ON S-UNITS ALMOST GENERATED BY S-UNITS OF SUBFIELDS

JOHN H. SMITH
ON S-UNITS ALMOST GENERATED BY S-UNITS OF SUBFIELDS

JOHN H. SMITH

Let K/k be a finite galois extension of number fields, S a finite set of primes of K, and Φ a set of intermediate fields. We assume that S and Φ are closed under the action of $G(K/k)$ and that S contains all the archimedean primes. This paper determines conditions under which the S-units of fields of Φ “almost generate” those of K (i.e., generate a subgroup of finite index).

Let U be the S-units of K and U' the subgroup generated by S-units of fields in Φ. For any subgroup, H, of G, let χ_H be the character of G induced by the trivial character on H and let M_H be the corresponding $C[G]$-module.

Theorem 1. U/U' is finite if and only if every irreducible $C[G]$-module, M, which occurs in some $M_{H(\psi)}$, $\psi \in S$ also occurs in some $M_{J(F)}$, $F \in \Phi$. (Here $H(\psi)$ denotes the splitting group of the prime ψ and $J(F)$ the group of automorphisms fixing the elements of F).

Proof. U/U' is finite if and only if $U \otimes C = U' \otimes C$. But we know the structure of $U \otimes C$ (see, e.g., p. 10 of [1]). If θ is the sum, over all conjugacy classes of primes of S, of $\chi_{H(\psi)}$, and $N = U \otimes C$ then the character of N is $\theta - \chi_{G}$. Hence, except for components with character χ_{G}, the components of N are those and only those which occur in some $M_{H(\psi)}$, $\psi \in S$.

Now U' is generated by those elements which are invariant under some $J(F)$, $F \in \Phi$. So U/U' is finite if and only if N is generated by such elements, which of course is the case if and only if each irreducible component is so generated. Such a component, N', is so generated if and only if it has a nontrivial element fixed by some $J(F)$. By Frobenius reciprocity this is equivalent to saying that N' occurs in some $M_{J(F)}$.

Corollary 1. If for every $\psi \in S$ there is an $F \in \Phi$ such that ψ does not split at all from F to K then U/U' is finite.

Proof. In this case each $H(\psi)$ contains some $J(F)$.

2. In this section we suppose that every irreducible character
of G occurs in some $M_{H(\beta)}$, $\beta \in S$ (for example, if k has a complex prime or K has a real one.)

Corollary 2. Let Φ be the set of all proper subextensions. Then U/U' is infinite if and only if G admits a fixed point free (complex) representation (i.e., one in which only the identity has eigenvalue 1).

Proof. Clear.

Remark. Groups admitting such a representation are fairly special, the only familiar ones being the cyclic groups, certain metacyclic groups, and $\text{SL}(2, 5)$. A complete classification is given in [3].

Corollary 3. Let G be abelian and let Φ consist of cyclic subextensions. Then U/U' is finite if and only if every maximal cyclic subextension belongs to Φ.

Proof. Clear.

Theorem 2. The S-units if K of degree $\leq m$ over k generate a subgroup of finite index in U if and only if every irreducible (complex) representation of G factors through a transitive permutation representation on at most m symbols.

Proof. We let Φ be the set of all intermediate fields of degree m. Then the first condition is equivalent to the finiteness of U/U', which is equivalent to the occurrence of each irreducible representation of G in some $M_{J(F)}$, $F \in \Phi$.

Now the representation afforded by $M_{J(F)}$ factors through the action of G on cosets of $J(F)$ by translation, hence any component of it factors through permutations on $[G: J(F)] = [F: k] \leq m$ elements. Conversely if a representation φ factors through a transitive representation on a set Ω, $|\Omega| \leq m$, let $J \subset G$ be the stabilizer of a point of Ω. Then the action on Ω is equivalent to translation of the cosets of J, which gives rise to the character χ_j. Since φ, restricted to J, has a fixed point, φ occurs in χ_j by Frobenius reciprocity. Clearly the field F, corresponding to J, has degree $[G: J] \leq m$.

Remark. For $m = 2, 3, 4$ (but not higher) the above condition is easily seen to be equivalent to the assertion that every irreducible representation factors through S_m.

Since explicit algorithms are available for finding units (in fact fundamental units) in quadratic and cubic extensions of Q (see [2]) we mention the following example.
THEOREM 3. The S-units of degrees 2 and 3 over k "almost generate" the S-units of K if and only if G is of one of the following forms:

1. G abelian of exponent 2 or 3
2. G has an abelian subgroup, A of exponent 3 such that A is of index 2 and G/A acts on A by inversion.

Proof. It is easy to check that all irreducible representations of groups of the above forms factor through S_3. Conversely suppose all the irreducible representations of G factor through S_3. Then the same is true of quotients of G, and, by Frobenius reciprocity, of subgroups. In particular all elements are of orders 1, 2 or 3. This takes care of the abelian case.

If G is not abelian, let φ be any irreducible representation of G'. If ψ is an irreducible component of the induced representation of G then the restriction of ψ to G' contains φ by Frobenius reciprocity. Since ψ factors through S_3, φ factors through S_3. Hence G' is abelian of exponent 3. Since G/G' is abelian it is abelian of exponent 2 or 3. If it is a 3-group, so is G, but then, since all irreducible representations of G factor through the 3-Sylow subgroup of S_3, G itself would be abelian. Hence G/G' is of exponent 2. The action of G/G' on G' gives an ordinary representation of G/G', which can be diagonalized. If G/G' had more than one generator some element of order 2 would commute with an element of order 3, giving an element of order 6 which is impossible. Hence $G/G' \cong \mathbb{Z}/2\mathbb{Z}$ and the action on G' is inversion.

REFERENCES

1. E. Artin and J. Tate, Class field theory, Benjamin, 1968.

Received February 10, 1969.

BOSTON COLLEGE
Richard Hindman Bouldin, *The perturbation of the singular spectrum* 569
Hugh D. Brunk and Søren Glud Johansen, *A generalized Radon-Nikodym derivative* ... 585
Esmond Ernest Devun, *Special semigroups on the two-cell* 639
Murray Eisenberg and James Howard Hedlund, *Expansive automorphisms of Banach spaces* ... 647
Frances F. Gulick, *Actions of functions in Banach algebras* 657
Douglas Harris, *Regular-closed spaces and proximities* 675
Norman Lloyd Johnson, *Derivable semi-translation planes* 687
Donald E. Knuth, *Permutations, matrices, and generalized Young tableaux* ... 709
Herbert Frederick Kreimer, Jr., *On the Galois theory of separable algebras* ... 729
You-Feng Lin and David Alon Rose, *Ascoli’s theorem for spaces of multifunctions* ... 741
David London, *Rearrangement inequalities involving convex functions* 749
Louis Pigno, *A multiplier theorem* ... 755
Helga Schirmer, *Coincidences and fixed points of multifunctions into trees* ... 759
Richard A. Scoville, *Some measure algebras on the integers* 769
Ralph Edwin Showalter, *Local regularity of solutions of Sobolev-Galpern partial differential equations* 781
Allan John Sieradski, *Twisted self-homotopy equivalences* 789
John H. Smith, *On S-units almost generated by S-units of subfields* 803
Masamichi Takesaki, *Algebraic equivalence of locally normal representations* ... 807
Joseph Earl Valentine, *An analogue of Ptolemy’s theorem and its converse in hyperbolic geometry* 817
David Lawrence Winter, *Solvability of certain p-solvable linear groups of finite order* .. 827