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The area function of a convex body X in Euclidean n-space
is a particular measure over the field <&’ of Borel sets of the
unit spherical surface. The value of such a function at a
Borel set o is the area of that part of the boundary of K
touched by support planes whose outer normal directions fall
in ». In particular the area function of the vector sum
K + tE, where ¢ is nonnegative and £ is the unit ball, is a
polynomial of degree n — 1 in ¢ whose coefficients are also
measures over <%. To within a binomial coeflicient, the
ceefficient of ¢*7~! in this polynomial is called the area func-
tion of order p. For p =1 and » = n — 1 necessary and suf-
ficient conditions for a measure over <% to be an area fune-
tion of order p are known, but for intermediate values of p
only certain necessary conditions are known., Here a new
necessary condition is established. It is a bound on those
functicnal values of an area function of order p which corre-
spond to special sets of <&°. These special sets are closed,
small circles of geodesic radius « less than =/2; the bound
depends on «, p and the diameter of K. This necessary con-
dition amplifies an old observation: area functions of order
less than n — 1 vanish at Borel sets consisting of single
points,

To examine area functions in detail, we write [J(u) for the sup-
port plane to K whose outer normal direction corresponds to the
point % on the unit spherical surface 2. For w in <& set

B(w) :uLéJw(H(u)ﬁK) .

The area function of K at ® is the (n — 1)-dimensional measure of
B(w); we denote this by S(K, w). S(K + tE, w) is a polynomial of
degree n — 1 in t; the coefficient of

(" N Vs, where (" . Y=

is the area function of order p at w and is written S,(K,w). In
particular

Sn—l(K! (l)) = S(K’ (L)), So(Ki (l)) = S(E7 (1)) .
If at each boundary point of K there is a unique outer normal
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» and principal radii of curvature R (w), +++, R,_,(%) and if {R,, -+, R,}
signifies the p™ elementary symmetric function of these radii, then

S,(K, w) = SN{R“ R,,}dco/(n » 1) .

For general convex bodies the total area of order p is a special
mixed volume; in detail

S(K,Q2) =nV(K, -+, K,E, -+, E).
N —— Sy ——

? n=—p

Let v be any fixed point on 2 and let w, be the set of w on £
for which

(U, v) =cosa, 0 < @ < /2,

where (u, v) denotes the inner product of » and »v. We shall prove
that

(1) SK, 0,) < AD?sin" "' aseca = AD*f,(a) ,

for p=1,2, .-, n — 1, where D is the diameter of K and A depends
neither on « nor on K.

A. D. Aleksandrov [1] and W. Fenchel and B. Jessen [3] introduced
such area functions. They showed that for a measure @ over <% to
be an area function of order n — 1, it is necessary and sufficient
that, for any «’

(2) [ @, woaow) = o, | | @, wlo@ow) > o0,

where these are Radon integrals. Aleksandrov showed also that
(2), while necessary for @ to be a ™ order area function when
p < mn —1, are not sufficient. In part this depended on the observa-
tion that

(3) SP(Ky {’I)}) =0

for each v on 2 and p < n — 1. By letting a tend to zero, we see
that (8) is a consequence of (1).

Necessary and sufficient conditions for @ to be an area function
of order one are given in [4] and [5]. Inequality (1) for p = 1 was
proved in the latter paper and plays a significant part. Items of
background are in these papers and [2] and [3].

1. We first show that if (1) holds for convex polyhedra, then
it is true for all convex bodies.
Given any convex body K we can find convex polyhedra K,, m =
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1,2, -.., which approximate K to within 1/m in the sense of the
metric

0(K, K,) = max |Hu) — H,(w)]|,
uef
where H and H, are the support functions of K and K,. For the

diameters D and D, of these bodies we have

limD, =D.

m —roo

Let € > 0 be such that a + ¢ < 7/2; denote by 7, the open set
of 4 on Q for which

(u, v) > cos (o + ¢€) .
Clearly
(4) DTN C Wy,

By Theorem IX of [3], S,(K,,®) converges weakly to S (K, w) as
m tends to infinity. This implies [3, p. 8] that

(5) liminf S,(K,., 7.) = S,(K, 1) = S,(K, ®,)

since 7, is open. We have used (4) and the monotonicity of S,(K, ®)
in @ for the final inequality.

Also from (4), the monotonicity of S,, and the assumption of (1)
for polyhedra, we get

(6) Sp(Kms 7:) = AD} fp(a + €) .
Hence, because D, tends to D, (5) and (6) yield
SUK, @) < AD*f,(c + ¢) .
The left side does not depend on ¢ and so inequality (1) holds for K.

2. To prove (1) for convex polyhedra K we form, from a given
K, four convex bodies K,, K,, K;, K, for which

(7) Sy(K; @) < Sy(K oy 0,5 =1,2,3,
and

(8) Sy)(Kiy @) = S,(K, ) ,

(9) S, (K, w,) = AD*f (@) .

As a matter of notation I7;(u) signifies the support plane to K;
with outer unit normal w. We write 0P for the boundary of any
set P.
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The body K, is to be the convex closure of B(w,). Since

U (K.N1l,(w)) = B{w.)

UEw

(8) holds. Also K, is polyhedral.

Let $,(u) signify the half-space with outer normal = which is
bounded by I,(w). Of course, for % in w,, §(u) is the half-space
with outer normal w bounded by II(u). Since o < m/2, the intersec-
tion of those §,(u) for which

(u, v) £ cos«

is a convex polyhedron K, =2 K,. Here v, as before, is the centre
of w,; we write w, for those u on 2 which satisfy the last inequality.
Clearly

U,(Klﬂ Hl(u’)) = U’(Kzﬂ Hz(u))

uUew, Uew,

and so
(10) Sy(Kyy @) = Sy(Kyy 07)
On the other hand K, & K, implies that
SH(K,, 2) = Sy(K,, 2) .

This is a consequence of the representation of these total area func-
tions as mixed volumes and the known monotonicity of mixed volumes
VK,---,K,E, -+, E)in K, cf. [2]. The additinity of area functions,
our last inequality and (10) yield (7) for j = 1.

The rest of the proof is treated in separate sections. In §3 we
describe a plane /I, normal to v, which cuts K so that B(w,), and
hence K,, lies in one of the half-spaces determined by /7,. Call this
half-space $,. We take K, to be the intersection of £, with

NOw) = NYu(w)

where these intersections are taken over those % in the common
boundary of w, and ., i.e., those u for which

(u,v) = cosa .

The body K, contains K,. To determine /7, it is necessary to consider
circular cones of the form

(11) Wy — ) + ||z — @]/ siha £ 0.

The norm is Euclidean. The vertex of such a cone is x,; the axial
ray within the cone has the direction —v; these cones are translates
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of one another. We choose 2, so that the resulting cone contains K
and the distance from K to the plane

v, 2 —x) =0

is as small as possible. We call this tangent cone C.

In §4 (7) is proved for j = 2.

K, is CNn$,. This intersection is clearly a convex body which
contains K,. In §5 we prove (7) for j = 3. Finally (9) follows from
a direct calculation sketched in §6.

3. Let us introduce a Cartesian coordinate system with origin
at the vertex «, of C and such that v = (—1,0, ---,0). The descrip-
tion of C takes the form

x, = tana(x? + « .- + a2)V?

and the distance from K, which is in C, to the plane z, = 0 is minimal.
This means that each half-space

12) Ugky + ooo + U, = 0

must contain a point of B(w,)NoC for the following reason. If
0K NaC had no points in (12), a small translation of K in the direction
w would cause 0KNoC to be empty; a subsequent small translation
in the direction v would reduce the distance from K to x, = 0. Hence
(12) contains a point « of 0CNJK. The tangent plane to oC at z
is a support plane of 0K and the outer normal to this support plane
makes an angle of measure « with v, i.e., falls in w,. Thus « is
also in B(w,) as asserted.

We define conical bodies C, and C, to be the intersection of C
with the half-spaces

x, < Dtana,x, < 2D tan«a

respectively.
We first prove that

(13) B(w,)noC < C, .

Suppose to the contrary that there is a y in B(w,) NoC for which
y, > Dtan«. Since the radius of the intersection of C with

x, = Dtana
is D, a ball of radius D, centred at y, lies in a half-space of the form
(14) Uy + o0 + U, <0

for some %. As noted in the previous paragraph, there is a point x
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in the complement of (14) which is in B(w,)NoC. This would give
two points 2 and y in K separated by a distance greater than the
diameter D of K. The contradiction establishes (13).

Next we demonstrate

(15) Bw,) = C; .

Again the proof is by contradiction. Imagine z to be a point in
B(w,) for which z, > 2D tan«. 2 cannot be on the x,-axis for the
following reason. Let /I be a support plane to K which contains z.
There must be a half-space of the form (12) in which the points of
IINoC lie in the half-space

x, >2Dtan« .

This implies that the points of dKNoC which lie in (12) are at a
distance exceeding 2D from z which, again, contradicts the fact that
D is the diameter of K.

Let 2/ be the point nearest to z on the x,-axis. Set

u=(2—2)z—-7|;
% is orthogonal to v and 2’ and so
0< (U, 2 —2) = —(u, 2) .
Thus z satisfies
Uy + oo + Uz, < 0.
There is also a point x of

B(w,)NoC, = B(w,)NaC,

in the complementary half-space. Therefore the distance ||z — x|
must exceed the distance between (2D tan «, 0, ---, 0) and the inter-
section of 0C, with the plane

x, = Dtana.
That is to say
|z — x| > (D*+ D*tan*a)®* > D .

This is impossible for « and z in K which completes the proof of (15).
The plane

x, = 2Dtan«

is the cutting plane II, of §2; the conical convex body C, is K,.
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4. From the definitions of K, and K, we see that their support
planes I1,(w) and II,(u) coincide whenever their outer normal directions
% are in w,. Hence for such u, since K, & K,,

K,nl,u) & K;NI(w) ;

there is certainly equality when « is in the interior of w,. Inequality
(7) for j = 2 follows from the next lemma, to the proof of which
this section is devoted.

LEMMA. Let K and K' be two convex polyhedral bodies whose
support planes with outer normal direction u are denoted by II(w)
and II'(w). If

(16) Enll(w) & K'N1l'(w)
for each w in some Borel set @ of 2, then

S,K, ®) = S,(K', ®), for p=1,2, +++,n — 1.

We first require a description of S,(K, w) where K is polyhedral.
In this we follow work, as yet unpublished, of J. Zelver.

Consider a set of the form KN II(w); this is a p-face ¢, when ¢,
lies in a p-dimensional flat but not in a (» — 1)-dimensional flat. The
outer unit normals to support planes of K which contain e, sweep
out a closed, geodesically convex set w{e,) on 2 which is in <& and
is (n — p — 1)-dimensional. Throughout @(e,) we distribute mass
with constant density \,(e,) equal to the p-dimensional volume of e,.
Thus if w is any subset of w(e,) which is in & and if p,_,_ (@) is
its (n — p — 1)-dimensional volume, then the mass falling in ® is
Mot »(@). The representation we seek is

18 Sp(K, @) = 30, tnp (@1 a)(ep))/<’@ 0 1) ,

where the starred summation is taken over all ¢, in JK.
Consider the vector sum K + ¢ and let /1*(u) signify its support
plane with outer normal . If 2’ is a point of

(K +tEynil*(u) ,
then there is a unique point z in KN/ (u) such that
19 2 —x=1tu.

Suppose ¢, to be the face of lowest dimension which contains ¢ and
let {ZI(«')} be the set of support planes of K which contain ¢, where
w ranges over w(e,). We form
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(20) LJ {(K + tE)nII*(w)},

where the starred union is taken over those ' in wNw(e,). If (20)
is not empty, it is made up of points 2’ to each of which corresponds
a unique z on

L*J (KNnII(w)) = e,

for which (19) holds. Thus (20) is the Cartesian product of ¢, with
that part of the boundary of ¢E which is swept out by rays whose
directions are in wNw(e,). Therefore, empty or not, the (n — 1)-
dimensional measure of (20) is

PN (€p) tap (@ N O(e,))

We add up all such contributions to S,_,(K + tE, ) ard obtain
the sum

SIS e i@ N1 0e)

On the other hand, from the generalized Steiner formula [3, p. 31],
we have

S, (K + B, @) = 3, t"—w(” ) 1>s,,(K, ).

The comparison of coefficients of like powers of ¢ in these two re-
presentations of S, (K + tE, w) yields (18).

Choose u in w; neither set in (16) is empty and so II(u) and
II'(u) share a common point, have the same normal direction and so
coincide. We have

K'Nnll(u) = e,

for some p. By (16) either KN /1(u) is a face e, of the same dimension
p or this intersection is a face of lower dimension. In the latter
case there is no contribution to the sum in (18), i.e., the left side
of (17), whereas there would be a positive contribution to the right
side of (17). In the former case, from (16) it follows that

(21) No(€5) = Ny(ep) -
Also
(22) /’ln—p—l(w n a)(e;)) = M'IL—P—I(G) N (!)(Gp)) .

To see this, we prove that the two argument sets in (22) coincide
by showing that, for any « in 2, we have KNII(u) 2 ¢, if and only
if K'Nll(uw) 2 é,.
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If K'NII(u) 2 e, then ¢, S ¢, < II(w) and e, also lies in oK.
Hence e, lies in KNII(u). Suppose e, & KNII(u); then e, lies in
II(w). Since e, e, by (16) and these two sets have the same di-
mensionality, any point xz in e, is a linear combination of p + 1
suitable points in ¢,. But, being such a combination of points in
II(w), x must be in IT(u). Thus ¢, is in both II(u) and K’ and so in
their intersection.

Substitution from (21) and (22) into the representation (18) as it
applies to K and K’ proves (17).

5. Our next step is to prove (7) for j = 3. We first settle the
simplest case: p = n — 1. It is clear from the construction of K,
and K, that, for 7 = 3, 4:

S, (Kiy 2 — @) = S,_(Ki, {—v}) ,
S (K 0,) = S, (K, 00,)
and
S, (K, 0w,) cosa = S, _(K;, {—7}) .
Consequently
S,_(K;, 2) = (1 + cosa)S,_ (K, w,) .

Since K, & K, and S,_(K, 2) is increasing in K, it follows that (7)
holds for 7 =8, p=n —1. For the cases 1< p<n —1 a more
elaborate argument is needed.

We shall examine the behaviour of S, (K;, w,) in K; by studying
that of

Q= @wS, K, dow),i=34.

—wy

These integrals will be reduced to iterated integrals. For this pur-
pose we let 2,_, denote the set of v on £ which are orthogonal to
v and we form, for each # in 2,_,, the vectors

u = [ = Mu+ M=)/l = Mu + M=) .
As before, v is the centre of w,. We have
(2 v) = —M(GON",
where
p(\) =1 — 20 + 2)2% .

Also, if s signifies arc length along the circle through v and wu,
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dsdn = 1/(\) .
Define N, < 0 by
=Xy = €08 a(p(M))*

As u passes over 2,_, and ) over the interval A, <M < 1, u; sweeps
out

2 —w, —{—7}.
For such w and \:
H(u)NK; = IL(w)NII,NK; = II;(w)Nk;,
where we have set
ki - Kiﬂno ’

and we recall that 77, is the support plane of K; with outer normal
—v. If we view each k; as a nondegenerate convex body in the
(n — 1)-dimensional space II,, then the outer normals u to k; fall in
Q... and k; has area functions

Sl(kil 7])’ LR an—Z(ki’ 7])

defined over the Borel sets n of 2,_.
We write Q; as an iterated integral

Szoﬁﬁ(ggw%(’% d’/W)))% = 9S,(kiy 2,_1) »

where
_ 81 —NdM
20 ()

Here we have used the fact that the point —wv can be deleted from
2 — w, without affecting @, in virtue of (3) and the assumption that
p<n—1, Since k, Sk,

SP(kS’ ‘Qn—l) é Sp(ku ‘Qn—l)
and, from the negativity of g, it follows that
Q=Q..

The first condition in (2), which is satisfied by any area function,
shows that

Q: + S W, u)S,(Ky dov(uz)) = 0 .

Hence, from our last inequality, we obtain
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(29) Swa(”’ u)Sy(Kyy doo(u)) < La(”’ 1) S,(K.y doo()) -
Let 2, signify the vertex of the cone K, and denote by o’ the
interior of ®,. Then for all % in
K.n1l(u) = x,
and, because p =1,
S(K,05) =0.

Therefore on the right side of (23) the integration needs to be ex-
tended only over dw, throughout which (v, u;) is cosa. This yields
for the right side of (23)

cos aS,(K,, ®,) .
Consider the left side of (23). For u; in ®w, we have
(v, u;) = cos

and so we may strengthen inequality (23) by replacing the left side
by
cos aS, (K, @,) .

After division by cos @ the strengthened inequality is just (7) ifor
J=3l=p<n-—1

6. It remains to prove (9). In the Cartesian coordinate system
of section three, K, is the set of points x for which

tana(x; + - + 22)? < x, £ 2Dtana .

Let ¢tE* be the convex body formed by the intersection of the’ball
tE with the reflected polar cone to C, i.e.,

®, < —ctno(al + oo + 22,

The vector sum K, + tE* is a convex body of revolution whose radial
distance 7(¢) in the plane x, = & has the representation
r@) =@ - &) —t< &< —teosa;
(24) = éctna + fesca, —tcosa < < 2Dtana — tcosa ;
=2Dsec’a — ftana,2Dtana — tcosa < £ < 2Dtana .

The volume V(K, + tE*) is

©5) w,,_lgzl:mar"-l(é)dé/(n —1.
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Here w,_, is the area of the unit spherical surface in Euclidean
(n — 1)-dimensional space and is given by

W,y = 28"V ((n — 1)/2) ,

where I" is the usual gamma function.
We equate (25) with the Steiner polynomial

n

VK, + tE*) = 3, (Z)t”“” V(K. E*),

p=0

where V,(K,, E*) is the mixed volume

V(KU R Ku E*’ "',E*) .
SN————— ey ———

¥4 n—p

Substitution from (24) into (25) and a comparison of coefficients of
like powers of ¢ yields

(26) V.(K,, E*) = 0,_(2D)*(sin a)*~*"*sec a/n(n — 1) .

We consider next the brush set (Biirstenmenge) B,(K,, ®,) which
is formed from K, in the following manner. At each point z of

U (K.n 1T (u)

’ILEll)a

we draw all segments x + 6u, 0 < 8 < ¢, corresponding to w in ,.
The union of these segments is B,(K,, ®,). Clearly this is

(K, + tE*) — K,
and so the volume V,(K,, w,) of B,(K,, ®,) is

VK, + tE*) — V(K) = 5, (L) V,(K. B -

On the other hand, cf. [3, p. 31],

n—1

VK, 0) = S <Z>t”—”Sp(K4, @) .

»=0

A comparison of coefficients of like powers of ¢ in these two repre-
sentations of V,/(K,, w,) yields

S,(K,, ®,) = nV,(K,, E*)
and this, together with (26), gives (9) with
A=2w,_[/(n—1).
This completes the proof of (1).
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