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In this paper we compare the Gelf and and Wallman methods
of constructing a compactification for a Tychonoff space X from
a suitable ring of continuous real-valued functions on X. Every
Hausdorff compactification T of X is Gelf and constructable;
in particular, T is equivalent, as a compactification of X, to
the structure space of all maximal ideals of the ring of all
continuously extendable functions from X to T. However,
Wallman's method applied to this ring may not yield T. We
thus inquire into some relationships that exist between the
Wallman and Gelfand compactification of X constructed from
a suitable ring of functions on X.

0* Topological preliminaries* All topologicaί spaces in this
paper are assumed to be completely regular and Hausdorff. We shall
be concerned with methods of constructing compactifications for such
spaces.

Let X be a topological space. The space T is an extension of
X means there exists a homeomorphism h from X into T such that
h[X] is dense in T. The function h is called an embedding. Occasion-
ally the necessary embedding maps will be explicitly mentioned, but
usually they will be tacitly assumed. In fact, when T is given as
an extension of X, we may take X as a subspace of T. The space
T is a compactification of X (denoted TecX) means that T is a
compact extension of X. The compactifications T and if of a space
X are equivalent as compactifications of X (denoted T = K) means
there exists a homeomorphism between T and K such that h(x) = x
for each x e X.

We shall use the standard notations [4] regarding C(X), the ring
of continuous real-valued functions. For any fe C(X),

Z(f) = {xeX\f(x) = 0}

is called the zero-set of /. If S/ is a subring of C(X), we define
Z[s*f] = {Z{f)\f es^Y, however, Z[C(X)] is customarily denoted by
Z(X). We shall only refer to subrings of C(X) with unity.

Let s>/ be a subring of C(X). We shall denote the space of
maximal ideals of J ^ with the Stone topology [4, 7M], also called
the structure space of S>/, by H[s^]. The space of ultrafilters of
Z\S^\ is denoted by wZ[J^f], This space of ultrafilters is constructed
by Wallman's method [1] [2], We shall be primarily concerned with
those subrings Szf of C(X) for which wZ[j^] e cX and how these
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subrings relate to a certain type of "structure space" for
Let £f be a collection of subsets of X. Then ^f is a lattice on X

means
(1) 0 , X e ^ ;
(2) if i , ΰ e ^ , then i n ΰ e ^ and A\jBe^f.

A set in ^ is referred to as an JZf-aet.
The lattice £? on X is a Wallman base on X means
(1) Sf is a base for the closed subsets of X;
(2) ^ is a disjunctive lattice on X (i.e., if AeJϊf and xe

X — A, then there exists Be £? such that a? e B and A ί l 5 = 0);
(3) £f is a normal lattice on X (i.e., for each A, BeSf, if A

and B are disjoint, then there exists C, De J*f such that X— AaC,
X- BdD and C U D = X).

For any lattice £f on X, an .^-filter is a nonvoid subset ^ of
JS^ such that

(1) 0£J^~;
(2 ) if A, J5 e Ĵ Γ then An Be J ^ ;
(3) if AeJ^Be^f and 4 c B , then ΰ e ^

An -Sf-ultrafilter is a maximal (with respect to inclusion) ^-filter.
The set of all .S^-ultrafilters is denoted by w^fί

Let £f be a lattice on X. In order to topologize wif, define
A* = {^r e wS?\Ae ^} for each i e ^ Then {A*\Ae JS^J is a base
for the closed sets of some (necessarily unique) topology for wJίf.
We shall only consider w^f with this topology. Now w^f e cX if
and only if £? is a Wallman base on X (with respect to the embedd-
ing m a p φ : X->w£f defined by <p(x) = {Ae Sf \xe A}). If TecX,

then Γ is a Wallman-type compactification of X means there exists
a Wallman base ^ o n l such that T = wJϊf. It is unknown wheth-
er or not every compactification is Wallman-type. If TecX, then
T is a ^-compactification of X means there exists a Wallman base
£f c ^(X) such that T =

l Filter ideals. Let X be a topological space and Sf a sub-
ring of C(X).

DEFINITION 1.1. The ideal I of s/ is a filter ideal of s^ means
Z[I] is a ii[j^]-filter. The set of all maximal filter ideals is denoted
by ^ [ j ^ ] .

DEFINITION 1.2. Szf is a wallman subring of C(X) means that
Z\s/\ is a Wallman base on X.

We first give some elementary facts about filter ideals, the
proofs of which are straight forward.
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PROPOSITION 1.3. The ideal I is a filter ideal of s$f if and only
[if Z(f) Φ 0 for each fe I.

Thus an ideal of J%? need not be a filter ideal. Further, every
ideal of J ^ is a filter ideal if and only if s^ is inverse closed (if

and Z(f) = 0, then 1/fejf).

PROPOSITION 1.4. If F is a Z[Ssf]-filter, then

is a filter ideal of

A filter ideal I of J^ is a s-filter ideal means if fe Jϊf and
Z(f)eZ[I], then fel. Then there is a one-to-one correspondence
between the Z[j^]-filters and the ^-filter ideals of Szf. The next
two propositions show that there is also a one-to-one correspondence
between Z[jy]-ultrafilters and maximal filter ideals.

PROPOSITION 1.5. If I is a maximal filter ideal in j*f, then

Proof. Now Z[I] is a ^[j^]-filter. Suppose F is a Z\s*f\-
filter such that Z[I] c F. Then Z*~[F] is a filter ideal of J ^ and
I<^Z*-[Z[I]]aZ~[F]. Since /is a maximal filter ideal, then I=Z~[F\.
Thus Z[I] = F; hence,

PROPOSITION 1.6. If %r e WZ[J^], then Z*-[%S] is a maximal
filter ideal.

Proof. Since ^ G W Z [ J / ] , then Z~\^f\ is a filter ideal by 1.4.
Suppose I is an ideal of J ^ such that Z*-\%S\ c I. Then ^/ c Z[I]
where Z[Z] is a Z[*W]-filteγ by 1.3. Since ^ is maximal, then
fir = Z[J]. So / c Z~[Z[I]] - ^ [ ^ ] ; thus I = ^ [ ^ ] . Hence, Z-[%T]
is a maximal filter ideal.

PROPOSITION 1.7. Every maximal filter ideal of Szf is a prime
ideal of

Proof. Let / b e a maximal filter ideal of Ssf and suppose / is
not prime. We select /, ge e s/ such that fg e 7, but fίl and g £ I.
So / is properly contained in the ideals Iι = I + J ^ / a n d J2 = I + J ^ # .
Since I1912 are not filter ideals, by 1.1 we select h19 h2e land k19 k2e
S^f such that Z(h, - kj) = 0 and Z(h2 - k2g) = 0 . Clearly ht -
kj e I, and h2 - k2g e I2. Since (Z^,) n Z{kλ)) U (Z^) n Z(f)) = 0 and
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(Z(h2) n Z(k2)) U (Z(h2) n Z(g)) = 0 , then Z(/O n Z(h2) Π Z(/flr) - 0 so,
Z(fe? + ^ + (/g)2) = 0 . But fe* + h\ + (fg)2el, contradicting / is a
filter ideal by 1.1. Hence, I must be a prime ideal of

The following easily proved characterization of maximal filter
ideals we state without proof:

PROPOSITION 1.8. Let M be a filter ideal of s/. Then Me
if and only if for every fe S^f — M there exists ge M such that
Z(f)f]Z(g) = 0 .

2* Maximal filter ideal spaces* Let X be a topological space.
Let S?f be a subring of C(X) (we shall only refer to subrings of
S>f with unity). We denote the structure space of sf by
(see [4, 7M]) and the set of maximal filter ideals of s^ by
We seek to define a "structure space" topology for F[jV] and to
examine the relationships between the spaces F[j%f] and wZ\sf\.
In particular, we show F\Ssf\ = wZ[<Ssf] equivalent as compactifica-
tions of X) if and only if Z[Ssf] is a Wallman base on X. Further-
more, F\Stf\ is a compactification of X if and only if Z[j^] is a
Wallman base on X. Accordingly, we shall refer to Szf as a Wallman
ring on X if Z\S/\ is a Wallman base on X.

THEOREM 2.1. Lei X be a topological space and Szf a subring
of C(X). For each xeX define Mx = {fej*f\f(x) = 0 } . Then

(a) Mze F[S$f] for each xeX if and only if Z[j^f] is a dis-
junctive lattice on X;

(b) If Z\sf\ is a disjunctive lattice on X, then the mapping
x —> Mx is one-to-one if and only if Sf strongly separates points in
X (i.e., if x, yeX, x Φ y, then there exists fe Szf such that f(x) = 0
and fyy) Φ 0).

Proof (a) Suppose Mx e F{sf\ for each x e X. Let A e Z
and x e X - A. Select fe S^f such that A = Z{f). Since fe S>f - Mx,
then by 1.8 we may choose ge Mx such that Z(f) Π Z(g) = 0 . Then
Z(g) e Z[Ssf\, x e Z{g) and Z(g) Π A= 0 . Hence, Z[j*f] is a disjunc-
tive lattice on X. Conversely, suppose Z{J>f) is disjunctive. By 1.3,
Mx is a filter ideal of s/ for each x e X. Suppose x e X. Let / be
a filter ideal of Ssf properly containing Mx and select fe I — Mx.
Since Z[s$f] is disjunctive, select Z(g) e Z[Ssf] such that x e Z(g) and
Z(g)ΠZ(f)= 0. Then geMx, so gel, and thus p + g2el, con-
tradicting 1.3. Hence, MxeF[S*f].

(b) Since Z[Sϊf] is a disjunctive lattice on X, then Mz e F[Ssf]
for each xeX. Suppose the mapping x—> Mx is one-to-one. Let
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x, y e X such that x Φ y. Then Mx Φ My. So there exists fe
such that fix) Φ 0 and f(y) = 0. So J ^ strongly separates points in
X. The converse is obvious. This completes the proof.

We now put a structure space topology on F[s^]. For each
/ e j / , define /* = {Ie F[j*]\fel}. Easily 0* = F[j*] and /* =
0 whenever Z(f) = 0 . Since every maximal filter ideal is prime, then
(fg)* = /* U g*. Hence, {f*\fe S^} defines a base for some topology
(necessarily unique) on F[J^]. We shall only consider this topology
on F[J^]. Easily {/} = Γi{f*\fel} for each IeF[j^]; hence,
F[j^f] is a 2\-space.

THEOREM 2.2. F[j*f] is compact.

Proof. Let J&T be a nonvoid collection of nonvoid basic closed
subsets of F[j^] with the finite intersection property. Let 3ίΓ' =
{Z(f)\fes*f, f*e^Γ}. Then JίTf is a nonempty collection of zero
sets of Szf with the finite intersection property. So we may select
^ e wZ{s$f\ such that 3ίΓ' c ^ . For each fe J^ where
we have Z{f) e 3Tf a^ => fe Z*~[^]e F[j*f] (by 1.6) —
thus, Z-l'Zr] e Π %̂T Hence, F[Ssf] is compact.

We now seek conditions under which F[jzf] is a compactification
of X with respect to the mapping x-^Mx ( = {fej^\f(x) = 0}). By
2.1, we must have a subring όzf of C(X) such that Ss? strongly
separates points of X and Z\S/\ is a disjunctive lattice on X.

THEOREM 2.3. F[jtf] is Hausdorff if and only if Fίf F2 e
Fx Φ F2-> there exists fgejz? such that {fg)* = F[J^]9 fί F} and

Proof. Suppose F[j^] is Hausdorff. Let F19 F2e F[j^]9 FλΦ
F2. Select f,gej*f such that Fι e F[jzf] -f*,F2e F[j^] - g* and

- /*) n (F[JV] - g*) = 0 . Then fί F19 g g F2 and /* (j ^* =
* = F[s>f]. Suppose the converse hypothesis holds. Let F19 F2e

F\SZ\9 Fλ Φ F2. Select f9ge^f such that f$ F19 g ί F2 and (fg)* =
F[Stf]. Then F, e F[s^} - /*, F2 e F\sf\ - g* and (F[j*f] - /*) Π
(F[j<f] - g*) = 0 . This completes the proof.

COROLLARY 2.4. Suppose Z[j%f] is a base for the closed subsets
of X. Then F[j^] is Hausdorff if and only if F19 F2e F[J^]9 Fι Φ
F2—•> there exists f, ge J^f such that f&Fί,g£F2 and fg = 0.

THEOREM 2.5. Let Jzf be a subring of C(X) such that Z[s*r] is
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a disjunctive lattice on X. Let φ denote the making x—*Mx from
X into F[J^]. Then

(a) φ:X—>jP[jy] is continuous,
(b) φ[X] is dense in F\sf\, and
(c) φ is a homeomorphism between X and φ[X] if and only if

S*f strongly separates points from the closed sets in X (i.e., if F is
a closed subset of X and xe X — F, then there exists feJ^ such
that FczZ(f) and f(x) Φ 0).

Proof. By 2.1 (a), MxeF[j^] for every xeX.
(a) Since <P*~[f*] = Z(f) for each fej^, it becomes straight-

forward to show φ:X—> F[j%?] is continuous.
(b) Let fe Szf. Then F[J*f] - / * is a basic open set in F[j*f].

Suppose (F[J^] - /*) ΓΊ φ[X] = 0. Let x e X. Then φ{x) = Mx£
F[j*f]-f*, so Mxef*. Thus feMx for every xeX; i.e., / = 0.
So /* = F\s^f\. Hence, every nonvoid basic open set of F[.szf] in-
tersects <p[X]; i.e., φ[X] is dense in F[s$f].

(c) First, suppose S$? strongly separates points and closed sets
in X. Then Z[J^f] is a base for the closed sets in X. Since

<p"[f* Π φ[X]] = Z(f)

for each fe Stf, then ψ and φ*~ are continuous. By 2.1 (b), ψ is
one-to-one. Hence, φ is a homeomorphism between X and <p[X].
Let F be a closed subset of X. Then φ[F] is a closed subset of
φ[X]. So we may select J Γ c i / such that

φ[F]= n{f*

Thus F = n{φΛΓ n ̂ [X]] i/e^r} = n{Z(f)\fe jry, so z\s*\ is a
base for the closed subsets of X. Hence, J ^ strongly separates
points from closed sets in X.

Let j y be a subring of C(X) which strongly separates points
from closed sets in X and for which Z[Jϊf] is disjunctive. Then the
mapping φ:X-+F[jzf] defined by φ(x) = Mx embeds X into the
compact TΓspace F[J%f]. Define h: X-^wZ[j^f] by h(x) = ̂  ( =
{AeZ[^f]\xeA}). By [2, Th. 2.7], fe embeds X into the compact
TV-space wZ[jf]. Define H: wZ\Sf\ — F[ J ^ ] by H(<Zf) =
for each <Zf ewZ\£f\.

THEOREM 2.6. Γfeβ mapping H is a homeomorphism between
and

Proof. By 1.5 and 1.6, H is a bijection. Now {Z(f)*\fe J^},
where Z(/)* = {^ G wZ[J^]\Z(f) e %S}, is a base for the closed sets



GELFAND AND WALLMAN-TYPE COMPACTIFICATIONS 273

of wZ[Ssf] (see [1] or [2]). Since H[Z(f)*] = f* for each fe
then both H and H*~ are continuous. Hence, H is a homeomorphism.

THEOREM 2.7. F\sf\ecX if and only if J^f is a Wallman
ring.

Proof. By 2.6, H defines a homeomorphism between F[St?] and
wZ\Sf\. But wZ[j*f]ecX if and only if Z[J*f] is a Wallman base
on X. Hence, F[Jϊf] e cX if and only if J ^ is a Wallman ring.

Hence, the structure space F\S/\ of the maximal filter ideals
of a subring Szf of C(X) is a (Hausdorff) compactification if and only
if j y is a Wallman ring. Moreover, F[jzf] is a Wallman-type com-
pactification of X.

3* Maximal ideal spaces and maximal filter ideal spaces* In
this section jzf is a subring of C(X) containing &, the constant
real-valued functions on X. For xeX, define Mx = {fe Szf\f{%) = 0}.
The mapping f+Mx-+f(x) is a ring isomorphism between Jϊf/Mx

and ^ ? ; so, MxeH[S^] for each xeX. Similarly, Mxe F[J^f] for
each # e X (1.3). We topologize H[S*f\ by taking the set of all
/* = {Me H[j^]\fe M}, fej&Ί as a base for the closed sets; i.e.,

is the structure space of Jϊf [4> 7M]. Similarly we topologize

9 where a basic closed set is denoted /* = {Fe F[Ssf] \fe F},
fe jzf. Define the mapping φ: X-+F[<S^] by φ(x) = Mx and ψ: X—>
H[JV] by Ψ(x) = Mx. We obtain φ[Z(f)] = /» Π ̂ [XJ and f [Z(/)] =
/* Π Ψ[X]- Hence, H\Sf\ is an extension of X (via ψ), F[s$f] is
an extension of X (via φ) if and only if Z[J^] is a base for the
closed sets in X. Now F[J^] and H[S*f] are both compact ^-spaces
[see 2.2 and 4, 7M]. From §2, F[J^]ecX if and only if J ^ is a
Wallman ring on X. From [4, 7M], f ί [ j^] e cX if and only if Z[JZf]
is a base for the closed subsets of X and H[Jzf\ is Hausdorff.

We remark that even if both H[J&] and F[J*f\ e cX, they need
not yield equivalent compactifications of X. For example, let X = &
(reals with the usual topology) and ^ * be the one-point compacti-
fication of &. Let Sf be the ring of all functions in C ( ^ ) having
continuous extensions to ^?* . Then S^ is a Wallman ring and
F\SZ\ = wZ[j^r] = β&, but H[J^] = &*. This situation gener-
alizes to arbitrary locally compact Lindelof spaces [1] [5]. However,
F[C*(X)] = wZ{X) = βX= H[C*(X)]. Thus, we inquire into possi-
ble relationships between F[Jzf] and

We first present the following analogue of the Gelfand-Komolgoroff
Theorem [4, 7.3] which yields a representation theorem for the
maximal filter ideals of J ^ when wZ[J%f] e cX.
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THEOREM 3.1. Let Jzf be a, Wallman ring on the space X and
T = wZ[j^]. The maximal filter ideals in S*f are then given by

clτZ(f)} (teT).

Proof. Let t e T. Easily F* is an ideal. From 1.3, F% is a
filter ideal. We now show F% e F\s*f\. Suppose Fe F[j*f] such that
F c F a n d F* Φ F. Select fe F such that t £ clτZ(f). Since T =
wZ[j*f], select g e j / such that teclτZ(g) and Z(f)Γ)Z(g)=0.
But then f,geF and Z(f) n Z(g) = 0 , contradicting Fe F[Jf]. So
i*7* is maximal. It remains to show that if FeF[s$f], then F = F*
for some te T. Let FeF[j^]. Then Z[F]ewZ[Jtf], so

for some ί e ϊ 7 [1], [6]. Hence, F = i*7'. This completes the proof.

The above theorem also yields an explicit one-to-one correspond-
ence between the points of T and the maximal filter ideals in j^f.

Since C(X) is inverse closed and wZ{X) = βX, we have the

COROLLARY 3.2. (Gelfand-Komolgoroff theorem). For any space
X, H[C(X)] - F[C(X)] = wZ(X) = βX and the maximal ideals of
C(X) are given by Mι - {fe C(X) \t e o!βxZ{f)}.

Now, since Z(X) = Z[C*(X)], then C*(X) is also a Wallman ring
on X and F[C*(X)] = wZ{X) = βX. Since H[C(X)] = H[C*(X)] [4,
7.11], then H[C*(X)] = F[C*(X)] (i.e., equivalent as compactifications
of X).

We now inquire into relationships between maximal ideals and
maximal filter ideals.

THEOREM 3.3. Suppose H[J^f\ e cX. Then every maximal filter
ideal is contained in a unique maximal ideal.

Proof. Let .Fe F{sf\. Suppose M, Ne H[J^] where FaM, N
and MΦ N. Select fge^f such t h a t fg - 0, / g M and g$N [4,

7M]. But then fg = 0eF so / e ί 7 or ^ G F (1.7); hence, fe M or

^ G Λ Γ . From this contradiction, we conclude M — N.

COROLLARY 3.4. Suppose H[Jϊf] e cX. If each maximal ideal,
which contains a maximal filter ideal, contains a unique maximal
filter ideal, then F[J^f] e cX.
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Proof. Since H\s/\ e cX, then Z\sf\ is a base for the closed
subsets of X. It then suffices to show that F[J^f] is Hausdorff.
Let F, GeF[j^l FΦ G. There exist unique M, Ne H[J^] such
that F(zM,G(zN (3.3). Since MφN by hypothesis, we select
f,gej* such that fg = 0,/g Λf and <7£ JV. So f,gej*,fg = 0 , / ί ί 7

and 0 ί <?. By 2.4, F\stf\ is Hausdorίf.
Suppose now that TecX and J ^ is a subring of i?(X, Γ) (the

ring of all functions on X continuously extendable to T) such that
Jzf contains <% (the constant real-valued functions on X) and Z[J^f]
is a base for the closed subsets of X. Then ψ: X—• H[J^f] and
φ: X—» F[S$f] embed X as a dense subspace of the compact TΊ-spaces
H[Stf] and F[jϊf], respectively.

For fe E(X, T), denote the continuous extension by fτ. For
teT, define M< = {fe J^\fτ(t) = 0}. Then M f e i ϊ [ j r ] for each
ί e Γ since the mapping / + If* —> /Γ(ί) is a ring isomorphism between
J//Jlί* and ^ . Thus the mapping ^: X-> H[J^] defined by ^(a) =
ik^ is extendable from I to Γ by ^(0 = M\ Note that M3' = Mx

for each a e l .

LEMMA 3.5. φ*~[f*] = ^(/Γ)

Proo/. teZ(fτ) if and only if /Γ(ί) = 0 if and only if fe Mι if
and only if M% e p if and only if Ψ(t)ep if and only if ί e f *"[/*].

Hence, ^: T—> H[j*f] is continuous. So ^[ϊ 7] is a compact sub-
space of H\sf\. We then obtain the

THEOREM 3.6. If H[Ssf] is Hausdorff, then
(1) H[J^] G cX (via ψ: T~> H[J*]);
(2) H[j^f] = ψ[T] = {Af'lίe T};
( 3 ) H[ JV] ^ T; and
(4) H[JV] = T if and only if ψ is injective if and only if

{fτ\fε ^} separates points in T if and only if {Z(fτ)\fe S>/} is a
base for the closed subsets of T.

Proof. (1) and (2). Now Ψ[T] = elm^Ψ[T] since a compact
subspace of a Hausdorff space is closed. Also, cl f l [ ι y ] f[Γ] = H[J^]
since ψ[X] is dense in H[Jzf].

(3). Obvious.
(4). A continuous Injection from a compact space to a Hausdorff

space is a homeomorphism.

THEOREM 3.7. Suppose T = F[j*f]. Then T = H[J^] if and
only if each maximal ideal contains a unique maximal filter ideal
and H\S/\ is Hausdorff.
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Proof. Suppose H[J^] = T. Let MιeH[J^]. Then F c F ,
so every maximal ideal contains a maximal filter ideal (3.6 (2)). Since
T=H[J#'], then ψ: T — H[JV] is injective (3.6 (4)). Hence, if
F*, Fs c M* where t, s, pe T (3.1), then t = s = p. So each maximal
ideal contains a unique maximal filter ideal. The Hausdorff condition
is obvious.

Now assume the converse hypothesis and suppose H[J^f] < T
(3.6 (3)). Then ψ is not injective (3.6 (4)). Select t,seT such that
tΦ s, but M* = Ms. Since T = wZ[A] = F[A], then F* Φ Fs (3.1).
Clearly Fι c Mι and Fs c Λfs. So F\ Fs c Λf * and Ft Φ F8, contra-
dicting our assumption that each maximal ideal contains a unique
maximal filter ideal. This completes the proof.

THEOREM 3.8. Suppose T = H\sf\. Then T = F[j*f] if and
only if c\τZ(f) Π c\τZ(g) = 0 whenever Z(f) Π Z(g) = 0 cmd f g e

Proof. Since {/Γ|/e J/} is a base for the closed subsets of T
(3.6 (4)), then so is {clτZ(f)\fe J^}. By [1, 3.3], T = wZ[j^] if and
only if clΓZ(/) Π clΓZ(flr) - 0 whenever Z(/) Π Z{g) = 0 and/, ^e J^:
This completes the proof since F[j%f] — wZ[j%f] (2.6).

Hence, if TecX is "constructable" as a maximal ideal space of
j^f, where Jϊf is a subring of E(X, T) containing ^ , then T is also
constructable as the ultrafilter space from the zero-sets of Jzf if and
only if disjoint zero-sets of Jzf have disjoint closures in T. Con-
versely, if T is "constructable" as the ultrafilter space from the
zero-sets of jy , then T is constructable as the maximal ideal space
of Sf if and only if each maximal ideal contains a unique maximal
filter ideal and the maximal ideal space is Hausdorff.

THEOREM 3.9. Suppose H[j*f\ = T and F[J&] e cX. Then T
*].

Proof. Let FeF[j^]. Since T is compact and

is a nonvoid set of nonvoid closed subsets of T with the fip, then
ς\^r φ 0 . Since {c\τZ(f)\feJ^} is a base for the closed subsets
of T, then Γ\^~ is a singleton (denote F—+t). Thus, for each Fe
F\S/\ there exists a unique te Tsuch that F—*t. Define h: F\J*f\ —•
Γ by Λ(-F) = t where F- +t. Then h is a surjection and h(Fx) = x
for each xeX. Since h^[c\τZ(f)] - Π {#* | clΓZ(/) c mtτZ(gτ), geJtf]
for each fejzf, then /*, is continuous. Hence, T ^ F\Sf\ (via &).

COROLLARY 3.10. Suppose H{sf\ = T. Then T = F[Jtf\ if and
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only if each maximal ideal contains a unique maximal filter ideal.

Proof. Suppose each maximal filter ideal contains a unique
maximal filter ideal. Then F[J^] e cXby 3.4. The mapping h:
T defined in the proof of 3.9 is then injective. Hence, T =
The converse follows from 3.7. This completes the proof.

4- An application to E(X, T). Let TecX. Easily Z[E(X, T)]
is a base for the closed subsets of X. In 1964 Frink [3] mentioned
that Z[E(X, T)] was a Wallman base on X. However, Brooks, in a
paper published in 1967 [2], mentioned he could not prove this. Sub-
sequently Hager, in a 1969 paper, provided a "constructive" proof.
We offer here a proof that Z[E{X, T)] is a Wallman base on X based
on 2.4 and 2.7. We first observe

LEMMA 4.1. Suppose J& is a suhring of C(X) such that if fe
j ^ , then I /1 e j&l Let I be a z-filter ideal of J^f. Then the follow-
ing are equivalent:

(1) I is a prime ideal of Sf\
(2) I contains a prime ideal of J%f;
(3) if /, ge Ssf and fg — 0, then fe I or gel; and
(4) for each fe J^f there exists gel such that f does not change

sign on Z{g).

Proof. The techniques of [4, 2.9] apply verbatim.

THEOREM 4.2. Let Jzf be subring of C(X) such that Z\sf\ is a
base for the closed subsets of X and if fe <s$f, then \f\e sf. Then

is a Wallman ring on X.

Proof. It suffices to show that F\S$?\ is Hausdorff (2.7). To
show this we apply 2.4. Let F, GeF[J*f], F Φ G. Then Ff]G is
a ^-filter ideal of Jϊf which is not prime. Using 4.1(3), we select
f,geJϊf such that fg = 0, but /£ F n G and g£Ff) G. But F and
G are prime ideals of sf (1.7); hence, either feFoτgeF. Suppose
feF. Then g<£F and f$G. Also, if geFy then f$F and gίG.
By 2.4, then, F[J^] is Hausdorff. Hence, Sf is a Wallman ring
on X.

COROLLARY 4.3. Let TecX. Then Z[E(X, T)] is a Wallman
base for X.



278 CHARLES M. BILES

R E F E R E N C E S

1. C. M. Biles, Wallman-type compactifications, Ph. D. thesis, University of New-
Hampshire, November, 1968.
2. R. M. Brooks, On Wallman compactifications, Fund. Math. 40 (1967), 157-63.
3. 0. Frink, Compactifications and semi-normal spaces, Amer. J. Math. 86 (1964),
602-607.
4. L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, 1960.
5. A. Hager, On inverse-closed subalgebras of C(X), Proc. London Math. Soc. (3) 19
(1969), 233-57.
6. E. Steiner, Wallman spaces and compactifications, Fund. Math. 61 (1968), 295-304.
7. E. Steiner and A. Steiner, Wallman and Z-compactifications, Duke Math. J. 3 5
(1968), 269-76.

Received September 11, 1969.

HUMBOLDT STATE COLLEGE



PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California 94305

RICHARD PIERCE

University of Washington
Seattle, Washington 98105

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

RICHARD ARENS

University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLE K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
CHEVRON RESEARCH CORPORATION
TRW SYSTEMS
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Under-
line Greek letters in red, German in green, and script in blue. The first paragraph or two
must be capable of being used separately as a synopsis of the entire paper. The editorial
"we" must not be used in the synopsis, and items of the bibliography should not be cited
there unless absolutely necessary, in which case they must be identified by author and Journal,
rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of
the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All
other communications to the editors should be addressed to the managing editor, Richard Arens,
University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in
multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the
price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to
individual faculty members of supporting institutions and to individual members of the American
Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17,

Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.



Pacific Journal of Mathematics
Vol. 35, No. 2 October, 1970

Valentin Danilovich Belousov and Palaniappan L. Kannappan, Generalized Bol
functional equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Charles Morgan Biles, Gelfand and Wallman-type compactifications . . . . . . . . . . . . . . 267
Louis Harvey Blake, A generalization of martingales and two consequent

convergence theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Dennis K. Burke, On p-spaces and w1-spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
John Ben Butler, Jr., Almost smooth perturbations of self-adjoint operators . . . . . . . . 297
Michael James Cambern, Isomorphisms of C0(Y ) onto C(X) . . . . . . . . . . . . . . . . . . . . . 307
David Edwin Cook, A conditionally compact point set with noncompact closure . . . . 313
Timothy Edwin Cramer, Countable Boolean algebras as subalgebras and

homomorphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
John R. Edwards and Stanley G. Wayment, A v-integral representation for linear

operators on spaces of continuous functions with values in topological vector
spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

Mary Rodriguez Embry, Similarities involving normal operators on Hilbert
space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Lynn Harry Erbe, Oscillation theorems for second order linear differential
equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

William James Firey, Local behaviour of area functions of convex bodies . . . . . . . . . . 345
Joe Wayne Fisher, The primary decomposition theory for modules . . . . . . . . . . . . . . . . 359
Gerald Seymour Garfinkel, Generic splitting algebras for Pic . . . . . . . . . . . . . . . . . . . . . 369
J. D. Hansard, Jr., Function space topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
Keith A. Hardie, Quasifibration and adjunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
G. Hochschild, Coverings of pro-affine algebraic groups . . . . . . . . . . . . . . . . . . . . . . . . . 399
Gerald L. Itzkowitz, On nets of contractive maps in uniform spaces . . . . . . . . . . . . . . . 417
Melven Robert Krom and Myren Laurance Krom, Groups with free nonabelian

subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
James Robert Kuttler, Upper and lower bounds for eigenvalues by finite

differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
Dany Leviatan, A new approach to representation theory for convolution

transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
Richard Beech Mansfield, Perfect subsets of definable sets of real numbers . . . . . . . . . 451
Brenda MacGibbon, A necessary and sufficient condition for the embedding of a

Lindelof space in a Hausdorff Kσ space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
David G. Mead and B. D. McLemore, Ritt’s question on the Wronskian . . . . . . . . . . . . 467
Edward Yoshio Mikami, Focal points in a control problem . . . . . . . . . . . . . . . . . . . . . . . 473
Paul G. Miller, Characterizing the distributions of three independent n-dimensional

random variables, X1, X2, X3, having analytic characteristic functions by the
joint distribution of (X1 + X3, X2 + X3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

P. Rosenthal, On the Bergman integral operator for an elliptic partial differential
equation with a singular coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

Douglas B. Smith, On the number of finitely generated O-groups . . . . . . . . . . . . . . . . . 499
J. W. Spellmann, Concerning the domains of generators of linear semigroups . . . . . . 503
Arne Stray, An approximation theorem for subalgebras of H∞ . . . . . . . . . . . . . . . . . . . . 511
Arnold Lewis Villone, Self-adjoint differential operators . . . . . . . . . . . . . . . . . . . . . . . . . 517

Pacific
JournalofM

athem
atics

1970
Vol.35,N

o.2


	
	
	

