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Various attempts have been made to place convexity in an
axiomatic setting, Recently J. Eckhoff has considered the
classic theorem of Radon in several different seitings, Most
of his work is done in what we call an Eckhoff space, i.e., in
a finite product of euclidean spaces where convex sets are de-
fined as the cartesian products of usual convex sets in each
component space, The purpose of this paper is to investigate
the closely related theorem of Caratheodory and its generaliza-
tions in this setting,

The papers of F.W. Levi [5] and Dauzer, Grunbaum, Klee [3]
have various approaches to axiomatic settings of convexity, and a
good bibliography for before 1961. See the papers of Eckhoff [4] and
Bonnice-Reay [2] for more recent results and references.

1. Eckhoff spaces. The pair (¥, &) denotes an Eckhoff space
provided (1) F is a direct cartesian product E = [[~, E; where each
E,; is a d,dimensional euclidean space with &, the family of all convex
sets of E;, and (2) & = {[[~. 4, : A; € &} is the family of all product-
convex sets in E. For any set XCF, the set B(X) = N{4: XCAe ¥}
is called the product-convexr hull of X. Let 7,:FE — E; denote the
usual projection. Then we can congider £ as a linear space of di-
mension d = 3%, d;, and E(X) = [, (conv 7,X) where conv B denotes
the usual convex hull of B in each euclidean space E;. The cardinality
of B will be denoted by |B|. Using the notation of Bonnice-Klee [1]
and others, we say that int, B is the set of all points p for which
there exists an r-dimensional simplex contained in B and containing
p in its relative interior.

2. Caratheodory-type theorems. By a Caratheodory-type theorem
we mean a result which asserts that if a point is embedded in the
(axiomatically defined) hull of a set X, then it is similarly embedded
in the hull of a sufficiently small subset of X. Note that the case
7 = 1 of Theorem 1 below is the result usually called Caratheodory’s
theorem.

THEOREM 1. If X is any subset of an Eckhoff space E = [[. E;
of dimension d = Xd; and if pe E(X), then pe E(Y) for some YCX
with |Y|=d+ 0, where 6 =14f n=1 and 6 =0 1f n>1. Fur-
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thermore, if m = |Y| is the cardinality of a smallest subset Y of X
for which pe E(Y), then peint, E(Y) where

max (0, m — n) < r = (m — |{d;: d; = m}| + Zdi<mdi .

Proof. If m =1 the upper and lower bounds on ¢ reduce to r =
m — 1, that is, p lies interior to the (m — 1)-simplex determined by
the m points of Y.

Assume n = 2. It suffices to show that there is a set YcX for
which |Y|=d, +d,=d and mpeconvr,Y for ¢=1,2. Applying
Caratheodory’s theorem to E,, there is a subset Y,cX with |Y,| <
d, + 1 for which m,p econvx,Y,. Now if 7,p € conv 7,Y, as well, then
pe E(Y,) and we are done. Otherwise choose a set Y,CX of minimal
cardinality such that z,p € conv7,(Y,UY,). Since we may choose one
of the d, + 1 points of Caratheodory’s theorem arbitrarily (see [6],
Lemmas 4.1-4.4) it follows that |Y,| < d,. Thus letting Y= Y, UY,
it follows that pe E(Y) and |Y| < |Y, |+ | Y. & d, + d, + 1. We are
therefore done unless both |Y,| =d, + 1and |Y,| = d,and Y, NY, = &.
In this case we will show that one correctly chosen point may be re-
moved from Y,UY,.

Case 1. mpeconvr,Y,. In this case we reverse the roles of F,
and E, in the above argument, i.e., let Y, be as above and redefine
Y, to be a set of minimal cardinality so that 7,p ¢ conv (Y,U Y,). Then
|Y,|=<d, and |Y,|=d, and pec E(Y,UY)).

Case 2. mp¢convr,Y,. In this case |Y,| = d, so for each point
ye Y, it is true that z,p ¢ conv 7,({y}U Y,). Thus some point of =, Y,
in the space E, may be used to replace a particular point of Y,, say
9. Then 7peconvr(Y,U(Y, — {#}) and it is still true that m,pe
conv 7,((Y, — {y,)) UY,). This establishes Case 2, and hence proves
the first statement of the theorem if n = 2.

The case when % = 3 now follows easily. As in the case n = 2 there
exists a set Y, U Y,C X for which m;peconvrm,(Y,UY, for + =1, 2 and
| YUY, <d, +d,, For each ¢ = 3 there is a set Y, C X, by Caratheo-
dory’s theorem in E;, such that | Y;| < d; and 7;p € conv (Y, U Y, U Y7).
The set Y = |J~, Y, then has the desired properties; pec E(Y) and
Y| < 32,d; =d. This establishes the first half of the theorem.

To prove the last statement, let YcX be a smallest subset for
which p € E(Y) and suppose | Y| = m. Then for each ¢, 7;p € int,; conv
;Y for some largest nonnegative integer 7(¢) < d,, and peint, E(Y)
where 7 = >», r(i). It follows that » assumes a minimal value
whenever each 7(7) is as small as possible, within the constraint | Y|=m.
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This is achieved when the points of Y are used as “inefficiently as
possible”, specifically, when for some partition Y= Y,U---UY, we
have 7m;p econv 7, Y; and the points of 7,(Y ~ Y,) are not used in E,.
For example, if (Y ~ Y;) is a single point in E; then the points of
7w;Y are the vertices of a simplex in E; of dimension |Y;|, and z;p is
interior to the subsimplex convm;Y,. In any case, Caratheodory’s
theorem (case » = 1) implies that »(4) = | Y;| — L. Thus » = 7)) =
(ZY;)) — n =m — n, and in general » = m — n. The other inequali-
ty on 7 follows from the fact that the m points of Y projected onto
each space E; can have a convex hull of dimension at most min (m—1, d,)
in E,. This proves Theorem 1.

ExampLES. The following examples show that the bounds in
Theorem 1 cannot, in general, be improved.

(1) For each ¢ =1,2, -+, n, let X; be a subset of E; for which
X;U{0} form the vertices of a nondegenerate d,i-simplex, and let p;
be in the relative interior of the simplex conv X;. Define pe & by
the relations 7;p = p;. For each point #; in each get X, define the
point Z%; € E by the relations 7%, = x; and 7,;#; = 0if 7 == 7. Let XCF
be the set of all such points Z;. Then clearly p < E(X), but »¢ E(Y)
for any proper subset of Y of X, and |X| = X|X;| = 2d;, = d. Fur-
thermore p €int, E(X) where

r=X(X;| - =|X|-n=m—mn.

(2) As a second example, let m be any integer for which 1 <

m<max{d;+1:2=1, ---, n}. For each subspace E, if m <d;, +1
let {x;;}7., be the vertices of a nondegenerate simplex in E, If
m>d; + 1let {x;;:5 =1, .-, d; + 1} be the vertices of a nondegenerate
simplex, and let «;, ==x;; for j=(d; +2), ---, m. In either case

choose a point p; in the relative interior of this simplex. Now define
pe E by the relations 7;p = p; and let X = {z;},CE where each «;
is defined by 7x; = #;; € E;. Then |X| = m and pec E(X) but p¢ E(Y)
for any proper subset Y of X. Also pecint, E(X) where

r=(m—HH{d;:d; =2 m}| + X4 <nd; .

The case where n = 1 and » = d in Theorem 2 below is commonly
called Steinitz’s theorem.

THEOREM 2. If X is any subset of an Eckhoff space E = [, E;
and 1f r=0 s the largest tinteger for which p<cint, E(X), then
peint, E(Y) for some subset YC X with | Y| < 2r + 0 where 0 is the
number of spaces E; for which mwp ¢ int, conv 7, X.
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Proof. Let 7(7) be the largest integer for which 7;p € int,,convr, X.
Thus r = 3r(7). By the Bonnice-Klee theorem (see [1], Th. 2.5) and
the maximality of »(7) there is a subset Y; of X for which m;p € int,,
convr,Y; and |Y;| < 2r(7) if r(4) > 0, and |Y;| =1 if (1) = 0. Thus
letting ¥ = U, Y; we have peint, E(Y)and | Y| = |UY;| = 2|Y,;| <
23,502 + Ziriy=gl = 2r + 6. This proves Theorem 2.

Using the techniques from the examples given above, it is easy
to construct sets X in Eckhoff spaces which show that the bounds
of Theorem 2 cannot, in general, be improved. A further generaliza-
tion may be obtained by considering p € int, E(X) where 0 < s < 7,
and ask the cardinality of the smallest Yc X for which p € int, E(Y).
This is the spirit of the Bonnice-Klee Theorem (see [1] and [6]). An-
other approach is to add further information about the set X, and
ask how the bound on |Y| may be improved. For example, if it is
known that k; is the dimension of the highest-dimensional simplex
with vertices in ;X E,; and having z;p in its relative interior, then
the bound on |Y| can, in general, be improved. See Bonnice-Reay
[2] for a bibliography and results of this type. Also connectedness
or symmetry conditions on X may lead to an improvement of the
bound on |Y|. See [6] for a bibliography and results of this type.

These theorems and others which depend even more upon the struc-
ture of X are similar to the above theorems, but are much more com-
plicated and are therefore omitted.
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