Vol. 35, No. 2, 1970

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Function space topologies

J. D. Hansard, Jr.

Vol. 35 (1970), No. 2, 381–388
Abstract

S. Naimpally [3] introduced the graph topology, Γ, for function spaces. H. Poppe [5] showed that if the graph topology is finer than the topology of uniform convergence, τu, or finer than the finest of the σ-topologies of Arens and Dugundji, τ, and if the range space is the real line, R, then the domain is countably compact.

We assume our range space is R and that our domain space X is T1. In most of this paper we deal with topologies on C(X) the set of continuous real-valued functions on X. We ShQW that Γ = τ = τu on C(X) if and only if X is countably compact. Further, we Iind that when X is locally connected, τu τ on C(X) if and only if X has finitely many components.

In order to determine conditions under which τ τu, we introduce a map extension property between complete regularity and normality and show that for domain spaces X having this property, τ τu on C(X) if and only if X is countably compact. We indicate further applications of this map extension property and compare it to weak normality.

Mathematical Subject Classification
Primary: 54.28
Milestones
Received: 4 June 1969
Revised: 22 October 1969
Published: 1 November 1970
Authors
J. D. Hansard, Jr.