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DECOMPOSABLE SYMMETRIC TENSORS

LARRY J. CUMMINGS

A k-field is a field over which every polynomial of degree
less than or equal to k splits completely. The main theorem
characterizes the maximal decomposable subspaces of the kth

symmetric space \/k V, where V is finite-dimensional vector
space over an infinite /ofield. They come in three forms:

(1) {Xί V V xk: xk e V}, xu , Xk-i fixed
(2) <Λ, b}k = {xι V V xk: Xi e <Λ, &>} and
(3) {Xί v V Xk-r V <α, 6>(r')}> «i, * , »*-r fixed;

where α and b are linearly independent vectors in V and
<α, by is the subspace spanned by a and 6.

We consider symmetric tensor products of vector spaces and the
problem of characterizing their maximal decomposable subspaces. This
problem has been resolved in the skew-symmetric case by Westwick
[4] using results due to Wei-Liang Chow [1, Lemma 5] when the
underlying field is algebraically closed with characteristic zero.

A k-field is a field F over which every polynomial of degree at
most k splits completely. In this paper we determine the maximal
decomposable subspaces in the symmetric case when the underlying
vector space is finite-dimensional over an infinite &-field whose char-
acteristic (if any) exceeds the length of the product.

1* Let F be a field and V a vector space over F. The fc-fold
Cartesian product of V will be denoted by Vk where 1 < k. A rank
k symmetric tensor space is a vector space together with a fe-multi-
linear symmetric mapping σ which is universal for ^-multilinear sym-
metric maps of Vk and is spanned by σ(Vk). We will use the nota-
tion \/kV for this space. (The anti-symmetric or Grassman space is
usually denoted by AkV )

If V\V with σ: Vk —*\fkV is a symmetric tensor space, the
decomposable symmetric tensors or "symmetric products" are those
elements of VkV in the set σ(Vk). We will denote σ(xLί •• *,xk) by
#i V V%. A subspace S of V^^ is decomposable if S £ σ (Vk).
Trivial decomposable subspaces are the zero subspace and those consist-
ing of scalar multiples of a single product. The factors of the product
Xι V V xk are the 1-dimensional subspaces <( x1 y, , <( xk y of V.

If V is ^-dimensional, it is well-known that \f kV is vector space
isomorphic to the space of homogeneous polynomials of degree k over
F [3, p. 428]. Any linear mapping f:V—>V induces a unique linear
mapping V*/ : VkV-^VkV obtained by extending the mapping
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66 LARRY J. CUMMINGS

/* : Vk ~> yk V defined by fk(xt, . . . , xk) = f(x,) V V f(xk). This
mapping will be denoted by simply V/ when the length of the pro-
duct is not in question.

PROPOSITION 1. If x and y are decomposable symmetric tensors
with k-1 common factors (counting repetitions), then x + y is decom-
posable.

Proof. The mapping σ is multilinear.

If U is any subspaces of V and xί9 , % vectors of V then
{a?! V V xk V u I u e U} is a decomposable subspace of yk+1V and
will be denoted by xx V V xk V U. Clearly,

x, V V xk V U S Xι V V xk V F

Decomposable subspaces of the form xλ V V %-i V F will be called
type 1 subspaces.

2. L e t a; b e a p r o d u c t xx V Va?* in σ ( F A ) . I f W G F t h e n
w V a? d e n o t e s t h e p r o d u c t w V x1 V V xk in σ ( F f e + 1 ) .

PROPOSITION 2. If D is a decomposable subspace of \fkV then
w V D is a decomposable subspace of \/k+1V.

Proof. We will show that if x + y = zeσ(Vk) and we V then

Define an injection i : Vk —> F f c + 1 by

The universal property of \fkV implies there is a unique linear
/ : VkV-*yk+1 Fsuch that

f(x1 V V xk) = w V ajx V V xk .

The desired result follows because / is linear.

>V*+iF

Clearly / is injective. Moreover the image of a decomposable
subspace of \f kV under / is decomposable.
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PROPOSITION 3. xγ V V xk = 0 if and only if some Xi = 0.

Proof. Suppose xίf , % are nonzero vectors. Choose any
basis (ei)iβl of V over a field F. For each α?< assume the p^ coor-
dinate to be nonzero. Let p — (p19 , pk). Define a multilinear and
symmetric mapping fv: Vk —> F by

fP (%i, » %) = oc (1, ̂ ) α(&, pjfc)

where each vector xi has coordinates (cc(iyj))jeI. Then /„(&!, •••,%)
is nonzero and since fp = σ o / p, where / p is the extension of f9 to
V& ^> ^i V V xk could not be zero.

Since a is multilinear ^ = 0 for some i — 1, •••, & implies
a?i V V xk = 0.

Sfc denote the set of k ! permutations of {1, •••,&}.

PROPOSITION 4. Le£ V he an n-dimensional vector space. The
identity

xγ V V xk = Vi V V yk Φ 0

if and only if there is a πeSk and scalars \, •• , λ Λ s^cΛ

λi λ2 Xk

 = 1

and Xi = λi 2/ff(ί) i = 1, , k .

Proof. This is a result of the fact that the rank k symmetric
tensor space is isomorphic to the kth component of the polynomial
algebra in n indeterminants over F [3, p. 428]. The latter is a unique
factorization domain.

In what follows we will suppose x — xλ V V xk and y = yι

V V yk are independent products such that x + y is decomposable,
say x + y = zL V V zk. We will often use the assumption that x
and y are nonzero products without explicit mention. The subspace of
V spanned by the vectors x19 •• yxk will be denoted [x] and its dimen-
sion by I x I. For notational convenience we set

x n y = [x] n

α? U y = [#] +

If S is a subspace of V then jS(Jfc) is the set {xλ V V xk \ Xi e S}. In
general S(fc) is not a subspace. If U is a subspace of \f kV then the
one-dimensional subspace <v> of F is a factor of J7 if

C/g'y V F V V F .
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We will frequently denote a repeated product U V V U by Ulk).

REMARK. If x + y = z it is always true that [z] S a? U y. For,
if some Zi$x \j y and S is a basis of x \J y we may choose / e L
(V, V) so that

f%) = 0

/(δ)=& 6eJ5.

Then, x -\- y — (V/) 2; = 0, contradicting our standing assumption
that x and y are independent.

PROPOSITION 5. If B is a basis of [y] and there are i,j such
that B [J {Xi, Zj} is an independent set then x and y have a common
factor.

Proof. Choose feL(V, V) so t h a t

f(b) = b beB .
Then,

/fo) V V Xi V V /(%) - - y, V V yk .

Proposition 4 now implies <$*> is also a factor of y.

PROPOSITION 6. If x and y have no common factors and [y] §£ [x]
then for all i = 1, , k

ytΦ [x] and z^ [x] .

Proof. Let ys$[x]. If 2? is any basis of [x] we may complete
the independent set B U {#,•} to a basis of V. Consequently there is
feL(V, V) such t h a t

f(b)=b beB.

If some £i G [ x ] we have

^ V V xk = /&) V V Zt V V f(zk) .

Proposition 4 implies ζz{y is then a factor of x. The choice of any
geL(V, V) with ker # = <^> together with Proposition 4 shows
<£;> is also a factor of 2/. We have shown that if x and y have no
common factors then no Zi£[x].
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Choose some zi and complete the independent set B U •{«*} to a
basis. Define heL(V,V) by

h (z<) = 0

hφ) = b beB.

Then

xx V V xk = - &0/i) V V Ml/*)

and we obtain a common factor whenever some ^ e[a;] since then

PROPOSITION 7. // £ is α ^ basis of [y] and for some i and j
β U fe, Xj} ^ αw independent set then x and y have a common
factor.

Proof. Choose feL(V, V) such that either /(«*) = 0 or / ( ^ ) = 0
and /(&) = δ for every 6 e J?. Then

ϊ i V V » t = / ( ^ ) V V /(«*) .

If some s 4e [̂ /] then it is a common factor. Assume no Zte[y]. We
claim one of the following is the zero subspace:

[y] ίΊ <xt, «!>

[»] Π <α?y, ̂ > .

Por, if both are nonzero there are scalars α, /3 such that

z1 = αα?,- + 2/' = /βa y + 7/" where 2/', y" e[y] .

Hence,

Since zx ί [2/], both α and /9 are nonzero. But this violates the
hypothesis. If [y] Π <«*, z^ = 0 we apply Proposition 5 to 5 U {α;<, ̂ }
and conclude x and 2/ have a common factor.

3* F is a fc-field if every polynomial over F of degree at most
k splits completely over F. Let Lfc denote { x e V ^ : \x\ = 1}. Lfc

is composed of all products axx V V xt where ae F, xte V. If F
is a fc-field then in particular

ax1 V V Xi = (&ίlk ^ ) V V (allk xλ) .

However Lk need not be a subspace unless k — pr where r is a positive
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integer and p is the prime characteristic of F. That it is a subspace

in this case is apparent because ί^M for m = 1, •••, pk — 1 and so

xλ V V x1 + y1 V V 2/1 = (xι + yx) V V (xλ + yj .

PROPOSITION 8. If F has prime characteristic p and k = pr, r a
positive integer, then dim Lk — dim V.

Proof. Under these conditions it is not difficult to show that
xl9 •••,#« are linearly independent in V if and only if x1 V V x19

• y %m V V xm are linearly independent in Lk.

PROPOSITION 9. Lk is a decomposable subspace if and only if
F has characteristic p and k = pm, m a positive integer.

Proof. We have seen that this condition is sufficient. If u, v are
independent vectors in V then u{k) = u V V u, v{k) = v V V v
are in Lk and part of a basis for \/kV by Proposition 8. Since Lk

is decomposable there is a nonzero scalar 7 and vector w such that

The remark preceeding Proposition 5 implies there are scalars α, β
such that w = au + βv. By induction,

k 1 I fv \ Ir 1 \ /

1

+ βk v(k) .

Since the products u{k-r) V v(r, are part of a basis of yk V we obtain

7ί k \ak~r βr = 0 r = 1, .-., fc-1 .

Because both α and /3 are nonzero ak~r βr is and so

k\ . 1 = 0 r = 1,
r /

Hence F has characteristic j> and

fc ' r = 1,
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It is not difficult to show that this implies k is a power of p.

4. If a and b are two independent vectors in V then the set
{xι V V xk I Xi e <α, by\ is denoted by <α, ί>>(&). Let F [a] denote the
polynomial algebra in one variable over F and define a linear map-

*ping g : <α, hy~+ F[a] by #(α) = α, #(&) = 1. // / : F—><(α, 6> is a
projection on <α, δ> then V&^°/ : V f c ^ - ^ ^ M is a linear mapping
obtained by extending (g ° f)k: Vk —>F[a] defined by

v,eV.

If

is

(2

any

)

element of

(V

(go

<α,

fkg

f)

o f

k(vlf •••,<

(&) then

It = 70 + 0

ttt-i) V δ

The equality (2) implies that the restriction of \/k g of to <α, 6>(r)

is a linear isomorphism onto i*7 [a] which preserves "products", i.e.,
a decomposable tensor corresponds to a product of k linear polynomials.

PROPOSITION 10. F is a k-field if and only if each <(α, hy{k) is a
decomposable subspace of VkV.

Proof Assume F is a ά-field. If x and y are products in
<(a, bylk) let P(a) — (\/kg°f) (x + 2/). There are elements r» in F
such that P(tf) = ro(a — r j (a — rk). Consider

z = ro(a — τλb) V V (a — rk b) e<α, 6>(A;) .

Clearly, P(α) = Vfc(# °/)^ which implies x Λ- y — z because the res-
triction of V\ΰ ° f to ζa,K){k) is injective. Therefore <α, 6>(fc) is de-
composable.

Conversely if <(α, 6)>(A;) is decomposable and

P(#) = 70 + 7! α + + Ύka
ke F[a]

then (2) implies P(a) = (Ykg°f) t for some teζa,by{k).
But ί is a product, say

ί = (λi α + ft 6) V V (λ& α + μk b) .

Hence

P{a) = (λx + ft α) (λA + ft α) .
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LEMMA 11. // F is infinite and <x,yy^σ(Vk) then \ x \ > 2
implies x and y a common factor.

Proof. Assume xl9 x2, x^ are independent and are contained in a
basis B of V. For every Xe F there is a product z(X) = ^(λ) V V
zk(X) such that x + Xy = z(X). Define three linear mappings of V by

fi (Xi) = 0 i = 1, 2, 3 .

/(δ) = be B - {a?!, &2, 3̂}

Extending each mapping to \/kV we obtain for each XeF:

( 3 )

If (3) is zero for some i we infer from Proposition 3 that fi{y$) = 0
for some j = 1, •••, k. This means that (x^ = < .̂)> is a common
factor of a? and y. For each λ, the vectors ^(X), •• ,2Λ(,\) may be
chosen so that (3) and Proposition 4 imply

( 4 ) / id/i)=/i(«iW) i = l, . . . , & .

Let ^(λ) and ^ have coordinates (α ί δ (λ) :be B) and (/Siδ: be B) res-
pectively. For each λ e ί 1 (4) implies

( 5 ) ajb(X) = βjb bΦxγ.

If i = 2 then (3) and Proposition 4 implies for each λ e ί 7

where TΓ G Sfc and the Cj(λ) are scalars such that Π*=J C§ W = l
Therefore,

( 6) ajb(X) = Cj(X) βrΛj)b bΦx2 j = 1, . . . , k .

If for some j , ajb (λ) = 0 for every b Φ X2 then (zky = (x2y is a
common factor of a; and z (λ) hence a common factor of # and y.
Accordingly, we may assume for each j there is a basis element
b(j) Φ x2 such that βπijmj) Φ 0. If for some j b(j) Φ x, as well, then
(5) and (6) imply

On the other hand, suppose b(j) — x1 for some j and βπ{j)b = 0
for all b distinct from x1 and x2. From (3) with i = 3 we obtain

( 8 ) ajb(X) = dj(X)βωU)b j = 1, ...,k.

where ωeSn and the ^(λ) are scalars such that Πi=i ^ (λ) = 1.
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Were βωίi)X2 = 0 then <X(λ))> = <^> would be a common factor of x
and z(X), hence a factor of y as well. If βω{j)Z2 Φ 0 then (5) together
with b == x2 in (8) imply

( 9 ) dj(X) = /3jX2β-lί)X2.

From (5) we know t h a t for any Xe F all coordinates of z(λ)
except b = x1 are in the finite set Cx = {βjb:j = 1, •••,&; δ e J3}. For
each i = 1, , k we have from (6)

(10) ajXι(X) = c^X) βrΛj)Xι

and from (8) we obtain

Now if δ (i) =£ ̂  then (7) and (10) imply

and if b (j) = ^ then (8) and (9) imply

We conclude that for any Xe F the coordinates of each zs(λ) are
contained in the finite set

k l U \Hjb(j) Hπtf)b(j) Pπ(j)x1y Hjχ2 Hω(j)x2 βω{j)xι J = = -*-» ' * *> ^} .

Accordingly, the number of vectors Zj(X) is finite and there are only
a finite number of distinct products z(X) = ^(λ) V V ^(λ). But
F is infinite. Hence there are distinct scalars λ, λ' such that
x + Xy = x + X'y which implies y = 0. This contradicts our stand-
ing assumption that # and y are nonzero products and completes
the proof.

We need the following lemma in order to prove Theorem 13.

LEMMA 12. Let V be a finite-dimensional vector space over a
field F and ^ any collection of proper subspaces of V. If V = [J ^
then Card F ^ Card £f.

Proof. When άivciV — 1, V has no proper subspaces and the con-
clusion is vacuously true.

If blf - *,bn is any basis of V denote the (%-l)-dimensional sub-
space <ό15 , δ%_2? 6W-1 + Xbn} by Sλ, where λ is a scalar. Then Card
{Sλ: Xe F) = Card F. For, if Sλ = Sx, then in particular

bn^ + Xbn = aA + + ^._2 bn_% + α : ^ (δ._1 + λ' bn)
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for some scalars alf , an^. Thus a{ = 0 for i = 1, , n — 2. and
αw_! = 1 which implies λ = λ'.

Consider <&x = {Sλ h T: Te £f}. Because F = U i f we have
S* = U ^λ- The set mapping from i f to <g=7 defined by T-»SλΓ) T
is onto. Consequently, Card Cλ ^ Card ^ . Since d i m ^ = ^ —1 in-
duction yields Card F ^ Card ^ , completing the proof.

If D is a decomposable subspace of V A ^ and V G F then Z>(v)
denotes {teD\ζv} is a factor of t}. Any Z>(Ί;) is a subspace of D
and is the zero subspace when v is a factor of no product in D. A
nontrivial decomposable subspace can have at most k-1 factors. We
have already remarked that any decomposable subspace with exactly k-1
factors (counting repetitions) is contained in a type 1 subspace. At
the other extreme we have :

LEMMA 13. If V is finite dimensional over an infinite k-field
either without characteristic or with characteristic p > k then the
only maximal nontrivial decomposable subspaces of \f kV without
factors are those of the form <α, by(k).

Proof Let D be a maximal decomposable subspace without
factors. If Char F = p then Proposition 8 and p > k imply Lk is
not a subspace. Thus, we can assume D Φ Lk; i.e., D contains at
least one product x with \x\> 1. We proceed by showing first that
D cannot contain a product x with | x \ > 2 :

Assume, on the contrary, that x = x1 V V xk is such a product
of D.

For every product yeD we have (x, yysDS σ(Vk). Lemma 11
implies each nonzero yeD must have a factor in common with x.
Hence D = U*U ^fe)> where each D(xi) must be a proper subspace
since D is without factors. Since V is finite-dimensional Lemma 12
implies Card F < k, contrary to hypothesis. Accordingly | x \ <Ξ 2 for
every xe D. Since D is not Lk, D contains a product x with \x\ =2.
In what follows we suppose xiy x2 are independent.

Were yeD and | y | = 1 then y = ayt V V yx. \ί y1<t [x] Pro-
position 7 implies a? and y have a common factor and so yιe[x], a
contradiction. Therefore [y] S [^] for every ί/Gΰ with |s/| = 1.

Suppose yeD, \y\ = 2 but [T/] g [#]. The rest of the proof is
in two parts and we consider first such y with no factors in common
with x:

Complete xιyx2 to a basis B and define feL(V, V) by

(11) f{Xi) =x, i = 1, 2

/(δ) = A δ e B - {xl9 x2} .
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Were (VF)y ~ 0 then some yiG[x], contrary to Proposition 6. If

Γ = l then

(12) ax, V V x, + βfivd V V f(yk) = (YF) z =£ 0

would imply (as in §3) that the underlying field has characteristic p
and k = pr for some prime p and positive integer r, contrary to
hypothesis. (If (yF)z = 0 then some ^G [x], again contradicting Pro-
position 6.) The remaining alternative is \(VF)y\ = 2. Since we are
assuming x and y have no common factors, (12) and Proposition 7
imply for some i — 1, — , k

(13) <<*> = </(»*)>..

But (11) and (13) imply 2/<e"[a?],. a contradiction of Proposition 6
again.

It remains to consider those y e D with ' | # | = 2 which have fac-
tors in common with x. If for such y, [y] Φ [x] then xf)y is 1-
dimensional. Let x Π y = ζuy and assume <u)> occurs at least r times
as a factor of both a? and y. Consider the products

X = #! V * * V %-r

»=l/iV-V 2/jb-r

in σ(F&~r) We may suppose that x and ^ have no common factors.
Since x + yeσ(Vk) and iterations of the mapping / in (0) are also
injective we have x + ye σ(Vk~r). If either | x \ = 2 or | y \ = 2 then
Lemma 10 implies

(14) [x] s [y]

or [gr] S [»] .

Either statement in (14) implies [x] = [y].
If \x\ = \y\ = 1 then either [^] = [y] or ίc Π y = 0. We will

show ίc Π ̂  — 0 is contradictory:

Let x = ax, V V x, = (tf1/r ^) V V (α:1/r ^)

y =βyιv "Vyί = (βllryd V v (/31/ryt).

This is possible since F is an r-field for every positive r ̂  k.
Replace u and v by α17*1^ and β1/rw1 in (1). Then Char F is a prime
p and r = pm for some positive integer m. But by hypothesis
p> k> r, 2L contradiction.

We conclude [2/]ε[ft] in all cases. Thus, DQ<(a,by(k) where
{α, b) is any basis of [x]. Since D was assumed maximal the proof
is complete.
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THEOREM. If V is finite-dimensional over an infinite k-field F
either without characteristic or with characteristic p > k then the
maximal nontrivial decomposable subspaces of \fkV are:

( i ) type 1 subspaces
and for every independent pair of vectors α, b in v :

( i i ) <α, b}(k)

(iii) α?! V V xk-r V <(α, δ)>(r) where xt $ <(α, δ̂> /or e^βr^/ i = 1, ,

k — r and 1 < r < k.

Proof. Lemma 13 states that the only decomposable subspace
without factors are those of the form (ii). The image of a decom-
posable subspace under the mapping / in (0) is a decomposable sub-
space with at least one factor. Iterations of / in (0) yield decom-
posable subspaces in spaces of greater length. Thus, when F is a
ά-field, <α, by{r) is a decomposable subspace of \f rV for every 1 < r < k
and subspaces of the form

Xi V V xk-r V <α, 6>(r)

are decomposable. If %_r, say, is in <(α, by then

»iV V %-r V <α, 6>(r) § ^ V V xk-r-i V <α, 6>(r+1, .

Accordingly, subspaces of this type could be maximal only when
Xi $ <̂ α, by for each i = 1, , k — r.

Conversely, if a decomposable subspace has exactly k — r factors
it is the image of a decomposable subspace of V W without factors
under a composition of k — r mappings / in (0). Lemma 13 states
that subspace must be of the form ζa, by{r). Hence (ii) and (iii) are
the only types of decomposable subspaces with factors.

Routine arguments show that a space of one type cannot be
properly contained in another of the same type or a different type.
Since every decomposable subspace is contained in a maximal decom-
posable subspace the proof is completed.

Part of this work was contained in the author's thesis written
under R. Westwick at the University of British Columbia. The aut-
hor is indebted to conversations with B. N. Moyls.
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