.

Proof. For each aeF 1 ((0), x = 0, τr0)-collineation fixing π0 such
that (1, m) —> (a, m) and (0, 0) —> (0, 0). Therefore, y = xm —> y =
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xm 3 am = m. If we let x = c —>x = c' it follows that (c,cm)-+(cr ,cm)
so that crm = cm. But m = am, which implies cfm = c(am). Letting
m = a implies m = 1 and c' — ca. Thus, (ca)m — c(am) for all
c, meC and for all aeF.

LEMMA 3.2. If π is ((<*>), x — 0, πQ)-transitίve then C is such that
c (a + m) = ca + cm /or αZZ c, meC and for all aeF. Also, these
collineations are represented by (x, y) —> (x, xβ + #) /or all β e F.

Proof. For each βeF 3 ((<»), & = 0,7Γ0)-collineation carrying (0)
to (β). It follows that this collineation may be represented by the
mapping (x, y) —+ (x, xβ + y). The assertion of (3.2) is then clear.

LEMMA 3.3. // π is ((0, 0), LTO, πo)-transitive then C has the fol-
lowing properties: (1) (ac)m = a(cm) for all c, me C and for all
aeF. (2) a(c + m) = ac + am for all c, meC and for all aeF.
Also, (x, y) —+ (ax, ay) for all nonzero aeF represents these col-
lineations.

Proof. For each aeF-{0} there is a ((0, 0), L^, τr0)-collineation
such that (1, 1) —* (a, a). Using the fact that points on LM and lines
through (0, 0) are fixed, we can establish that (1, m) —> (a, am) and
y — m —> y = am.

Thus, (c, cm) —• (c, α(cm)) such that cm = α(cm) for all c, meC.
It then follows that the collineations are represented by the mappings
(x, y) —+ (<ra, #2/) from which the result immediately follows.

LEMMA 3.4. // π is ((°°), y = 0, πQ)-transitive then (cm)a = c(ma)
for all c, meC and for all aeF. Also, (x, y) —> (a;, τ/α) /or αίi α e ί 7

represents these collineations.

Proof. Lemma 4 [9].

LEMMA 3.5. // π is ((°Q), ?/ = 0, πo)-and ((0), x = 0, πQ)-transitive
and aa = aa for all aeF and for all aeC, then π is also
((0, 0), Loo, πo)-transitive.

Proof. From (3.4) and (3.1) we have collineations represented by
(x, y) —• (xa, y) and (x, y) —+ (x, ya). Thus we have collineations re-
presented by (x, y) —> (ax, ay) V aeF — {0}. (3.5) then follows from
(3.4).

LEMMA 3.6. Let π be recoordinatίzed in either of the following
two ways:
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( i ) a point with coordinates (txι + yιy tx2 + y2) will have co-
ordinates (tyL + x19 ty2 + x2);

(ii) a point with coordinates (tx1 + yu tx2 + y2) will have co-
ordinates (t(x1 + yLά) + y19 t(x2 + y2a) + y2) for some aeF; xifyieF,
i = 1, 2. T%e% 7Γ remains a dual translation plane with respect to
( ) whose coordinate system is of dimension 2 over its kernel.

Proof. ( i ) Let (#', y') denote coordinates in the new coordinate
system.

Clearly, the sets of points satisfying the equations x'=c, yr—ctf,
and y' = xf are lines so that we have a legitimate coordinate system
((2.4) [18]).

A plane π is a dual translation plane (of order q2) with respect
to (oo) and its coordinate system is of dimension 2 over its kernel if
and only if π is ((oo), L)-transitive for all lines L I (oo) and π admits
collineations of the form {x'9 yf) —> (xf, y'a) for all aeF = GF(q).
That is, the coordinate system (C + , ) of a dual translation plane is
always a vector space over its kernel. Furthermore, the kernel-{0} is
isomorphic to the group of collineations of the form (xr, yf) —» (xr, y'a)
if π is a dual translation plane with respect to (oo). (In this case,
yr — χ'm + 5 —+ yr — ^'(mα) + ba under the above collineations so that
(c, cm + b) —• (c(cm + 6) α) which implies c (mα) + &α = (cm + b) a for
all aeF — {0} and c, m,be C.) Thus, if π admits collineations of the
form (xf, yr) —> (#', ?/'α) for all α G ̂ -{0} then C is a vector space over
F and hence is of dimension 2 over F . Let the coordinate change ( i)
be denoted by σ.

Let (x, y) denote coordinates of C, (x', yr) coordinates of Co. Let
(C, + , ) σ = (Cσ, 0 , ®). Thus, (x, y) σ = ( ί^ + ^ , tx2 + τ/2) σ =
(ty^x,, ty2 + x2) - (α;', 2/')- {(», 2/) I ̂  - 0} σ = {(tx^y,, tx2 + y2) \χ1=y1 =

0}σ = {{ty^ + Xi, ty2 + x21^ = ^ = 0} = {{xr, yr) \ xf— 0} and the line x = c is

&' = c' under σ so (oc) is fixed under the coordinate change and the
set of ((oo), L)-transitivities L /(©o) is carried into itself.

Now (y = 0)σ = (yf = 0) so (0)σ = (0). Thus, O φ α = a V aeCσ.
Also, clearly, (l)σ = (l). (ί/S, tβ 0 α) G 2/' = a?' 0 α. Let ί/S 0 a=ts1 + s2

for some sx, s2 e ί7. Then y' = %' 0 a = (0, α) U (1) if and only if
06, ίs2 + §i) e (0, ta) U (1) in (x, ^-coordinates. That is, (/9, ts2 + s^ey
= x + ta. Hence, β + ta = ίs2 + sx =̂> s2 — α and Sj. = /S. Therefore,
tβφa = tβ + a.

Also, (α, αα) o* = (taλ + α2, (tox + a2)a) σ, for some a19 a2e F,
{taγ + al9 t(aβc) + a2a)σ = (to2 + α ,̂ ί(α:2α:) + a:^). Also, (0, 0)σ = (0, 0),
(1, a)σ = (ί, ta) and (ί, to)cr = (1, a) so that (2/ = xa)σ = (yf = a/®α).

Hence, (to2 + α j ® α = (to2 + ax)a and so ί ® β10 /52 = tβ1 + β2

V βιtβ2eF.
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Now let p denote a collineation of π (x, y) —* (x, yd). Letting
x = txγ + x2 and y = ty1 + y29 for some xt1 x2, yu y2 e F, (tx1 + x2, tyx + y2)σ
•^{tx1 + x2, tiy.a) + (y2a))σ. So, (tx2 + x19 ty2 + y1)-^>(tx2+ xί9 t(y2a) + y1a))
and thus {x\ y') —» (xf, y' (•) a). Hence ( i ) is proved.

The proof of (ii) is very similar to proof of ( i ) and is left for
the reader.

COROLLARY 3.7. The plane π remains a derivable semi-translation
plane derived from a dual translation plane τz_ whose coordinate
system is of dimension 2 over its kernel under the coordinate change
( i ) (x,y)—» (y, x) or (ii) (x, y) —> (x + ya, y) for some aeF.

Proof. Immediate from (3.6) and (2.6).

LEMMA 3.8. Let π be (p, L, πQ)-transitive with p e !/«,. Then we
can choose p and L so that π is ( i ) ((oo), y = 0, πQ)-or ((0), x = 0, π0)-
transitive if pgL; (ii) ((<»), x = 0, π0)-or ((0), y = 0, π^-transitive if
pe L.

Proof. ( i ) Suppose p = (oo) and L = (y = 0). Then, by (3.7)
( i ) , we may obtain ((0), x = 0, τro)-transitivity. If Lφ{y = 0) (if
L = (y — c) then by (5.1) [4], ce F and y = 0 is in the orbit of y = c
under the existing translation group of π) then there is an aeF such
that L I (a) (i.e., Lf]πQ is a line of π0). Since y = xa is in the line
orbit of L (under the collineation group of TΓ), π is ((oo), 2/ = $α, 7Γ0)-
transitive. Clearly, by rechoosing t to be t + a in C we have
((oo), y = 0, ττo)-transitivity. And, by (3.7) ( i ) , then we have ((0) =
a; = 0, πo)-transitivity (see (2.5) (5) and the remarks following (2.2)).

If <pφ(ao), there exists a n α e ί 7 such that p = (a). Rechoose t
in C so that p = (0). If L —{x = 0) we have ((0), a? = 0, τro)-transitivity
and thus (see" (3.7) ( i ) ) ((oo), y = 0,7Γ0)-transitivity. If L ^ (a? = 0)
we then have ((0), y = ίc(-/3), ττo)-transitivity for some β e F. By reco-
ordinatizing by the map (cc, T/) —• (x + 7//3-1, y) we see that # = x{-β) —•
(a? = 0) and (0) is fixed in π. Thus, we have ((0), x = 0, τro)-transitivity.

(ii) follows from a similar argument. The proof is left to the
reader.

PROPOSITION 3.9. // π is ((0, 0), L^ π^-transitive then aa = aa
for all aeC and for all aeF.

Proof. It is an easy exercise to show that the collineations (x, y)
—> (x, xa + y) V aeF and (x, y) —• (x, yβ) V βeF-{0] of π induce
respectively in C (in π) automorphisms σa fixing F pointwise of the
form tσa — tJ

Γa and collineations of the following type: (tXί + y^ tx2 + y2)
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—>(tx1 + y1/3,tx2 + y2β) for all nonzero βeF (note xt, y{e F, i = 1, 2).
These latter mappings fix (0, 0) and (1, t) —• (β, t). Thus, y = xt—>y
= x(β-H) (see (3.3)). Let yj = th{y,) + k{yλ), yxeF and h, k: F-+F.
Then (y1,y1t)-+(yβ,th{yd + Hvdβ) and hence (y1β)β-1t^th(y1) + k(y0)β.
It follows then that k(yx)β = fc^) for all ^ e ί 7 and for all nonzero
β e F. Hence, k(yx) = 0 for all yxeF and thus ^ = th(yx) for all
ί/^ί 1 (note: F cannot be GF(2)).

Now 0/L£)<7α = (th(y1))σa so τ/x(ί + α) = (ί + a)h{yx). By using the
properties of a right vector space (see (2.4) and (3.3)) we can establish
Vit + yypί = #&(2/i) + α*(2/i) That is, 2/1 = M2/1). Therefore, yxt = ί^
for all ^ e JP.

Let aeC and α = toi + a2; a19 a2eF. Then aa = (tox + α2)α: =
(tojα: + oc2a = ί ^ α ) + α2α = ^(tojH- αα2 = aita^a^ = α:α (see(3.3)).
Therefore, (3.9) is proved.

PROPOSITION 3.10. If π is ((00), α = 0, πo)-and ((0), x = 0, πQ)-trans-
itive, then aa = aa for all aeF and for all aeC.

Proof. Let * indicate multiplication in π (in C). We will show
that, a*a = a*a in π. Fryxell [2], Lemma 2.1, shows that under these
conditions, aa = aa in the semi-translation plane π. (PryxelΓs
argument is straightforward and can be supplied by the reader by an
application of (2.7) (e).)

If we derive π we obtain π so that remarks that we made as to
the form that collineations of π take in π also hold for the form col-
lineations of π take in π.

By (3.1), the ((0), x — 0, τr0)-collineations of π are represented by
the mappings (x, y) —> (xa, y). Letting x^tx^x^ y = tyx + y2, xif y{ e F,
i = 1, 2, we clearly have the following induced collineations in π (see
(2.6)): (tx, + y19 tx2 + y2) —> (ίfoα) + y19 t(x2a) + y2) (note that ί * a = ta
by (2.7)(d)). By (2.10), the ((0), x = 0, ττ0)-collineations of π induce an
automorphism group in TΓ (in C) of order q-1 fixing F pointwise. We
see that such automorphisms are of the form t—±ta for all nonzero
aeF.

Now let a * t = tf(a) + G(a) for f(a)JG(a)eF. The ((°o),α = 0,7r0)-
collineations of π induce an automorphism group in π (in C) of order
q fixing F pointwise of the form t —»ί + a for all aeF. Hence
a*(t + β) = (t + β)f(a) + G{a) for a,βeF. By the properties of the right
vector space and (3.2), we have a*t + aβ = tf(a) + β f(a) + G(a) and
thus a = /(α). Therefore, α * ί — to + G{a). Using the automorphisms
of the form t-+tβ we have a*(tβ) = (tβ)a + G(a). But, α*(ί/S) =
(α*ί)/S = (to + G(α))/S = ί(α/S) + G(a)β. Hence, G(α) = G(a)β for all
α e ί 7 and for all nonzero β e F. Since q > 2, we have G(α:) = 0 for
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all a in F. Thus, a*t — ta. By the argument of (3.9), aa = a*a
for all aeF and for all aeC (see (3.1)).

LEMMA 3.11. Let (taί)(ta2) = th(a1, a2) + k(a,, a2) in C h, k: F—>F;
aly a2 e F. Then, if π is ((oo), x = 0, πo)-transitive, there cannot exist
functions f and g : F'—> F such that h(alf a2) = f(a,)a2 and k(a,)a2 =
^ ( α j ^ unless π is the Hughes plane of order 9 (see [3], [9], or [18]
for the definition of the Hughes plane).

Proof. Suppose there do exist functions / and g with the above
properties. Since C is of dimension 2 over its kernel, it is easy to
see that if (ta,) * (ta2) = th(a19 a2) + k(,a, a2) in C; h, k: FxF—>F and
a19 a2e F then /̂ (α ,̂ l)α2 = /̂ (α ,̂ α2) and k(a19 l)a2 = fc^, α2).

By (2.7) (e), (to,)(to2) = tf{aλ)a2 + ^(αjα, if and only if {ta, +
f(oc^a2) * (< î + 2̂) = Q{<*da2 where a2*(tuλ + u2) = t; aiy ut e F-{0}, i = 1,2.
Since π is (( ), # = 0)- and ((* ), 7/ = 0, π0)-transitive, α2 * (ίux + u2) =
^ • ( ^ i ) + α:2^2 = (a2^t)u1 + ^ 2^ 2 (see (3.2) and (3.4)) and by the first
part of the argument of (3.10), a2*t = ta2 + G(<x>), G(a2) e F. Thus,
ί = (to2 + Gia^u^ + ^ 2u 2 = ί(α:2^2) + G(a2)uι + 6i2^2. Equating vector
parts of the last equation, we have ux — a2

γ and u2= -Gia^a^2. Thus,
(ta, + f(aι)a2) * (tar1 - a2

2G(a2)) = g{a^)a2.

Now since TΓ is ((00), ^ = 0, τro)-transitive, TΓ (and also π) is auto-
morphic (i.e., C and C are automorphic) (see (2.8)). Hence, by (2.9),
(ta, + f(a1)a2) * (ta,1 - a2

2 G(a2)) = t [h(a191)^1- f(a,) - a,a2

2 G(a2)] +
/(aMoCi, l)«Γι + k(a19 l)a2

1(f(a1)Yaτ1a2 - f(aι)a2

1G(a2).
Equating vector parts, we have:
(1) h(al9 l)a? - f(a,) - a,a2

2G(a2) = 0 and
(2) f(aι)h(aι, l)αrL + k(a19 V^a,1 - (f(a,)f a^a2 - f(aι)a2

1G(a2) =
g(a,)a2 for all nonzero a19a2eF. Let a2 — l in (1), then h(alfϊ)=f(a1).
Substituting h(alfl) = f(a,) back into (1), we have:

(3) f(a,)(a2 - 1) = - α ^ - 1 G(α2). Let /(I) - /3 and let a, = 1 in (3).
Hence, G(<x>) = -β(a2 — l)α2 so,

(4) / ( α j = aβ for all α ^ F . So, by substituting k(a19 l) = g(aί)
(let a2 — 1 in (2)) and (3) and (4) into (2), we have

(5) g(a1)(a2~
1 — a2) = 0 for all nonzero α:x, α:2G .F7. If a2

γ — a2 for
all nonzero elements of F then F = G F (3). In this case, π is a dual
translation plane of order 9. Fryxell [2] has pointed out that, in
this case, π would be the Hughes plane of order 9. Therefore, by our
assumptions, either π is the Hughes plane of order 9 or g(a,) = 0 for
all nonzero a, e F. But in the latter case, t = tf(l) + #(1) + tβ which
is a contradiction to multiplication being a loop. Thus, (3.11) is
proved.

Assume for the remainder of this paper that q > 3.
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PROPOSITION 3.12. π cannot be both ((<»)» x = 0, τr0)- and ((<*>), 7/

= 0, π'^-transitive.

Proof. If 7Γ is so transitive then clearly (see (3.4)) if (to1)(to2) =
ife^, α2) + ft^, α2) then k (a19 l)a2 = k(ax, a2) and h(aί9 l)a2 = A ^ , α2).
But, this is contrary to (3.11).

THEOREM 3.13. If π is strict, then L^ is invariant under the
full collineation group of the projective extension of π. In this case,
the full group of π is the inherited group (see [18] for this definition).

Proof. (Ostrom [10] gives a proof for q > 4.) Suppose L^ is
moved. By Lemma 3 [10], we may take the image of L^ to be x = 0.
In this situation, by Lemmas 4, 5 and 6 [10], if (ta^ (ta2) = th(a19 a2)
J

Γk(a1,a2) then there exist functions f9g:F—+F such that h(a1,a2)
— f(ai)a2 and k (a19 a2) = g{oc^a2. But, this is a contradiction by
(3.11).

LEMMA 3.14. π cannot be both ((<*>), x = 0, π0)- and ((0,0),Loo,τr0)-

Proof. If π is so transitive, we have pointed out in (3.11) that
both π and π (i.e., C and C) are automorphic. By (3.9) and Lemma
2.1 [2], elements of F commute with elements of C and of C. Hence,
by (3.3), π admits collineations of the form (x, y) —> (xa, yd) for all
nonzero aeF. By (2.6), it is easy to see that π also admits collin-
eations of this same form. Recall π is ((<*>), y = 0, τro)-transitive, so (see
3.4)) π admits collineations of the form (x, y) —> (x9yβ) for all nonzero
β e F. Hence, (x9 y) —> (xa, ya) followed by (x9 y) —* (as, ̂ α:"1) will
yield collineations represented by (x, y) —> (xa, y). By (3.3), (3.4), and
(3.5), we have that elements of F associate and commute with the
elements of C. By Theorem 5 [8], we know that since C is auto-
morphic, q ^ 3. However, we have assumed that q > 3 and thus we
have a contradiction.

LEMMA 3.15. π cannot be both ((0), x = 0, ττ0)- αwd ((0, 0), L^, ττ0)-

Proof. Suppose π is so transitive. By the argument of (3.14)
the elements of F associate and commute with the elements of C in
π. By our assumptions we see (by the argument of (3.10)) that there
is an automorphism group of C of order q — 1 which fixes F pointwise
and is represented by t—>ta for all nonzero aeF.

Let (taj * (ta2) — thfa^ a2) + k(aly a2) in C for functions h, k: F x
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F—>F. Thus, f = th(l, 1) + fc(l, 1). Applying the automorphism
t -> to, we have (to)2==(to)&(l, 1)+ fc(l, 1). But, (ta)2 = t2oc2 = th(l,l)a* +
k(l, l)α2, so by equating vector parts of the two expressions for t2 we
have: Λ,(l, l ) ^ " 1 = h(l, 1) and &(1, l)αr 2 = fc(l, 1) for all nonzero α' e F .
But, since q> 3 this implies jfe(l, 1) = λ(l, 1) = 0 and thus that f = 0.
But this is a contradiction to multiplication being a loop.

L E M M A 3.16. π cannot be both ((0), x •=• 0, 7Γ0)- and ((<»), i/ = 0, π0)-

transitive. F = GF(4) or F = GF(5) may be exceptions.

Proof. Suppose π is so transitive. By (3.1) and (3.4) c(am) ~
(ca)m and (cm)a = c(ma) for all c, meC and for all ae F. Moreover,
(x, y) —> (##, i//S) for all a, β e F-{0} represent collineations in π.

Also, π is ((oo), a; = 0, π0)- and ((oo), y = 0, 7ro)-transitive, so C
admits automorphisms represented by t —> t + a for all ae F which
fixes F elementwise and π admits collineations represented by the
mappings:

(txL + yu tx2 + y2)
 > (t%i + yβj tχ2 + 2/2̂ )

for all βeF - {0} (see (3.9)). Since

(0, 0) - ^ U (0, 0), (1, t) -^-> (/5, ί)

then

Ύϊl 3

y = xt —-* y = x(β~ιt) .

Let yj = thiy,) + k{yx), yYeF, h, k: F-+F. Then

and hence (yβ)β-1t - ίfe^) + k(y,)β. Thus, ^(i/x)/9 = A ^ ) for y,eF
and for all nonzero β e F. Hence, k(yλ) = 0 for all yγ e F.

Since (α'/S)ί = a(βt) V α', /Sef, it follows that h(aβ) = h(a)h(β).
Moreover, h is clearly one-to-one (and hence onto) so h is a multip-
lication automorphism of F — {0}.

It is easy to see that a*t = th~l{a) (see (2.7)(e)) where * denotes
multiplication in C.

By the remarks following (2.6), the collineations (x, y) —> (xa, yβ),
a, β e F — {0} of π induce collineations in π of the following form:

{txλ + x2j tyγ + y2) —^ (tixjc) + (α?2/S), ίd/^) + (yβ))

for all a, βeF - {0} for iui? ^ e ί 7 , ΐ = 1, 2.
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Now (1, tmι + m2) —^ (β, t{mjx) + m2β), m^F, i = 1, 2, and

(0, 0) - ^ H (0, 0). Therefore

y = x * (ίmj. + m2)
 α> > y = x * (ίmj. + m2) 9 /3 * (t€ιι + m2)

= t{mγa) + m2/3 .

Since we have the full left distributive law in C it follows that

t{hrι{β)mύ + βm2 = t^a) + mβ

and hence mγ = mιah~ι(β~ι), m2 = m2. Thus,

y = x* (tm1 + m2) > y = x* (^(m^-^/S"1)) + m2) .

Let (ί5 + 7)*ί = ί/(δ,7) + flf(δ,7) for all d,jeF where f,g: Fx F-+F.
Then (£<5 + 7) * (ίmx + m2) = t(f(δ, y)m1 + δm2) + (flr(δ, 7)mx + τm2). So

(tδ + 7,

(g(δ, y)m1 + 7w2) ——• (t(δa) + 7/5,

(#(S, 7)mi + rγm2)β) .

Hence,

But,

(ί(δα) + jβ)*(t(m1ah-1(β-1) + m2) = t(f(δa,

(g(δa, Ίβ)mιah~ι{β"1) + 7/5m2) .

Equating vector parts of the last two equations,

f(δa, jβ)mιah-ι{β-'1) + δam2 - (f(δ, i)m, + δm2)a

and

flf(δα, 7/5)?n1α'fe-1(/3-1) + 7/5m2 = (gr(δ, 7)mx + Ύm2)β .

For m : Φ 0, we have :

and

for all a, βeF such that α/3 φ 0 and for all δfjeF. Let ί2

for some θ, peF (clearly pφO). Then

(t, tθ + ρ)e (y = x*f) — (ί, tθ + ρβ)e(y = x*{th~ι{β-1))
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so that t^ith-'iβ-1)) = tθ + pβ. But,

t*(th~ιφ-1)) = fh-'iβ-1) = (tθ + p)h-\β-1) = t{θh~\β-1)) + ph-\β~ι).

Hence, θ = θhrι{β-1) and ρhrι(β~ι) = <o/3. Since p ̂  0, we have
hr'iβr-1) = /3 for all /S e F - {0} and 0 = 0. So Λ, = AT1 and /(δ, 7) =
f{δa, yβ)β and #(S, 7) = g(δa, yβ)a for all nonzero a, βeF and for all
3, T G F , Letting ό = or1 and 7 = /3"1 we obtain f(ar\ β~ι) = /(I, l)β
and ^(α-1, β-1) = g(l, l)α. Let /(I, 1) - / and #(1,1) = g. Thus,

/(α, £) - fβ~\ aβ^O

f(0,β) = β-\βφθ

f(a, 0) - 0

and

g(a, β) - gar1, aβ Φ 0

^(0,/S) = 0

0(tf, o) = ̂ oα"1 where t2 = p .

(Recall t2 — p and C admits automorphisms of the form t —• to which
fix JP elementwise. Hence (to)* (to) — p which implies (ta)*t = par1.)

Now suppose that we have at least seven elements in F, choose
7 Φ 0, 1, p-1 or (/ + g)-1 if (/ + g) Φ 0. Now (to + /S) * (t + 7) = t + 1
must have a unique solution for ta + β. If a = 0 then ί/3"1 + /?7 = ί + 1
Λvhich implies 7 = 1, contrary to assumption. If /9 = 0 then (t(ay) + a-1p)
= t -f 1 which implies that 7 = /O"1, again contrary to assumption.
Thus, if we are to have a solution, aβ Φ 0. In this case, (to + β) *
(t + 7) = ^(//S-1 - αγ) + (ga~ι -f /S7) = ί + 1. So /9"1/ + 0:7 = 1 and
Λ"1^ + βΊ = l These last equations are equivalent to / + #7/3 = /3
and ^ -t- α7/5 = α. If these equations have a solution (a, β) then
{(7-1 — β), (7-1 — «.)) is also a solution. That is,

/ + (7-1 - β) Ύ (7-1 -a)=f+ 7-1 - (a + /S) +

= / + ayβ + 7-1 - {a + /9)

Also, (/ — (7-1 — ,5) 7 (7"1 — a) = 7"1 — /5. Thus, in order to insure
that we have a unique solution it follows that 7"1 — /5 = a and
7"1 — a = β so that 7"1 = α + β. If the characteristic of F is 2,
then / + aβy = β and g + ̂ /57 = α: implies that f+g — a + β^ 7~\
contrary to the choice of 7. Thus, char. F is odd and the equations
/ 4- aβy = β and # -f aβy = a are equivalent to 2/ + 2α/97 = 2/5
and 2# + 2α/Sγ = 27. Since f + g + 2aβy = a + /5 = 7"1 we have
f+g-2f= y-1 -2β or f-g + y~ι = 2/9. Similarly, 0 - / + 7"1 = 2a.
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Now / + aβy = β ) ( 4/ + (2a)(2β)y = 4/3
I if and only if \

g + aβy = a) ( 4̂ r + (2a)(2β)y = 4a:.

If a unique solution (α, /3) exists, it must be ((g — f + 7"1) 2~X

Γ

(f — 9 + 7"1) 2"1) and must satisfy the latter equations. Hence

4/ + (g - f + 7~1)(/ - 0 + 7~1)7 = 2 (/ - # + 7-1)

if and only if 2 ( / + g) - y(g - ff = T1. Thus, if x(t + y) = t + 1
is to have a unique solution for # and 7 ^ 0 , 1, /O""1, (/ + g)~ι if
f Φ — g then 7 must satisfy the equation 2(f + g) — y(g — ff = 7"1-
If 7 can take on other values, say w and Σ distinct from 0,1, p"1,
(f + g)'1 then y (g - ff + 7"1 - w (flr - / ) 2 + w-1 - J (g - ff + 2r-1..
Thus, (7 — w)(g — ff = ^~1 — 7"1 = w~ιy~ι(y — w) which implies that
(g — ff = /^~17~1. It follows that we have w1^1 = Σ~xy~ι so that
w~ι = Σ~\ contrary to assumption. Thus, we have a contradiction to-
the initial assumption and (3.16) is proved. Note that we may have
possible exceptions if F = GF(4) or GF(5).

The proof of the following lemma is routine and is left to the
reader.

LEMMA 3.17. Each ((0), y = 0, π^-collineation is represented by a
mapping of the form (x, y) —•* (x + ya, y) for some aeF.

L E M M A 3.18. π cannot be both ((<*>), x = Q, ττ0)- and ((0), y = 0, π 0 )-

transίtive.

Proof. Suppose π is so transitive. By (3.17), we have collineat-
ions in π represented by (x, y)—+(x + yoc, y). Therefore, in π_ we have
collineations : V ae F,

(tx, + x2, ty, + y2) • (tixj. + x2a) + x2, t{yx + y2a) + y2)

so

(1, t) U (0, 0) > (ta + 1, ί) U (0, 0)

.*. y — xt > ί/ = ^(ίmj. + m2)

such that (to + 1) (tmλ + m?) = t. C is automorphic since π is>
((oo), a; = 0, τro)-transitive.

Λ (to + 1) (ίmi + m2) = ί [(Λ(α, 1) - l)mx

+ (ar^ia, 1) + k(α, 1) —
where

(to) (tmL) = ίλ(α, mx)

for h, k: F x F—> F. (Note the multiplication denoted by juxtaposi-
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tion is now assumed to be that of C.)

,\ (1) (h(a, 1) — l)m1 + am2 = 1 and

(2) {orιh{a, 1) + k(af 1) - a-^m, + m2 = 0 .

Solving for m1 and m2, we have :

(3) m1 = (-ak(a, I))-1 and

(4) m2 - arι(l + (h(a, 1) - 1) k(a, l)~ιarι) .

Now

(t, t* = th(l, 1) + k(l, 1)) > (ί, ί(Λ(l, 1) + Λ(l, l)α) 4- fe(l, 1))

and

y = xt • y = x(tm1 + m2) .

(ί, ί2) e 2/ = a ί so ^ ^ + m2) = ί(fe(l, 1) + &(1, ΐ)a) + Λ(l, 1). Also

t(tm1 + m2) = ί(ίmi.) + tm2 = fm1 + tm2

)mx + m2) + k(l, l)m1 .

Equating vector components we have k(l, l)m! = &(1, 1) and

A(l, l)mx + m2 = Λ(l, 1) + k(l, l)a .

From the first equation (since A(l, 1) ^ 0) we have

(5) m1 = 1 and thus k(a, 1) = — α"1 .

Also, h(l, l)mι + m2 = Λ(l, 1) + k(l, ΐ)a implies Jfc(l, l)α = m2. By ;(5)y

Λ(l, l)a = —a. Hence,

(6) m2 = —a and (see (1)) h(a, 1) = 2 + a2 .

Therefore, y = xt—>y = x(t — a).

Let /Si = ί/(/S) + flr(/S) in C for f,g:F-+F. Since TΓ is
((oo), a? = 0,7Γ0)-transitive, c(a + m) = ca + cm for all c, meC and for
all α 6 F (see the proof of (3.2)). Applying the automorphisms t—+t + a
which fix F elementwise,

β(t + a) = (t + a)fψ) + <?(/3) = tf(β) +

Since β(t + a) = βt +βa, it follows that af(β) = βa so that f(β). = β.

Thus,

08, βt = tβ + g(β)) > (t(βa) + ^, ί(/3 + g(β)a)
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and hence (t{βa) + β)(t - a) = t(β + g(β)a) + g(β).

(t(βa) + β)(t -a) = t[h(βa, 1) - β - (βa)a] + β(βa)~1h(βay 1)

+ k(βa, 1) - β\βa)~ι - βa .

Applying (5) and (6),

(t(βa) + β)(t - α) = ί[2 + (βa)2 - β- (βa)ά\

+ β(βa)~\2 + (/9α)2) - (/3a)-1 - β\βa)~ι - βa .

Thus, equating vector parts,

2 + (βa)2 - β - βa2 = β +
and β{βa)~ι{2 + /5α)2) - (βa)-1 - β\βa)~ι - βa = ί/(yS). Therefore,
we have

(7) 0(/3) = 2a-1 + β2a - βa-1 - βa -

and

(8) g(β) = 2a-1 + β2a - (βa)-1 - βa-1 - βa .

Equating (7) and (8), we have:

(βa)-1 = βa-1 which implies β-1 = β

for all nonzero in F. Hence, β2 — 1 for all βeF — {0} so that .F =
GF(3). But this is contrary to our assumption. Hence (3.18) is
proved.

Let S(π) denote the set of point-line pairs (p, L) such that the
plane π is (p, L, π0)-transitive. In [4] we have separated semi-trans-
lation planes into types depending on the extent of (p, L, ^-trans-
itivity the planes admit (see (3.20)). A type Ti is a certain set of
point-line pairs (p, L). We shall say that a plane π is of type Ti if
and only if S(π) is exactly equal to the set that defines T{. In this
case, we shall use the notation S(Ti) = S(π).

DEFINITION 3.19. A plane of type 2\ will be said to be above a
plane of type T2 if and only if S(T2) c S(Ti).

THEOREM (Johnson [4]) 3.20. // π is a semi-translation plane of
order q2, q Φ 5 or 9 (or its dual) then π is of one and only one of
the following types:

1-la (p, Loo) e S(π) for all points p e L^ Π π0.
l-2a S(l-2a) = S(l-la) U {(p*, L) for all lines L of π0 such that

L I Poo and p^ a fixed point of LJ\.
l-3a S(l-3a) = S(l-2a) U {(p, L) for all points p e L^ Π π0 for all

lines L of π0 incident with p^}.
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l-4a S(l-4a) = S(l-la) U {(pr, L) for all lines L of πh such that
L I k, p' &L, k and p' e LTO Π π0}.

l-5a S(l-5a) = S(l-4a) U {(k, L) for all lines L of π0 such that
L I p', kgL, k, p' e L«, Π JΓO

1- lb S ( l - l b ) = S ( l - l a ) U {(p, LJ for all peπ0- L m } .
l-2b S(l-2b) = S(l-lb) U S(l-2a).
l-3b S(l-3b) = S(l-lb) U S(l-3a).
l-4b S(l-4b) = S(l-lb) U S(l-4a).
l-5b S(l-5b) = S(l-lb) U S(l-5a).
l-2c S(l-2c) = S(l-2b) U {(p«,, L) for all lines L of τr0}.
l-3c S(l-3c) = S(l-3b) U S(l-2c).
2-la S(2-la) = {(p, L) for all incident point-line pairs of π0 such

that L Ί p.* for some point pm e LJj.
2-2a S(2-2a) = S(2-la) U {(p~, L) for all lines L of π0 such that

LlpJi.
3-1 £>(3-l) = {(p, L) for all incident point-line pairs of π0}.
3-2 S(3-2) = {(p, L) for all point-line pairs of ττ0}.
Dl-la, Dl-4a, Dl-5a, Dl-ib, i = 1, 2, 3, 4, 5, D2-ja, j = 1, 2 = the

duals of the above corresponding classes.

LEMMA 3.21. π cannot be above type Dl-lb. In this case then,
π cannot be of type Dl-lb, Dl-2b, Dl-3b, Dl-4b, Dl-5b, D2-2a.

Proof. If 7Γ is above Dl-lb, we may choose coordinates (see (3.8))
so that π is ((^), x — 0, π0)- and ((oc), y = 0, τro)-transitive. But this
is contrary to (3.12). Thus, (3.21) is proved.

LEMMA 3.22. // q > 5, π cannot be above type l~5a. Thus, π
cannot be of type l-5a, l-5b or l-3c.

Proof. Suppose π is above type l-5a and is (p', I', πo)-and (k, I, ττ0)-
transitive where k 1 V and pf J T. By (3.8)(i) we can choose coordinates
so that pf - (oo) and V = (y = 0). Since k\V, p'\ I, then k = (0)
and I is (x — c) for some c e C. Hence, π is ((0), x = c, ττo)-transitive.
By (5.1) [4], ceF and (x = 0) is in the orbit of x = c under the
existing translation group. Therefore, π is ((0), x = 0, ττ0)- and
((oo), y = 0, πo)-transitive. But this is contrary to (3.16).

In the cases Dl-la, Dl-4a or Dl-5a, π is a dual semi-translation
plane but not a semi-translation plane. This is contrary to the corol-
lary to Theorem 7 [15]. Hence π cannot be of any of these types.

LEMMA 3.23. π cannot be above type l-2b. Thus, π cannot be of
type l-2b, l-3b or l-2c.
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Proof. We may choose p^ — (oo) (see (3.20) and 3.8)) so that π
is ((oo), x — 0), πQ)~ and (0, 0), L^, πo)-transitive. But this is a con-
tradication by (3.14).

LEMMA 3.24. π cannot be above type l-4b.

Proof. Suppose π is above type l-4b. Then, letting pf = (0) and
k = (oc) (see (3.20) and (3.8)), we have ((0),a? = 0, π0)- and ((0, 0), LM, πo)~
transitivity. This is a contradiction by (3.15).

By (3.13), π cannot be of type 2-la, 2-2a, 3.1 or 3-2. By (3.18),
π cannot be both ((> ), x = 0,7ΓO)- and ((0), y = 0, πo)-transitive. Hence,.
7Γ cannot be of type D2-la or D2-2a (see (3.20)).

The previous lemmas and remarks establish the following theorem
for planes of order q2, q > 5.

THEOREM 3.25. If π is a strict semi-translation plane that is
derived from a dual translation plane whose coordinate system is a
2-dimensional vector space over its kernel, then π is of one and only
one of the following types: 1-la, l-2a, l-3a, l-4a or 1-lb.

Note. The possible exception for q = 9 in [4] is excluded here
since π0 is Desarguesian.

We have stated our propositions in terms of a coordinate system*
But, given a derivable semi-translation plane π with respect to line
L, we may choose L = L^ and the set of points of the subplane πQ of
π to be the same as the set of points of x = 0 in π. And, in general,
choose the coordinate system as in (2.5) and (2.6). Thus, our results
could be stated for an arbitrary semi-translation plane.

We have given examples of planes of each of the types 1-la,
l-2a, l-3a, l-4a and 1-lb in [5].

For planes of type l-3a and 1-lb, (3.9) and (3.10) show that
aa = aa for all aeF and for all aeC. Furthermore, this shows if
a*aφ a*a for some a in F and for some ae C (the coordinate
system for the dual translation plane) then π must be of type 1-la,
l-2a or l-4a. If π is a nearfield dual translation plane of order q2

and q > 5, we have shown that π is of type 1-la if there exists an
element a e Q such that a * a Φ a * a for some aeF and of type 1-lb
otherwise.

The research discussed here was directed by Professor T. G*
Ostrom at Washington State University and this article is based on
the author's Ph. D. dissertation. The author would like to express
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his appreciation to Professor Ostrom for suggesting the problem con-
sidered here and also for his encouragement and guidance.
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