CHARACTERIZING THE DISTRIBUTIONS OF THREE INDEPENDENT n-DIMENSIONAL RANDOM VARIABLES, X_1, X_2, X_3, HAVING ANALYTIC CHARACTERISTIC FUNCTIONS BY THE JOINT DISTRIBUTION OF $(X_1 + X_3$, $X_2 + X_3)$

PAUL G. MILLER
CHARACTERIZING THE DISTRIBUTIONS OF THREE INDEPENDENT \(n \)-DIMENSIONAL RANDOM VARIABLES, \(X_1, X_2, X_3 \), HAVING ANALYTIC CHARACTERISTIC FUNCTIONS BY THE JOINT DISTRIBUTION OF \((X_1 + X_3, X_2 + X_3)\).

Paul G. Miller

Kotlarski characterized the distribution of three independent real random variables \(X_1, X_2, X_3 \) having nonvanishing characteristic functions by the joint distribution of the 2-dimensional vector \((X_1 + X_3, X_2 + X_3)\). In this paper, we shall give a generalization of Kotlarski’s result for \(X_1, X_2, X_3 \) \(n \)-dimensional random variables having analytic characteristic functions which can meet the value zero.

In [3], Kotlarski shows that, for three independent random variables \(X_1, X_2, X_3 \), the distribution of \((X_1 + X_3, X_2 + X_3)\) determines the distributions of \(X_1, X_2 \) and \(X_3 \) up to a change of the location if the characteristic function of the pair \((X_1 + X_3, X_2 + X_3)\) does not vanish. Kotlarski also remarks that this result can be generalized in two ways. The statement remains true if the requirement that the pair \((X_1 + X_3, X_2 + X_3)\) has a nonvanishing characteristic function is replaced by the requirement that the random variables, \(X_1, X_2, X_3 \), possess analytic characteristic functions. The statement also remains true if \(X_1, X_2 \) and \(X_3 \) are \(n \)-dimensional real random vectors such that the pair \((X_1 + X_3, X_2 + X_3)\) has a nonvanishing characteristic function. In this paper, Kotlarski’s result is generalized to the case where \(X_1, X_2, \) and \(X_3 \) are \(n \)-dimensional real random vectors possessing analytic characteristic functions.

1. Some notions and lemmas about analytic functions of several complex variables. Let \(R_n \) denote \(n \)-dimensional real Euclidean space, \(C_n \) denote \(n \)-dimensional complex Euclidean space, and let \(f(t_1, \ldots, t_n) \) be defined on some domain \(D \) in \(C_n \). The function \(f \) is said to be **analytic at the point** \((t_1^0, \ldots, t_n^0)\) in \(D \) if \(f \) can be represented by a convergent power series in some neighborhood of \((t_1^0, \ldots, t_n^0)\). The function \(f \) is said to be **analytic on the domain** \(D \) if it is analytic at every point in \(D \). We now list several lemmas concerning analytic functions of several complex variables; for a discussion of these lemmas and further exposition on this theory, see [2].

Lemma A. If \(f(t_1, \ldots, t_n) \) and \(g(t_1, \ldots, t_n) \) are analytic at the
point \((t_1, \cdots, t_n)\), and if \(f(t_1, \cdots, t_n) \neq 0\), then the quotient \(\frac{g}{f}\) is also analytic at \((t_1, \cdots, t_n)\).

Lemma B. (Principle of analytic continuation). If \(f\) and \(g\) are analytic on some domain \(D\) in \(\mathbb{C}_n\) and if \(f(t_1, \cdots, t_n) = g(t_1, \cdots, t_n)\) at every point in some subdomain of \(D\), then \(f(t_1, \cdots, t_n) = g(t_1, \cdots, t_n)\) at all points of \(D\).

2. The main theorem and its proof.

Theorem. Let \(X_1, X_2, X_3\) be three independent, real, \(n\)-dimensional random vectors, and let \(Z_1 = X_1 + X_3, Z_2 = X_2 + X_3\). If the random vectors \(X_k\) possess characteristic functions \(\phi_k\) which are analytic on domains \(D_k\), with \(\overline{0} \in D_k\), \((k = 1, 2, 3)\), then the distributions of \((Z_1, Z_2)\) determines the distributions of \(X_1, X_2\) and \(X_3\) up to a change of the location.

Proof. Let \(t = (t_1, t_2, \cdots, t_n), s = (s_1, s_2, \cdots, s_n)\) denote arbitrary points in \(\mathbb{C}_n\) and \(\overline{0} = (0, 0, \cdots, 0)\) denote the origin in \(\mathbb{C}_n\); let

\[
||t|| = V |t_1|^2 + |t_2|^2 + \cdots + |t_n|^2
\]

and let \(t \cdot s = t_1s_1 + t_2s_2 + \cdots + t_ns_n\).

Let \(\phi_k = \mathbb{E}e^{it \cdot X_k}\), the characteristic function of \(X_k\), be defined on the domain \(D_k \subset \mathbb{C}_n\), \((k = 1, 2, 3)\). Then, letting \(\phi(t, s)\) denote the characteristic function of the distribution of the pair \((Z_1, Z_2)\), we have

\[
\phi(t, s) = \mathbb{E}e^{it \cdot (Z_1 + s \cdot Z_2)}
\]

\[
= \mathbb{E}e^{it \cdot (X_1 + s \cdot X_3 + (t + s) \cdot X_3)}
\]

\[
= \mathbb{E}e^{it \cdot X_1} \mathbb{E}e^{is \cdot X_2} \mathbb{E}e^{i(t + s) \cdot X_3}
\]

\[
= \phi_1(t) \phi_2(s) \phi_3(t + s)
\]

where this function is defined on the domain

\[
D = \{(t, s): t \in D_1, s \in D_2, (t + s) \in D_3\} \subset \mathbb{C}_{2n}.
\]

Let \(U_1, U_2, U_3\) be three other independent, real, \(n\)-dimensional random vectors possessing characteristic functions \(\psi_1, \psi_2, \psi_3\) which are analytic on domains \(D_1^*, D_2^*, D_3^*\). Let \(V_1 = U_1 + U_3, V_2 = U_2 + U_3\) and let \(\psi(t, s) = \mathbb{E}e^{it \cdot (V_1 \cdot (t \cdot t_2))}\). Calculations analogous to those above yield

\[
\psi(t, s) = \psi_1(t) \psi_2(s) \psi_3(t + s)
\]

on

\[
D^* = \{(t, s): t \in D_1^*, s \in D_2^*, (t + s) \in D_3^*\} \subset \mathbb{C}_{2n}.
\]
Suppose that the pairs \((Z_1, Z_2)\) and \((V_1, V_2)\) have the same distribution; we shall show that the distributions of \(X_k\) and \(U_k\), \((k = 1, 2, 3)\) are equal up to a shift. If the pairs \((Z_1, Z_2)\) and \((V_1, V_2)\) have the same distribution, their characteristic functions are equal so that \(D = D^*\) and

\[
\psi_1(t) \psi_2(s) \psi_3(t + s) = \phi_1(t) \phi_2(s) \phi_3(t + s).
\]

Since each of the functions in equation (1) is analytic and equal to 1 at 0, there exists a domain \(D^{**} \subset C_{2n}\) of the form

\[
\{(t, s): \sqrt{||t||^2 + ||s||^2} < \alpha, \alpha > 0\}
\]

such that, on \(D^{**}\), \(|\phi(t)| > 1/2\), \(|\phi_2(s)| > 1/2\), \(|\phi_3(t + s)| > 1/2\) and similar conditions hold for \(\psi_1, \psi_2, \psi_3\). Then on \(D^{**}\) equation (1) can be rewritten

\[
\frac{\psi_1(t)}{\phi_1(t)} \frac{\psi_2(s)}{\phi_2(s)} = \frac{\phi_3(t + s)}{\psi_3(t + s)}.
\]

Letting \(\chi(t) = \psi_1(t)/\phi_1(t)\), \(\chi_2(t) = \psi_2(t)/\phi_2(t)\), \(\chi_3(t) = \phi_3(t)/\psi_3(t)\), Lemma A asserts that each \(\chi_k\), \((k = 1, 2, 3)\), is analytic for \(||t|| < \alpha\). Then on \(D^{**}\) equation (2) becomes

\[
\chi_1(t) \chi_2(s) = \chi_3(t + s).
\]

For \(s = 0\), this equation reduces to \(\chi_1(t) = \chi_3(t)\); similarly, setting \(t = 0\) yields \(\chi_2(s) = \chi_3(s)\) so that, on \(D^{**}\),

\[
\chi_3(t) \chi_3(s) = \chi_3(t + s).
\]

In [1], it is shown that the only nonzero analytic solutions of (4) are the exponential functions, \(e^{ct}\) where \(c \in C_n\).

Therefore, for \(||t|| < \alpha\), \(\psi_3(t) = e^{-ct}\phi_3(t)\); since \(\psi_3\) and \(\phi_3\) are analytic on \(D_3\), Lemma B asserts that \(\psi_3(t) = e^{-ct}\phi_3(t)\) for all \(t \in D_3\). Since \(\chi_3(t) = \chi_1(t)\) for \(||t|| < \alpha\), \(\chi_1(t) = e^{ct}\phi_1(t)\) so that \(\psi_1(t) = e^{ct}\phi_1(t)\) for \(||t|| < \alpha\). Again, Lemma B asserts that \(\psi_1(t) = e^{ct}\phi_1(t)\) for all \(t \in D_1\). A similar argument yields \(\psi_2(t) = e^{ct}\phi_2(t)\) for all \(t \in D_2\).

Since \(\phi(-t) = \overline{\phi(t)}\), the conjugate of \(\phi(t)\), for any characteristic function \(\phi\) and any \(t \in R_n\), it follows that \(c = ib\) where \(b \in R_n\). Therefore, \(\psi_1(t) = e^{ibt}\phi_1(t)\), \(\psi_2(t) = e^{ibt}\phi_2(t)\), \(\psi_3(t) = e^{-ibt}\phi_3(t)\). From this it follows that the distributions of \(X_k\) are equal to those of \(U_k\), \((k = 1, 2, 3)\), up to a change of the location, and the proof is complete.

3. Applications of the theorem. The following two examples show how the theorem can be applied to random vectors \(X_1, X_2, X_3\).
of the same dimension, which possess analytic characteristic functions
and for which the characteristic function of \((X_1 + X_3, X_2 + X_3)\) assumes the value zero.

Let \(X = (X_1, \ldots, X_n)\) denote a random vector; then \(X\) has multivariate distribution, \(Mu(r; P_1, \ldots, P_n)\), of order \(r\) with parameters \(P_1, \ldots, P_n, 0 \leq P_j, P_1 + P_2 + \cdots + P_n \leq 1\), if, for every set of integers

\[\{k_j: j = 1, 2, \ldots, n, k_j \geq 0, \sum_{i=1}^{n} k_i \leq r \}, \]

\[P(X_1 = k_1, \ldots, X_n = k_n) = \frac{r! P_1^{k_1} \cdots P_n^{k_n} P_0^{r-k_1-\cdots-k_n}}{k_1! k_2! \cdots k_n! (r - k_1-\cdots-k_n)!} \]

where \(P_0 = 1 - P_1 - P_2 - \cdots - P_n\). The characteristic function of \(X\),
\[\phi(t_1, \ldots, t_n) = (P_0 + P_1 e^{it_1} + \cdots + P_n e^{it_n})^r, \]
is clearly an analytic function on \(C^n\). Notice that, for the choice of parameters \(P_1 = P_2 = \cdots = P_n = 1/2n, P_0 = 1/2\), \(\phi\) has zeros at the points \((2m_1 + 1) \pi, (2m_2 + 1) \pi, \cdots, (2m_n + 1) \pi)\), where \(m_1, m_2, \ldots, m_n\) are integers.

Let \(Mu^*(r_1, r_2, r_3; P_1, P_2, \ldots, P_n)\) denote the joint distribution of the pair \((Z_1, Z_2)\) where \(Z_1 = X_1 + X_3, Z_2 = X_2 + X_3\) and each \(X_k\), \((k = 1, 2, 3)\) has distribution \(Mu(r_k; P_1, \ldots, P_n)\). With these definitions, the above theorem asserts the following result.

COROLLARY 1. Let \(X_1, X_2, X_3\) be three independent, \(n\)-dimensional, random vectors and let \(Z_1 = X_1 + X_3\), \(Z_2 = X_2 + X_3\). If the pair \((Z_1, Z_2)\) has distribution \(Mu^*(r_1, r_2, r_3; P_1, \ldots, P_n)\), then, except for perhaps a change of location, the distribution of \(X_k\) is \(Mu(r_k; P_1, \ldots, P_n)\), \((k = 1, 2, 3)\).

As another application of the above theorem, let \(X\) be a \(2\)-dimensional real random vector and let us say that \(X\) has distribution \(U(a), a > 0\), if its distribution has density function

\[f(x, y) = \begin{cases} \frac{1}{2a^2} & \text{for } |x| + |y| \leq a \\ 0 & \text{for } |x| + |y| > a \end{cases} \]

If \(X\) has distribution \(U(a)\), its characteristic function

\[\phi_x(t_1, t_2) = \sin \left[(t_1 + t_2) \frac{a}{2} \right] \sin \left[(t_1 - t_2) \frac{a}{2} \right] \]

\[a^2 (t_1 + t_2) (t_1 - t_2) \]

is an analytic function defined on \(C_2\) with zeros at the points \((t_1, t_2)\) where \((t_1 \pm t_2) = 2\pi/a m, m = \pm 1, \pm 2, \ldots\). Let \(U^*(a_1, a_2, a_3)\) denote the joint distribution of the pair \((Z_1, Z_2)\) where \(Z_1 = X_1 + X_3\) and
$Z_2 = X_2 = X_3$ and each X_k has distribution $U(a_k)$, $(k = 1, 2, 3)$. With these definitions, the above theorem asserts the following result.

Corollary 2. Let X_1, X_2, X_3 be three independent 2-dimensional random vectors and let $Z_1 = X_1 + X_3, Z_2 = X_2 + X_3$. If the pair (Z_1, Z_2) has distribution $U^*(a_1, a_2, a_3)$, then, except for perhaps a change of location, the distribution of X_k is $U(a_k)$, $(k = 1, 2, 3)$.

The author is indebted to Professor Ignacy Kotlarski for suggesting the problem discussed in this paper and for several helpful comments pertaining to its solution.

Bibliography

Received February 18, 1970.

Oklahoma State University
Valentin Danilovich Belousov and Palaniappan L. Kannappan, *Generalized Bol functional equation* .. 259
Charles Morgan Biles, *Gelfand and Wallman-type compactifications* 267
Louis Harvey Blake, *A generalization of martingales and two consequent convergence theorems* .. 279
Dennis K. Burke, *On p-spaces and wΔ-spaces* .. 285
John Ben Butler, Jr., *Almost smooth perturbations of self-adjoint operators* 297
Michael James Cambern, *Isomorphisms of C_0(Y) onto C(X)* 307
David Edwin Cook, *A conditionally compact point set with noncompact closure* ... 313
Timothy Edwin Cramer, *Countable Boolean algebras as subalgebras and homomorphs* .. 321
John R. Edwards and Stanley G. Wayment, *A v-integral representation for linear operators on spaces of continuous functions with values in topological vector spaces* .. 327
Mary Rodriguez Embry, *Similarities involving normal operators on Hilbert space* .. 331
Lynn Harry Erbe, *Oscillation theorems for second order linear differential equations* .. 337
William James Firey, *Local behaviour of area functions of convex bodies* 345
Joe Wayne Fisher, *The primary decomposition theory for modules* 359
Gerald Seymour Garfinkel, *Generic splitting algebras for Pic* 369
J. D. Hansard, Jr., *Function space topologies* .. 381
Keith A. Hardie, *Quasifibration and adjunction* .. 389
G. Hochschild, *Coverings of pro-affine algebraic groups* 399
Gerald L. Itzkowitz, *On nets of contractive maps in uniform spaces* 417
Melven Robert Krom and Myren Laurance Krom, *Groups with free nonabelian subgroups* .. 425
James Robert Kuttler, *Upper and lower bounds for eigenvalues by finite differences* .. 429
Dany Leviatan, *A new approach to representation theory for convolution transforms* .. 441
Richard Beech Mansfield, *Perfect subsets of definable sets of real numbers* 451
Brenda MacGibbon, *A necessary and sufficient condition for the embedding of a Lindelof space in a Hausdorff 3σ space* .. 459
David G. Mead and B. D. McLemore, *Ritt’s question on the Wronskian* 467
Edward Yoshio Mikami, *Focal points in a control problem* 473
Paul G. Miller, *Characterizing the distributions of three independent n-dimensional random variables, X_1, X_2, X_3, having analytic characteristic functions by the joint distribution of (X_1 + X_3, X_2 + X_3)* .. 487
P. Rosenthal, *On the Bergman integral operator for an elliptic partial differential equation with a singular coefficient* .. 493
Douglas B. Smith, *On the number of finitely generated O-groups* 499
J. W. Spellmann, *Concerning the domains of generators of linear semigroups* 503
Arne Stray, *An approximation theorem for subalgebras of H_∞* 511
Arnold Lewis Villone, *Self-adjoint differential operators* 517