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ON p-SPACES AND w4-SPACES
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In this paper the relationships between p-spaces and wd-
spaces are investigated, It is shown that strict p-spaces,
p-spaces, and wd-spaces are all equivalent in the class of
completely regular ¢-refinable spaces, There is an example of
a completely regular, countably compact space (and thus a
wd-space) which is not a p-space. An example is given of a
T, locally compact space (and thus a p-space) which is not a
wd-space, In the last section we give some conditions for p-
spaces or wd-spaces to be developable,

1. Relationships between p-spaces and wd-spaces. Unless
otherwise stated no separation axioms are assumed; however regular
and completely regular spaces are always assumed to be 7,. The set
of positive integers is denoted by N.

A sequence {Z/,}r., of open covers of a topological space X is
called a development for X if for any x e X and any open set O about
2z, there is an integer n € N such that St (z, %,) = U{Ue Z,:xe U} CO.
A regular developable space is a Moore space.

A completely regular space X is called a p-space [1] if in the
Stone-Cech compactification 8 (X) there is a sequence {7,};.. of open
covers of X such that N3, St (x, 7,) © X for each z € X. The sequence
{V.}p-, is called a pluming for X in B(X). A space X is called a
strict p-space if it has a pluming {7}, with the following addi-
tional property: For any xe X and ne N there is #’e N such that
St (x, 7,,) < St(x, 7,). In this case we call {v,};-, a strict pluming.

Since any T, locally compact space X is open in its compactification
B(X) it is clear that if we let v, = {X}, then {7,};., will be a pluming
for X. Also any metric space or completely regular Moore space is
a strict p-space {2].

A sequence {A4,(w)}7., of subsets of X, with xec 4,(x) for each
ne N, is called an x-sequence if x,¢ A,(x) implies that {x,}7_, has a
cluster point in X. A space X is called a wd-space (compare [4]) if
X has a sequence {%,: nec N} of open covers such that {St (v, Z,) :
ne N} is an z-sequence for each xe X.

Clearly any countably compact space and any Moore space is a
wAd-space.

The following theorem was proved in [6]:

THEOREM 1.1. A completely regular space X is a strict p-space
if and only if there is a sequence {Z,)i-, of open covers of X
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satisfying:

@) P, =Nz St(x, &, is a compact set for each xe X.

(b) The family {St(z, &,): ne N} is a neighborhood base for the
set P,.

Notice that if {Z,}r_, is a sequence of open covers satisfying (a)
and (b) of Theorem 1.1 and we assume %,., refines &,, it is easily
verified that {St(x, <,): ne N} is an x-sequence for each xec X.
The following corollary follows immediately.

COROLLARY 1.2. A strict p-space s a wd-space.

Similar to Theorem 1.1 we have a theorem which characterizes
p-spaces without the use of the compactification B(X). This theorem
helps to illustrate the relationship between p-spaces and wd-spaces.

THEOREM 1.3. A completely regular space X 1is a p-space if
and only if there is a sequence {<,}o-, of open covers of X satisfying:
If ve X and G,c &, such that xe@,, then

(@) Nz G, is compact.

®) {N:G.: ke N} is an x-sequence.

Proof. Before proceeding with the proof of the theorem, notice
that (a) and (b) above are equivalent to (a) and (b’) where:

(") If O is any open set containing >, G,, there is ke N such
that N, G, < O.

It will be convenient to prove the theorem using the statements
(a) and (b').

Suppose {7,}3-, is a pluming for X in B(X). For each ne N,
let <, be a cover of X, open in X, such that {(G)s;y,: G € 2} refines
Y.. For a given ze X, let G, be an arbitrary element of <, such
that 2 e G,. Then M., (G, is compact and

N (G © N St@, ) C X

Thus Ql Grx = !j [X N (G)sn] = DL Go -

Hence Nz.. G, is a compact set. Now let O — X be an open set
containing (., G,, and let O’ be open in B(X) such that O’ N X = 0.
If N, G, is not contained in O’ for any ke N, then (Y. (G)ix) — O
# @ for each ke N. Hence {Ni-, (G,)sxy — O : ke N} is a decreasing
sequence of compact sets. It follows that

oo

N Gsx -0+ @

n=1
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which is impossible since
Ql Gz = Ql G,cO=0nX.

Thus there exists an integer k such that :_, G, <0’ and so :-, G, CO.
Hence (a) and (b') are true.

Now suppose {Z,}7_, is a sequence of open covers of X such that
(@) and (b') are true. For ne N define 7, to be the collection of all
sets G’ C B(X) such that G’ is open in B(X) and G'N XeZ,. We
show {7,}o_, is a pluming for X. Let ze¢ X and yepBX)— X. If
ye N St(x,7,) there is a set G, e7, such that x,yc G, for each
neN. ThenzeG, =G, N Xe <%, and N>, G, is a compact set which
does not contain y. Let 0 be an open set in B(X) such that

NG, c0c O cBX) - 0} -

Then there is ke N, such that i, G, 0. Thus N:_, Gl — (O)sm =D
since it is an open set contained in B(X)— X. Thus y¢ N G-
which is a contradiction. So y¢ MNy=, St(z, 7,) and ¥y was an arbitrary
element of B(X) — X. Hence N3, St(x, v,) © X and the theorem is
proved.

THEOREM 1.4. A completely regular wd-space X 1is a p-space if
every closed countably compact subset of X is compact.

Proof. Let {Zr )z, be a sequence of open covers of X such that
{St(z, zr,): ne N} is an z-sequence for each xc X. For each ne N
let 7, be an open cover of X such that {G: Ge %} refines 7,. Let

zxe X and G,e &, such that xeG,. Then {N:i., G,: ke N} is an a-
sequence since N:_,G, < St(x, %/,). Also, Nz, G, is countably com-

pact since {x.}v.. < N~ G, implies z,¢ N:-, G,, and so {x,};., must
have a cluster point. By hypothesis, =, G, must then be a com-
pact set. Thus (a) and (b) of Theorem 1.3 are satisfied.

A space X is said to be f-refinable [17] if, for every open cover-
ing 7 of X, there is a sequence {Z/,}7.. of open refinements of %~
such that, if ve X, there is m(x)e N such that « is in at most a
finite number of elements of Z/,.,.

In Theorem 1.7 we show that p-spaces and wd-spaces are equiva-
lent in the class of completely regular 6O-refinable spaces. Before
proving thig theorem we want to point out the relationship between
the f-refinable property and two other covering properties.

A topological space X is called metacompact if every open cover
of X has a point-finite open refinement. It is clear that all metacom-
pact spaces are f-refinable.
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A space X is called subparacompact [5] if it satisfies any one of
conditions (a) through (d) stated in the following theorem:

THEOREM 1.5. For a topological space X the following conditions
are equivalent :

(@) For any open covering ZZ of X there is a sequence {Z/,}r-,
of open coverings of X such that, if xe X, there is m(x) e N and some
set Ue 7z with St(®y Znw) < U.

(b) Ewvery open cover of X has a o-discrete closed refinement.

(¢c) Ewery open cover of X has a a-locally-finite closed refinement.

(d) Every open cover of X has a o-closure-preserving closed refine-
ment.

Theorem 1.5 was proved in [5] and we use this theorem to prove
Theorem 1.6, from which it follows that all subparacompact spaces
are O-refinable.

THEOREM 1.6. For a space X to be subparacompact it is neces-
sary and suffictent that every open cover of X has a sequence {Z/,}n-
of open refinements with the property that, if €€ X, there is m(z)e N
such that x is 1n exactly one element of Zwix).

Proof. By Theorem 1.5 it is enough to prove that the condition
is necessary for X to be subparacompact. So suppose X is subpara-
compact and % is an open cover of X. Let & = U3, &, be a
closed refinement of % where &, is discrete for each ne N. For
each Pe & let U(P) be a fixed element of % such that Pc U(P).
For each xe X let U(x) be a fixed element of Z such that xe U(2).

Fix neN. If xe X and 2e X — |J{P: Pec &}, define

Ux) =U@) — U{P: Pe &}
If xe U{P: Pe A}, say xe Pe ., define
U,x) =UP)—U{P eF: x¢P}.

Then %, = {U,(x): < X} is an open refinement of %/ for each ne N.
It is clear that xc Pec &#, implies that U,(x) is the only element in
7/, which contains x. Since every xze X is in some element of &7,
it follows that {Z/)c., is a sequence of open refinements of 7/ satis-
fying the required properties.

THEOREM 1.7. For a completely regular G-refinable space X, the
following conditions are equivalent :

(@) X is a p-space.

(b) X s a strict p-space.

(¢) X 1s a wd-space.
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Proof. That (b) = (c) follows from Corollary 1.2.

In a f-refinable space closed countably compact subsets are com-
pact [17]. Hence (c¢) = (a) follows from Theorem 1.4.

To prove that (a) = (b) let {7,}3_, be a pluming for X in gB(X).
We will construct a strict pluming for X. Since X is f-refinable, we
can find a sequence {7, ,}7-, of covers of X, open in B(X), such
that the following is true:

(1) For each n e N, the collection {(G)sx,: Ge 7, ,} refines 7,.

(2) For each ze¢ X, there is me N such that « is in at most a
finite number of elements of 7, .

Continue by induction and assume {7, .}y is defined for ke N.
Then we can find a sequence {7y, .}u-: 0f covers of X, open in B(X),
such that the following is true:

(8) For each n e N, the collection {(G)zx): G € Yi11,.} refines 7., and
refines 7, , where r,seN,» +s=k + 1.

(4) For each xc X, there is me N such that x is in at most a
finite number of elements of Vi1, n-

It is clear that the sequence {7,,}7_, is a pluming for X since
St(x, 7,,,) < St(z, v,) for any xe X. To show that {v,, }r., is a strict
pluming, let ne N and ze X. Let me N such that x is in at most
a finite number of element of 7,.,, .. Then by (3)

St (xy 7n+1, m) = (U{G € 7%+1,m: re G})—‘
=U{G: 2 GeVy, . < St(x, 7,,,) -

Also 7,im+.,. refines v,., .. Thus

St(ﬂ?, 7n+m+1,1) - St(m, ’Yn+1, m) c St(x’ rYﬂ,l)

and {7,,.}o-, is a striet pluming.

Since subparacompact spaces and metacompact spaces are §-refinable
the next corollary is obvious.

COROLLARY 1.8. For a completely regular subparacompact
(metacompact) space X, the following conditions are equivalent:

(a) X is a p-space.

(b) X is a strict p-space.

(¢) X s a wd-space.

REMARK 1.9. If a regular wd-space X is f-refinable it is possible
to construct a sequence {<,};., of open covers of X satisfying (a) and
(b) of Theorem 1.1 even if X is not completely regular. We will
use this fact in the next section.
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We finish this section by giving two examples. The first is a
completely regular countably compact space (and thus a wd-space)
which is not a p-space. The last example is a p-space which is not
a wd-space.

Recall that a space X is a k-space if any set A X is closed if
and only if AN C is closed in C for every compact set Cc X. In
Example 1.10 we need to know that a p-space is a k-space [1].

ExAmPLE 1.10. A completely regular countably compact space
which is not a p-space.

Let B(N) be the Stone-Cech compactification of N. J. Novak [12]
constructed two countably compact subsets X, c 8(N) and X, B(N)
such that X, N X, =N, X, UX,=8(N),and D = {(,x): xe N} is an
infinite, discrete, closed subset of X, x X,. We show that X, is not
a p-space by showing that it is not a k-space. Let C be any compact
subset of X, and consider the set CNN. If CN N is finite, it is
certainly closed in C; assume C N N=A4 is infinite. Now (4)z, X (4)z,
is a countably compact subset of X,x X, since (A4)z, cC is compact
and (4)z, is at least countably compact (see Theorem 5 in [12]).
However, {(x,x): xe A} D, and hence {(x,®): xc A} is an infinite,
discrete, closed subset of (A4)z, X (A)z,, which is impossible. Thus
C N N is always finite for every compact C — X,; hence C N N is
closed in C for every compact C. But N is not closed in X, so X,
is not a k-space.

ExAmpPLE 1.11. A T, locally compact space (and thus a p-space)
which is not a wd4-space.

Let w, w,, w, be the first ordinals of cardinalities ¥W,, ¥, W. res-
pectively. Let I' = [0, w,). Before constructing the example we prove
the following lemma :

LEMMA 1.12. For each aecl’, suppose I', is a countable subset
of I'. There is a sequence {a,}r, CI'y &, < @y <<+, such that a; & Iy,
if o # Q.

Proof. We will define the «, inductively. For each ae I’ let
D,={pel: B=za,agl,}.

Suppose that card D, < W, for all aeI’. Let a, eI such that o, = w,.
Then

[a'oy 602) - U Da‘_/" %)

(X<¢X0
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since card [a, @) = W. and card (Uuc,, D) = Wi. Let Bie [, @)
—Uu<a, Doe Then ae |0, a,) implies B¢ D,; so @e . Thus

card I"; = card [0, a;) = W, ,

which is a contradiction. Hence {oe": card D, > W} # @. Let a,
be the smallest element in the set. Now suppose that «,, @y, -« -+, @,
are defined such that the following is true:

(1) o << e < Wy

@) a;e¢l,, for i+j,%,75=1,2,+--,n—1

(3) Card (Do, N Doy ==+ N Dyp_) > W
Let 7, =sup{8:Bel’,, l=1= n—1} + 1 and let

I'™ = Dy N Doy N oo N Dy, —[0,7) .

Ep—1

Then card "™ > W,. For ael"™ let D = D, N I"™. Suppose that
card D < W,, for all aeI"™, and let ajec " such that card (I"™ N
[7ey 5]) = .. Then

[Yoo @) NI — U{DP: ael'™ O [Ty @]} # O

so let B be an element of this set. If ael™ N [7, «i], we have
ael'y. This implies

card I'y; = card (I"™ N [, &i]) = Wi »
which is a contradiction. Therefore
{aelr™: card D > WV} #= @

and we let «, be the first element of this set.

Notice that «, >sup {8: fel,, 1=1=n—1}, so a, ¢/, for
1=i=n—-1. Also, a,e ' CDy N Dy e+ N Dy, S0 ;&L ,,
for 1=<¢<n—1. Thus (1) and (2) are satisfied for a,, a,, ---, «,.
Now

DY =I'" A D, ©DyNDyn -+ D, 0D, ,

S0
card (D, N D,, N +++ N D,,) = card DI’ > ¥, .

Thus (3) is satisfied and the lemma is proved.

For each e I, let X, = {0, 1} with the discrete topology. Let
Y = JI. X. have the product topology, and define X =Y —{g}, where
g is the element in Y such that g(a) = 0 for all weI". Since X is
open in the compact space Y, it follows that X is a T, locally com-
pact space. Let {Z/,}7-, be any sequence of open covers of X. To
show that X is not a wd-space, we will find an element xze X such
that {St(z, Z7,): ne N} is not an x-sequence. For a given ae I, let
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f. be the element of X such that f,(¢)=1 and £,(8)=0 for all 8=+ a.
Let U,(a) € %, such that f,e U,(@). Since U,(a) is also open in Y,
there exists a finite set I”,,, < I" such that ac I, , and

Tl Z5(n) < Uy(@) ,

where Zi(n) = {1},
Z§(n) = {0} Bel,.—{a}),
and Z5(n) = X, Bel —T,,).

Let I',=Up. I'.,.. Then I', is a countable subset of I" for each
ael'. By the lemma, there is a sequence {«,};-,, of distinct elements
of I', such that a;¢ I",; for ¢+ j. Define

Z,, = {1} (ke N),
Zﬁ :{0} (Berak_{ak}’keN)’
and Z, =X, B¢ kf:j r.,).

Let g,eIl:Z;. It follows that g,e U,(a,) for each m,ke N. Thus
Ja, € St(9,, %) for each ne N; however, the sequence {f, }r. does
not have a cluster point in X. Hence X is not a wd-space.

2. Developable p-spaces and w4-spaces. In this section we give
some conditions for p-spaces and wd-spaces to be developable. As is
suggested by Theorem 1.7 it turns out that p-spaces and wd-spaces
can be used interchangeably in many theorems. We state Theorems 2.1
and 2.2 as an illustration of this.

A collection # of subsets of a space X is called a network for
X if for any open set O — X and x ¢ O there is a set Pec & such that
xe Pc O. A space with a o-locally-finite network is called a o-space
[13]. It is proved in [16] that existence of a o-closure preserving
closed network in X implies the existence of a o-discrete closed net-
work ; hence a regular space has a o-discrete network if and only if
it has a o-closure-preserving network.

Let X be a topological space and d a nonnegative real valued
symmetric function defined on X x X such that d(z,y) = 0 if and
only if © = y. The function d is called a symmetric [2] for the
topology on X provided: A — X is closed if and only if inf {d (x, 2) :
2€ A} > 0 for any xe¢ X — A. The function d is called a semi-metric
for X provided: For A X, wc A if and only if inf{d(z,2): zc A} =0.
It is easily shown that a symmetric space X is a semi-metric space
if and only if X is first countable.
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THEOREM 2.1. For a completely regular space X the following
conditions are equivalent:

(a) X s developable.

(b) X is a p-space with a o-discrete network.

(¢) X is a semi-metrizable p-space.

(d) X is a symmetrizable p-space.

THEOREM 2.2. For a regular space X the following conditions
are equivalent :

(a) X 1is developable.

(b) X is a wd-space with a o-discrete network.

(¢) X 1is a semi-metrizable wd-space.

(d) X is a symmetrizable wa-space.

Theorem 2.1 was proved in [6]. Siwiec has shown in [15] that
parts (a) and (¢) of Theorem 2.2 are equivalent. To complete
Theorem 2.2 it is only necessary to show that the spaces described
in (b) and (d) are first countable and therefore semi-metrizable.
This is a relatively easy exercise.

A collection <# of closed subsets of X is called a ct-net [16] for
X if, when z,ye X such that x =y, there is an element Be <%
such that xe B and y ¢ B. It is obvious that a closed network in a
T, space is a ct-net and it can be shown that a semi-metric space has a
o-discrete ct-net.

We need the following theorem from [9]:

THEOREM 2.3 (Heath). A T, space X 1is semi-metrizable if and
only if each point vre X has a decreasing open meighborhood base
{U,.(x)}o=, such that if z,e¢ X, with xec U,(x,) for each me N, then
L, — Lo

THEOREM 2.4. A regular wd-space (or strict p-space) X is develop-
Table if and only if it has a o-closure-preserving ct-net.

Proof. Since a strict p-space is a wd-space we show only for the
case when X is a regular wd4-space.

If we assume X has a o-closure-preserving ct-net then to show
that X is developable it is sufficient to show that X is semi-metri-
zable and apply Theorem 2.2. Let &= U;., &, be a ct-net for X
where each &2, is a closure-preserving collection of closed sets.
Suppose {Z,}p;-, is a sequence of open covers of X such that
{St(z, &,): ne N} is an xz-sequence for each xe X and assume %,
refines &,. For xe X, ne N, define
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Vo) =X —U{Pe F,: x¢ P, 1< k< n}.

Note that ze V,(x) implies that z¢ Pec .7, whenever x¢ Pe &, for
1<k=wn. Hence V,z) < V,(®).
Now let U,(X) be an open neighborhood of x such that

U.x)y < V,(x) N St(x, &,) .

We may assume U,,, (x) C U, (x) for each ne N. Since &7 is a ct-net
for X, it follows that M=, V,(x) = {z}. Hence N:.U, ) = {a}.
Let O be any open set containing x. If U,(x) is not contained in O
for any n, there is an element y, e U,(®)—0. Since U, (x)C St(x, Z,)
the sequence {y,}7_, has a cluster point ¥ not in O. But y, € U,x)—0
implies y e N, U,(x)—0, which is a contradiction since Nz, U, (x) =
{}. So there is n ¢ N such that U, (x) O and {U, (2)};-, is a decreas-
ing open neighborhood base at . To show that X is semi-metrizable,
we show that {U,(z)}7_, satisfies the conditions in Theorem 2.3.
Suppose 2z, ¢ X such that ze U, (z,) for each n ¢ N. Then x ¢ St(x,, &,)
which implies z, ¢ St(z, Z,). Thus {z,}3-, has a cluster point ye X.
Suppose y # 2. Then there is an integer me N such that there is
Pe &, withee Pandy¢ P. Soxz¢ V,(y). Since y is a cluster point
of {w,},., there is m,e N, m,=m such that «, e V,.(y). Hence
Vu(®n) € Va(y). It follows that

€ Vo (@) C Vou(@n) C Vo (y)

which is a contradiction. Thus y = « and « is the only cluster point
of {»,)7... If {x, )7, is any subsequence of {x,}7_,, then

%,, € St(x, &,,) < St(x, &) .

Thus {x,, }7-, must have « as a cluster point. Since every subsequence
of {x,}7., has x as a cluster point, it follows that z, —« and X is
semi-metrizable.

The converse is trivial so the theorem is proved.

It was stated in [2] that if a strict p-space X can be mapped
onto a Moore space by a one-to-one continuous map then X is a
Moore space. The following corollary is a generalization of this.

COROLLARY 2.5. Suppose X 1s a strict p-space (regular wd-space)
and X is mapped onto a T, space Y by a one-to-one continuous map.
Then X is developable if any one of the following conditions hold :

(a) Y 1is developable.

(b) Y has a o-discrete network.

(¢) Y is semi-metrizable.
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(d) Y has a o-closure-preserving ct-net.

Proof. The corollary follows immediately from Theorem 2.4 when
you show that any one of conditions (a) through (d) implies that X
has a o-closure-preserving ct-net.

QUESTION 2.6. Is Theorem 2.4 or Corollary 2.5 true if X is
required to be a p-space instead of a strict p-space ?

A point-countable collection of subsets of a space X which is an
open base for the topology on X is called a point-countable base.
Filippov [8] has proved the following result:

THEOREM 2.7. A paracompact p-space with a point-countable
base s metrizable.

We generalize Theorem 2.7 in Theorems 2.8 and 2.10 by show-
ing that a p-space X with a point-countable base is a Moore space
if it is either metacompact or subparacompact. Theorem 2.8 was
proved in [6] for the case when X is a p-space. The proof when X
is a regular w4-space is similar if we use Remark 1.9 and assume X
has a sequence of open covers satisfying (a) and (b) of Theorem 1.1.

THEOREM 2.8. A metacompact p-space (regular wd-space) with
a point-countable base <Z is a Moore space.

Before proceeding with the statement and proof of Theorem 2.10
we need the following lemma which can be found in [8].

LemMMA 2.9, If <Z is a point-countable collection of subsets of a
space X and A C X, then the family of all minimal finite covers of
A with elements from <7 is countable.

THEOREM 2. 10. A subparacompact p-space (regular wd-space) X
with a point-countable base <& 1s a Moore space.

Proof. Let {Z,}z., be a sequence of open covers of X satisfying
(a) and (b) of Theorem 1.1. For each ne N, let &, = Ui-, F0,m
be a o-discrete closed refinement of <, where each &7, , is discrete.
By Lemma 2.9, each Pec <7, has at most a countable number of
minimal finite covers with elements of <7, say P(1,n), P(2, n), ++-
(if they exist).

Let & ={Pn B: Pe &#, Be P(k,n), ke N}. It follows that
&, is a o-locally-finite collection, and so & = Uy, & is also a
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o-locally-finite collection. We show that & is a network for X. Let
O be an open subset of X and xeO. Since & is a base there is a
set Be <% such that xe BC 0. Since P, = N3, St(x, &,) is compact,
we can find a finite subcollection {B,, B, --+, B;} C.<# such that
P, c Uk, B; and B = B, is the only element of {B,, B,, ---, B,} which
contains x. Let me N such that St(z, &) < U, B,. Let Pe &7,
such that xe P. Then Pc L, B;, so there is a minimal finite cover
of P, say P(j,n), such that B, = Be P(j,n). Hence xe PN BcCO
and PN Be.%”,. Therefore &7 is a o-locally-finite network for X.
Hence X has a o-discrete network and is developable by Theorems
2.1 and 2.2.

QUESTION 2.11. Is a p-space (or regular w4-space) with a point-
countable base a Moore space ?
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