SELF-ADJOINT DIFFERENTIAL OPERATORS

ARNOLD LEWIS VILONE
SELF-ADJOINT DIFFERENTIAL OPERATORS

ARNOLD L. VILLONE

Let \mathcal{H} denote the Hilbert space of square summable analytic functions on the unit disk, and consider the formal differential operator

$$L = \sum_{i=0}^{n} p_{i} D^{i}$$

where the p_{i} are in \mathcal{H}. This paper is devoted to a study of symmetric operators in \mathcal{H} arising from L. A characterization of those L which give rise to symmetric operators S is obtained, and the question of when such an S is self-adjoint or admits of a self-adjoint extension is considered. If A is a self-adjoint extension of S and $E(\lambda)$ the associated resolution of the identity, the projection E_{λ} corresponding to the interval $\Delta = (a, b]$ is shown to be an integral operator whose kernel can be expressed in terms of a basis of solutions for the equation $(L - \lambda)u = 0$ and a spectral matrix.

Let \mathcal{A} denote the space of functions analytic on the unit disk and \mathcal{H} the subspace of square summable functions in \mathcal{A} with inner product

$$(f, g) = \int_{|z|<1} f(z)\overline{g(z)}dzd\gamma.$$

Then \mathcal{H} is a Hilbert space with the reproducing property, i.e., for each z there exists a unique element K_{z} of \mathcal{H} such that

$$f(z) = (f, K_{z}).$$

Moreover, if the sequence $\{f_{n}\}$ converges to f in norm, $f_{n}(z)$ converges to $f(z)$ uniformly on compact subsets of the disk. A complete orthonormal set for \mathcal{H} is provided by the normalized powers of z,

$$e_{n}(z) = [(n + 1)/\pi]^{1/2}z^{n}, \quad n = 0, 1, \cdots.$$

From this it follows that \mathcal{H} is identical with the space of power series $\sum_{n=0}^{\infty} a_{n}z^{n}$ which satisfy

$$(1.1) \quad \sum_{n=0}^{\infty} |a_{n}|^{2}/(n + 1) < \infty.$$

Consider the formal differential operator

$$L = p_{n}D^{n} + \cdots + p_{1}D + p_{0},$$

517
where \(D = d/dz \) and the \(p_i \) are in \(\mathcal{A} \). For \(f \) in \(\mathcal{H} \) the element \(Lf \) is in \(\mathcal{A} \), but not necessarily in \(\mathcal{H} \). To see this we take \(L = d/dz \) and \(f(z) = \sum_{n=1}^{\infty} n^{-1/2} z^n \), from (1.1) it follows that \(f \) is in \(\mathcal{H} \) but \(Lf \) is not. In order to consider \(L \) as an operator in \(\mathcal{H} \) we must restrict the class of functions on which \(L \) acts in some suitable manner. Since our concern is with densely defined operators it is only natural to demand that powers of \(z \) be mapped into \(\mathcal{H} \). This requires some restrictions on the coefficients of \(L \). As an example consider the operator \(L = pD \) where \(p(z) = \sum_{n=0}^{\infty} (n+1)z^n \).

We have \(Le_k(z) = k(k+1)^{1/2}\pi^{-1/2} \sum_{n=k}^{\infty} (n-k)^{1/2} z^n \), and hence \(Le_k \notin \mathcal{H} \). A sufficient condition for the \(Le_k \) to be in \(\mathcal{H} \) is that the coefficients \(p_i \) be in \(\mathcal{H} \).

Let \(L = \sum_{i=0}^{\infty} p_i D^i \), where the \(p_i \) are in \(\mathcal{H} \), and let \(\mathcal{D}_0 \) denote the span of the \(e_k \) and \(\mathcal{D} \) the set of all \(f \) in \(\mathcal{H} \) for which \(Lf \) is in \(\mathcal{H} \). We now define the operators \(T_0 \) and \(T \) as follows.

\[
T_0 f = Lf \quad f \in \mathcal{D}_0 ,
\]
\[
T f = Lf \quad f \in \mathcal{D} .
\]

Theorem 1.1. \(T_0 \) and \(T \) are densely defined operators with range in \(\mathcal{H} \), \(T_0 \subseteq T \), and \(T \) is closed.

Proof. We first show that \(T \) is closed. Let \(\{f_n\} \) be a sequence of functions in \(\mathcal{D} \) such that \(f_n \rightarrow f \) and \(Tf_n \rightarrow g \), hence \(f_n(z) \) and \(Lf_n(z) \) converge uniformly on compact subsets to \(f(z) \) and \(g(z) \) respectively. But \(Lf_n(z) \) also converges to \(Lf(z) \). Hence \(Lf(z) = g(z) \), \(|z| < 1 \), so \(Tf \in \mathcal{H} \) and \(Tf = g \).

Since \(\mathcal{D}_0 \) is dense in \(\mathcal{H} \) and \(T_0 f = Tf \) for \(f \in \mathcal{D}_0 \cap \mathcal{D} \) it suffices to show that the \(e_j \) are in \(\mathcal{D} \). Since \(Le_j = \sum_{i=0}^{\infty} p_i D^i e_j \) and \(p_i D^i e_j \) is either zero or of the form \(p_i e_k \) for some nonnegative integer \(k \), it suffices to show that \(p_i e_k \in \mathcal{H} \). Let \(p_i = \sum_{j=0}^{\infty} a_j e_j \), a simple computation yields

\[
e_k e_j = [(k+1)\pi]^{1/2}[(j+1)/(j+k+1)]^{1/2} e_{j+k} ,
\]
and consequently,

\[
\|e_k p_i\| \leq [(k+1)\pi] \|p_i\| < \infty .
\]

\(T_0 \) and \(T \) are respectively the minimal and maximal operators in \(\mathcal{H} \) associated with the formal differential operator \(L \). We now proceed to study the class of formal differential operators for which \(T_0 \) is symmetric.

It is clear that the operator \(T_0 \) associated with the formal differential operator \(L \) is symmetric if and only if
We shall refer to those formal operators satisfying (1.2) as formally symmetric. As an example we have the real Euler operator
\[L = \sum_{i=0}^{n} a_i z^i D^i , \]
a_i real. Then \(L e_j = p(j) e_j \) where \(p \) is the characteristic polynomial
\[p(x) = a_0 + a_1 x + \cdots + a_n x(x-1) \cdots (x-n+1) . \]
Since \(p(j) = \overline{p(j)} \), \(L \) is formally symmetric. A characterization of formally symmetric \(L \) in terms of the coefficients \(p_i \) is given in the next section. We now proceed to the consideration of the adjoint operators \(T_0^* \) and \(T^* \). In what follows we shall make use of the result that if \(L \) is formally symmetric of order \(n \), then the coefficients \(p_i \) are polynomials of degree at most \(n + i \), \(i = 0, 1, \ldots, n \). A proof of this is given in Theorem 2.2.

Theorem 1.2. If \(T_0 \) is symmetric, \(T_0^* = T \) and \(T^* \subseteq T \). The closure of \(T_0, S \), is self adjoint if and only if \(S = T \).

Proof. By Theorem 2.2 the coefficients \(p_i \) are polynomials of degree at most \(n + i \). This implies that \(T_0 \) maps \(\mathcal{D}_0 \) into itself. In particular,
\begin{align*}
L e_m &= \sum_{i=0}^{m} a_i e_i , \quad 0 \leq m \leq n , \\
L e_{m+j} &= \sum_{i=j}^{2n+j} a_i e_i , \quad j = 1, 2, \ldots .
\end{align*}
Using this we show that \(T_0^* \subseteq T \). Let \(g = \sum_{i=0}^{\infty} a_i e_i \) and \(g^* = \sum_{j=0}^{\infty} b_j e_j \) be in the graph of \(T_0^* \) and consider the sequence \(\{ g_p \} \) in \(\mathcal{D}_0 \) defined as \(g_p = \sum_{j=0}^{p} a_j e_j \). Since \(g_p \to g \) we have \((T_0 e_k, g_p) \to (T_0 e_k, g) = (e_k, g^*)\). Hence \((e_k, T_0 g_p) \to (e_k, g^*)\). Now \(Lg \) is in \(\mathcal{D} \) and \(T_0 g_p \) converges to \(Lg \) uniformly on compact subsets. Since the \(e_j \) are just the normalized powers of \(z \), the power series expansion of \(Lg \) can be written as \(\sum_{j=0}^{\infty} c_j e_j(z) \). Since \(Lg_p(z) = \sum_{j=0}^{p} a_j L e_j(z) \) converges uniformly to \(\sum_{j=0}^{\infty} c_j e_j(z) \), it follows from (1.3) that \(Lg_p \) has the same coefficient of \(e_m \) as does \(Lg \) for \(p > n + m + 1 \). Hence \((e_m, T_0 g_p) = \bar{c}_m \) for \(p > n + m + 1 \) and since \((e_m, T_0 g_p) \to (e_m, g^*)\) we have \(c_m = b_m \). Therefore \(g^* = Lg \), so that \(g \in \mathcal{D} \) and \(g^* = Tg \).

To show that \(T \subseteq T_0^* \) it will suffice to show that \((T_0 e_m, g) = (e_m, Tg)\) for all \(g \) in \(\mathcal{D} \) and \(m = 0, 1, \ldots \). Let \(g = \sum_{i=0}^{\infty} a_i e_i \) be in \(\mathcal{D} \) and \(g_p \) as before. Since \(T_0 \) is symmetric and \(g_p \to g \) we have \((e_m, T_0 g_p) = (T_0 e_m, g_p) \to (T_0 e_m, g)\). By precisely the same argument
as before \((e_m, T_0 g_p) = (e_m, T g)\) for \(p > n + m + 1\), from which it follows that \((e_m, T g) = (T_0 e_m, g)\) and \(T_0^* = T\). Since \(T_0 \subseteq T\), \(T^* \subseteq T_0^* = T\).

The closure \(S\) of the symmetric operator \(T_0\) is given by \(T_0^{**} = T^* \subseteq T\). Since \(T\) is closed \(T^{**} = T\), from which it follows that \(S^* = T\). Hence \(S = T\) implies \(S = S^*\). Conversely if \(S\) is self-adjoint we have \(S = T^* = S^* = T\).

A sufficient condition for \(T\) to be self-adjoint is given by the following theorem.

Theorem 1.3. For \(f = \sum_{i=0}^\infty \alpha_i e_j\) set \(f_m = \sum_{j=0}^m \alpha_j e_j\). If \(\sup_{m} ||T f_m|| < \infty\) for each \(f\) in \(\mathcal{D}\), then \(S\) is self-adjoint.

Proof. Since \(T^* \subseteq T\), \(T\) symmetric implies \(T = T^*\) and hence \(S = S^*\). We show that \((T f, g) - (f, T g)\) vanishes for all \(f, g\) in \(\mathcal{D}\). If \(L\) is of order \(n\) we have \((T f_m, g_p) = (T f, g_p)\) for \(m > n + p + 1\). Using this fact and the symmetry of \(T_0\) we obtain

\[
(T f, g_k) = (T f_{kn+n+1}, g_{kn}) = (f_{kn+n+1}, T g_{kn})
\]

\[
= (f_{kn-n-1}, T g_{kn}) + (f_{kn+n+1} - f_{kn-n-1}, T g_{kn})
\]

\[
= (f_{kn-n-1}, T g) + (f_{kn+n+1} - f_{kn-n-1}, T g_{kn})
\]

\(k = 1, 2, \ldots\).

Therefore,

\[
(T f, g) - (f, T g) = \lim_{k \to \infty} (f_{kn+n+1} - f_{kn-n-1}, T g_{kn}).
\]

Since the \(T g_{kn}\) are bounded in norm this implies \((T f, g) - (f, T g) = 0\).

Corollary. If \(L\) is a formally symmetric Euler operator, then \(S\) is self-adjoint.

Proof. For \(f = \sum_{i=0}^\infty b_i e_j\) in \(\mathcal{D}\), \(T f\) and \(T f_m\) are given by \(\sum_{i=0}^\infty p(j) b_i e_j\) and \(\sum_{i=0}^m p(j) b_i e_j^i\) respectively, where \(p(x)\) is the characteristic polynomial for \(L\). Hence

\[
||T f_m||^2 = \sum_{j=0}^m p(j)^2 ||b_j||^2 \leq ||T f||^2,
\]

and the result follows.

2. Formal considerations. The formal operator \(L = \sum_{i=0}^n p_i D^i\) is formally symmetric if

\[(L e_n, e_m) = (e_n, L e_m), n, m = 0, 1, \ldots .\]

To obtain a characterization of the formally symmetric operators
in terms of their coefficients we first determine the action of L on e_k.

Lemma 2.1. Let $L = \sum_{i=0}^{n} p_i D^i$ where $p_i(z) = \sum_{k=0}^{\infty} a_k(i) z^k$. Then $L e_i = \sum_{j=0}^{\infty} c_{ij} e_j$ where

$$
c_{ij} = A(i, j) \sum_{k=0}^{n} B(i, k) a_{j-k+i}(k), \quad i, j = 0, 1, \ldots
$$

(2.1)

$$
A(i, j) = [(i + 1)/(j + 1)]^{i/2},
B(i, k) = i!/i - k! \quad i \geq k
= 0 \quad i < k.
$$

Proof. Consider the elementary operators $L_{pq} = z^p D^q$, $p, q = 0, 1, \ldots$. A simple calculation yields

$$
L_{pq} e_m = B(m, q) A(m, m + p - q) e_{m+p-q}.
$$

Now consider $L e_m$ (as an element of \mathcal{A}),

$$
L e_m(z) = \sum_{i=0}^{n} \sum_{k=0}^{\infty} a_k(i) L_{ki} e_m(z)
$$

$$
= \sum_{i=0}^{n} \sum_{k=0}^{\infty} a_{k-m+i}(i) B(m, i) A(m, k) e_k(z)
$$

$$
= \sum_{k=0}^{\infty} c_{mk} e_k(z) \quad |z| < 1.
$$

But $e_k(z)$ is just a multiple of z^k, therefore it follows from the uniqueness of power series representation of elements of \mathcal{A}, that \(\sum_{k=0}^{\infty} c_{mk} e_k \) converges to $T e_m$ in \mathcal{A}.

It follows that L is formally symmetric if and only if the coefficients $a_k(\zeta), \zeta, k = 0, 1, \ldots$, satisfy the linear system

(2.2)

$$
c_{ij} = \overline{c_{ji}}, \quad i, j = 0, 1, \ldots.
$$

The following provides a simplification of the system (2.2).

Theorem 2.2. If $L = \sum_{i=0}^{n} p_i D^i$ is formally symmetric the p_i are polynomials of degree at most $n + i$.

Proof. Consider $c_{n+p,0}$ for $p \geq 1$. Since $j - n - p < 0$ for $p \geq 1$ and $j = 0, \ldots, n$, $a_{j-n-p}(j) = 0$. Consequently $c_{n+p,0} = \overline{c_{0,n+p}}$ reduces to $A(0, n + p)a_{n+p}(0) = 0$, $p \geq 1$, and p_0 is of degree at most n. We now proceed inductively. Consider

(2.3)

$$
c_{n+p,k+1} = \overline{c_{k+1,n+p}}, \quad p \geq k + 2.
$$
Since \(k + 1 + j - n - p < 0 \) for \(p \geq k + 2 \) and \(j = 0, \ldots, n \), (2.3) reduces to

\[
A(k + 1, n + p) \sum_{j=0}^{k} B(k + 1, j) a_{n+p+j-k-1}(j) = 0, \quad p \geq k + 2.
\]

Since \(n + p + j - k - 1 \geq n + j + 1 \), it follows from the inductive hypothesis that \(a_{n+p+j-k-1}(j) = 0 \) for \(j = 0, \ldots, k \), and hence

\[
A(k + 1, n + p)(k + 1)! a_{n+p}(k + 1) = 0, \quad p \geq k + 2.
\]

Therefore degree \(p_{k+1} \leq n + k + 1 \).

This result allows a considerable simplification of the system (2.2). For each nonnegative integer \(p \) consider the subsystem \(S_p \) of (2.2)

\[
c_{i,i+p} = \bar{c}_{i+p,i}, \quad i = 0, 1, \ldots.
\]

Since the equation \(c_{ij} = \bar{c}_{ji} \) appears only in \(S_{i-j} \), we have a partition of (2.2). Since the \(p_i \) are polynomial of degree at most \(n + i \),

\[
a_{i+p}(\ell) = 0 \quad p > n, \quad \ell = 0, \ldots, n,
\]

from which it follows that \(S_p \) is trivial for \(p > n \). From (2.1) we see that \(a_{\ell}(i) \) appears only in \(S_{\ell-i} \). Hence (2.2) is equivalent to the \(n + 1 \) systems,

\[
S_p: c_{i,i+p} = \bar{c}_{i+p,i}, \quad i = 0, 1, \ldots,
\]

where the \(a_{i+p}(j) \) appear only in \(S_p \). Using (2.1) this becomes

\[
S_p: \sum_{k=0}^{n} a_{p+k}(k) B(i,k) = \sum_{k=p}^{n} \bar{a}_{k-p}(k) B(i+p,k) A^2(i+p,i).
\]

Theorem 2.3. The system \(S_p \) is satisfied if and only if

\[
j! a_{j+p}(j) = R^j_i, \quad j = 0, 1, \ldots, n,
\]

where \(R^j_i = \sum_{k=p}^{n} \bar{a}_{k-p}(k) B(i+p,k) A^2(i+p,i) \), and the \(R^j_i \) are obtained recursively by

\[
R^j_i = R^{j-1}_{i+1} - R^{j-1}_i.
\]

Proof. For fixed \(p \) denote the left and right hand sides of the \(i \)th member of \(S_p \) by \(L^i_i \) and \(R^i_i \) respectively. We now employ a reduction scheme. Form the sequence of systems \(\{L^i_i = R^i_i\}, \{L^i_i = R^i_i\}, \ldots \), where

\[
L^{i+1}_i = L^{i+1}_{i+1} - L^i_i, \quad R^{i+1}_i = R^{i+1}_{i+1} - R^i_i, \quad i, j = 0, 1, \ldots.
\]
By induction on j it can be shown that

$$L_i^j = \sum_{k=0}^{n} a_{k+p}(k) B(i, k - j) P_j(k)$$

where $P_j(k) = k(k - 1) \cdots (k - j + 1)$. Consequently, $L_i^j = j! a_{i+p}(j)$ and the necessity follows.

For the sufficiency we use the fact that for a given system of linear equations, $L_j^i = R_j^i$, $j = 0 \ldots, n$, there exists a unique set of linear systems $\{\hat{L}_i^j = \hat{R}_i^j\}, \ldots, \{\hat{L}_i^n = \hat{R}_i^n\}$ which have the properties $P1$ thru $P3$.

$$P1 \ \hat{L}_i^j = \hat{L}_i^{j-1} - \hat{L}_i^{j-1} \quad j = 1, \ldots, n$$

$$\hat{R}_i^j = \hat{R}_i^{j-1} - \hat{R}_i^{j-1} \quad i = 0, 1, \ldots$$

$$P2 \ \hat{L}_i^0 = L_i^0, \hat{R}_i^0 = R_i^0 \quad j = 0, \ldots, n$$

$$P3 \ \hat{L}_i^n = L_i^n, \hat{R}_i^n = R_i^n \quad i = 0, 1, \ldots$$

This set is constructed in the following manner.

The system $\{\hat{L}_i^j = \hat{R}_i^j\}$ is defined by $P3$. To satisfy $P1$ and $P2$ we define the system $\{\hat{L}_i^{n-1} = \hat{L}_i^{n-1}\}$ inductively by $\hat{L}_i^{n-1} = L_i^{n-1}$, $\hat{R}_i^{n-1} = R_i^{n-1}$, $\hat{L}_i^{n-1} = \hat{L}_i^{n-1} + L_i^n$, and $\hat{R}_i^{n-1} = \hat{R}_i^{n-1} + R_i^n$. Similarly we define the system $\{\hat{L}_i^{n-2} = \hat{R}_i^{n-2}\}$ through $\{\hat{L}_i^n = \hat{R}_i^n\}$ by means of the equations

$$\hat{L}_i^{n-2} = L_i^{n-2}, \hat{R}_i^{n-2} = R_i^{n-2}$$

$$\hat{L}_i^{n-2} = \hat{L}_i^{n-2} + \hat{L}_i^{n-3}, \hat{R}_i^{n-2} = \hat{R}_i^{n-2} + \hat{R}_i^{n-1}$$

$$\hat{L}_i^0 = L_i^0, \hat{R}_i^0 = R_i^0$$

$$\hat{L}_i^0 = \hat{L}_i^0 + \hat{L}_i^1, \hat{R}_i^0 = \hat{R}_i^0 + \hat{R}_i^1$$

From the method of construction the systems $\{\hat{L}_i^j = \hat{R}_i^j\}$ thru $\{\hat{L}_i^n = \hat{R}_i^n\}$ are the unique systems satisfying $P1$ thru $P3$.

Since $P_j(k)$ vanishes for $0 \leq k \leq j - 1$ it follows that $L_i^j = 0$ for $j > n$ and all i. Moreover, for $j = n$ we have $L_i^n = n! a_{n+p}(n)$, a constant independent of i. From (2.4) we see that $R_i^n = \sum_{k=p}^{n} \tilde{a}_{k-p}(k) C_k(i)$, where the $C_k(i)$ are polynomials in i of degree k. Hence $R_i^n = R_i^{n+1} - R_i^n$ can be written in the form $\sum_{k=p}^{n} \tilde{a}_{k-p}(k) C_k(i)$, where the $C_k(i)$ are of degree $k - 1$. Continuing in this manner we obtain

$$R_i^j = 0 \quad j > n \quad i = 0, 1, \ldots$$

$$R_i^n = R_i^n \quad i = 0, 1, \ldots$$

Hence the systems $\{L_i^j = R_i^j\}$ $j = 0, \ldots, n$ satisfy $P1$ thru $P3$ where $L_i^j = R_i^j$ corresponds to the $L_j^i = R_j^i$ and the system $\{\hat{L}_i^j = \hat{R}_i^j\}$ corresponds to the system S_p. This yields the sufficiency.

This theorem provides an algorithm for determining all formally
symmetric operators of a given order. As an application we give the general formally symmetric first order operator. Use of 2.5 for \(p = 0 \) and 1 yields

\[
L = (cz^2 + ax + \bar{c})d/dz + (2cz + b),
\]

where \(a \) and \(b \) are real.

3. Self-adjoint extensions. The operator \(S \) has another characterization which will be of use in the study of self-adjoint extensions. For \(f \) and \(g \) in \(\mathcal{D} \) consider the bilinear form

\[
\langle fg \rangle = (Lf, g) - (f, Lg),
\]

and let \(\mathcal{D} \) be the set of those \(f \) in \(\mathcal{D} \) for which \(\langle fg \rangle = 0 \) for all \(g \) in \(\mathcal{D} \). Since \(S = T^* \) and \(\mathcal{D}(T^*) = \mathcal{D} \), \(S \) has domain \(\mathcal{D} \).

Let \(\mathcal{D}^+ \) and \(\mathcal{D}^- \) denote the set of all solutions of the equations \(Lu = iu \) and \(Lu = -iu \) respectively, which are in \(\mathcal{H} \). It is known from the general theory of Hilbert space [3, p. 1227-1230] that

\[
\mathcal{D} = \mathcal{D} + \mathcal{D}^+ + \mathcal{D}^-,
\]

and every \(f \in \mathcal{D} \) has the unique representation

\[
f = \tilde{f} + f^+ + f^- , \quad (\tilde{f} \in \mathcal{D}, f^+ \in \mathcal{D}^+, f^- \in \mathcal{D}^-).\]

Let the dimensions of \(\mathcal{D}^+ \) and \(\mathcal{D}^- \) be \(m^+ \) and \(m^- \) respectively. Clearly, \(m^+ \) and \(m^- \) cannot exceed the order of \(L \). These integers are referred to as the deficiency indices of \(S \), and \(S \) has self-adjoint extensions if and only if \(m^+ = m^- \). Moreover \(S \) is itself self-adjoint if and only if \(m^+ = m^- = 0 \).

We assume that \(m^+ = m^- = m \) and seek to characterize all self-adjoint extensions of \(S \). Von Neumann has shown that the self-adjoint extensions of \(S \) are in a one-to-one correspondence with the unitary operators \(U \) of \(\mathcal{D}^+ \) onto \(\mathcal{D}^- \). Corresponding to any such \(U \) there exists a self-adjoint extension \(A \) of \(S \) whose domain is the set of all \(f \in \mathcal{D} \) which are of the form

\[
f = \tilde{f} + (I - U)f^+, \quad (f \in \mathcal{D}, f^+ \in \mathcal{D}^+),
\]

where \(I \) is the identity operator on \(\mathcal{D}^+ \). Conversely every such \(A \) has a domain of this type.

We now introduce the notion of abstract boundary conditions and indicate how the domain of any self-adjoint extension of \(S \) can be obtained. A boundary condition is a condition on \(f \in \mathcal{D} \) of the form

\[
\langle fh \rangle = 0 ,
\]
where \(h \) is a fixed function in \(\mathcal{D} \). The conditions

\[
\langle fh_j \rangle = 0, \quad j = 1, \ldots, n,
\]

are said to be linearly independent if the only set of complex numbers \(\alpha_1, \ldots, \alpha_n \) for which

\[
\sum_{j=1}^{n} \alpha_j \langle fh_j \rangle = 0
\]

identically in \(f \in \mathcal{D} \) is \(\alpha_1 = \cdots = \alpha_n = 0 \). A set of \(n \) linearly independent boundary conditions \(\langle fh_j \rangle = 0, \ j = 1, \ldots, n, \) is said to be self-adjoint if \(\langle h_jh_k \rangle = 0, \ j, k = 1, \ldots, n. \)

The following theorem follows directly from the proof of Theorem 3 in the paper of Coddington [1].

Theorem 3.1. If \(A \) is a self-adjoint extension of \(S \) with domain \(\mathcal{D}_A \), then there exists a set of \(m \) self-adjoint boundary conditions,

\[
\langle fh_j \rangle = 0, \quad j = 1, \ldots, m,
\]

such that \(\mathcal{D}_A \) is the set of all \(f \in \mathcal{D} \) satisfying these conditions. Conversely, if (3.3) is a set of \(m \) self-adjoint boundary conditions, there exists a self-adjoint extension \(A \) of \(S \) whose domain is the set of all \(f \in \mathcal{D} \) satisfying (3.3)

Let \(\phi_1, \cdots, \phi_m \) and \(\psi_1, \cdots, \psi_m \) be orthonormal sets for \(\mathcal{D}_+ \) and \(\mathcal{D}_- \) respectively and \((u_{jk}) \) a unitary matrix representing \(U \), then the \(h_j \) are given by

\[
h_j = \phi_j - \sum_{k=1}^{m} u_{jk} \psi_k, \quad j = 1, \ldots, m.
\]

Let \(A \) be a self-adjoint operator associated with \(L \) and \(E(\lambda) \) the corresponding resolution of the identity. We shall show the projection \(E_j \) corresponding to \(\Delta = (a, b] \) can be expressed as an integral operator with a kernel given in terms of a basis of solutions for \(Lu - \lambda u = 0 \) and a certain spectral matrix. Our work was inspired by the treatment of E. A. Coddington [2] of the case when \(A \) arises from a formal differential operator in the space \(L_2(I) \), \(I \) an open interval. We begin by showing that the resolvent operator of \(A \),

\[
R(\zeta) = (A - \zeta)^{-1}, \quad \text{Im}(\zeta) \neq 0,
\]

is an integral operator with a nice kernel.
THEOREM 3.2. $R(\zeta)$ is an integral operator with kernel K,
\begin{equation}
R(\zeta)f(z) = \int_{|w|<1} K(z, w, \zeta)f(w)dudv, \ f \in \mathcal{H}.
\end{equation}

K is jointly analytic in z, \bar{w}, and ζ on the region $|z|<1$, $|w|<1$, $\operatorname{Im}(\zeta) \neq 0$.

Moreover, $K(z, w, \zeta) = \overline{K(w, z, \zeta)}$ and
\begin{equation}
(L - \zeta)K(w, z, \zeta) = K_z(w), \text{ for fixed } z \text{ and } \zeta.
\end{equation}

Proof. Since $R(\zeta)f(z) = (R(\zeta)f, K_\zeta)$ and $R^*(\zeta) = R(\overline{\zeta})$, it follows that (3.1) holds with $K(z, w, \zeta) = R(\zeta)K(w)$. Hence K is analytic in \overline{w} for fixed z and ζ. That $K(z, w, \zeta) = \overline{K(w, z, \zeta)}$ can be seen from the following computations,
\[
K(z, w, \zeta) = (R(\zeta)K_z, K_w) = (\overline{K_z}, R(\zeta)K_w) = \overline{K(w, z, \zeta)}.
\]

Hence $K(z, w, \zeta)$ is analytic in z for fixed w and ζ. It follows from the analyticity of $R(\zeta)$ for $\operatorname{Im}(\zeta) \neq 0$ that $K(z, w, \zeta) = (R(\zeta)K_z, K_w)$ is analytic in ζ for fixed z and w on any region for which $\operatorname{Im}(\zeta) \neq 0$. Since analyticity in each of the variables separately implies joint analyticity it only remains to verify (3.6). This follows from the fact that $K(w, z, \zeta) = \overline{K(z, w, \zeta)} = R(\zeta)K_\zeta(w)$.

We now split the kernel $K(z, w, \zeta)$ into two parts one of which satisfies the homogeneous equation $(L - \zeta)u = 0$. Since the coefficients of L are polynomials, p_n has at most a finite number of zeros in the unit disk. Introducing radial branchcuts at these zeros, we obtain the region \tilde{D}, simply connected relative to D, in which p_n never vanishes. Let $z_0 \in \tilde{D}$, it follows from standard theorems that there exists a basis of solutions for the equation $(L - \zeta)\psi = 0$ such that:

1. $\psi_i(\zeta)$, $i = 1, \ldots, n$, are single-valued analytic functions on \tilde{D}
2. $\psi_i^{(j-1)}(z_0, \zeta) = \delta_{ij}$, $i, j = 1, \ldots, n$
3. $\psi_i(w, \zeta)$, $i = 1, \ldots, n$, is entire in ζ for each $w \in \tilde{D}$

THEOREM 3.3. The kernel $K(z, w, \zeta)$ has the representation
\begin{equation}
K(z, w, \zeta) = \sum_{i,j=1}^n \psi_{ij}(\zeta)\phi_i(z, \zeta)\overline{\phi_j(w, \zeta)} + G(z, w, \zeta),
\end{equation}
where $G(z, w, \zeta)$ is entire in ζ for fixed z and w.

Proof. For fixed $z \in \tilde{D}$ and $\operatorname{Im}(\zeta) \neq 0$ it follows from (3.6) that
(3.8) \[K(w, z, \overline{z}) = \sum_{j=1}^{n} \psi_j(z, \epsilon) \overline{\phi_j(w, \overline{z})} + \Omega(z, w, \overline{z}) , \]

where \(\Omega(z, w, \overline{z}) \) is the particular solution furnished by the variation of parameters method and is entire in \(\overline{z} \) for fixed \(z, w \). Moreover,

(3.9) \[\frac{\partial^{i-1}}{\partial w^{i-1}} \Omega(z, z_0, \overline{z}) = 0 , \quad i = 1, \ldots, n . \]

Now consider the differential equation \((L_z - \epsilon)K(z, w, \epsilon) = K_w(z)\), where \(L_z \) denotes the fact that \(L \) is applied with respect to \(z \). Differentiating with respect to \(\bar{w} \) and making use of the symmetry of \(K \) we obtain

\[(L_z - \epsilon) \frac{\partial^{i-1}}{\partial \bar{w}^{i-1}} K(w, z, \overline{z}) = \frac{\partial^{i-1}}{\partial \bar{w}^{i-1}} K_w(z) , \quad j = 1, \ldots, n . \]

Using (3.8), (3.9) and the relationships

\[\phi_i^{(j-1)}(z_0, \epsilon) = \delta_{ij} \]

we obtain

\[(L_z - \epsilon) \overline{\psi_j(z, \epsilon)} = \frac{\partial^{i-1}}{\partial \bar{w}^{i-1}} K_{z_0}(z) . \]

Variation of parameters yields

(3.10) \[\psi_j(z, \epsilon) = \sum_{i=1}^{n} \overline{\psi_{ij}(\epsilon)} \overline{\phi_i(z, \epsilon)} + \Omega_j(z, \epsilon) , \quad j = 1, \ldots, n , \]

where the \(\Omega_j(z, \epsilon) \) are entire in \(\epsilon \) for fixed \(z \) and satisfy

(3.11) \[\frac{\partial^{i-1}}{\partial z^{i-1}} \Omega_j(z_0, \epsilon) = 0 , \quad i, j = 1, \ldots, n . \]

It follows from (3.8) and (3.10) that (3.7) holds where

\[G(z, w, \epsilon) = \overline{\Omega(z, w, \overline{\epsilon})} + \sum_{j=1}^{n} \Omega_j(z, \epsilon) \overline{\phi_j(w, \overline{\epsilon})} \]

is entire in \(\epsilon \) for each \(z, w \in \bar{D} \).

Concerning the matrix \(\psi = (\psi_{ij}) \) we have the following.

Theorem 3.4. The matrix \(\psi \) is analytic for \(\text{Im} \epsilon \neq 0 \), \(\psi^*(\epsilon) = \psi(\overline{\epsilon}) \), and \(\text{Im} \psi(\epsilon)/\text{Im} \epsilon \geq 0 \), where \(\text{Im} \psi = (\psi - \psi^*)/2i \).

Proof. It follows from (3.9) and (3.10) that
(3.12) \[\psi_{ij}(\zeta) = \frac{\partial^{i+j-2}}{\partial z^{i-1}\partial \bar{w}^{j-1}} K(z_0, z_0, \zeta) , \quad i, j = 1, \ldots, n , \]
and hence \(\psi \) is analytic for \(\text{Im} (\zeta) \neq 0 \). Using (3.12) and the symmetry of \(K \) we obtain \(\psi_{ij}(\zeta) = \overline{\psi_{ji}(\zeta)} \).

In order to demonstrate the positivity of \(\text{Im} \psi(\zeta)/\text{Im} (\zeta) \geq 0 \) we consider the functionals \(\xi_k \) defined by \[\xi_k(f) = f^{(k-1)}(z_0) , \quad f \in \mathcal{H} , \quad k = 1, \ldots, n . \]

Since convergence in \(\mathcal{H} \) implies uniform convergence on compact subsets, the \(\xi_k \) are bounded linear functional on \(\mathcal{H} \). Consequently there exist functions \(K_1, \ldots, K_n \) in \(\mathcal{H} \) for which \[f^{(k-1)}(z_0) = (f, K_k) \]
all \(f \) in \(\mathcal{H} \). Let \(\xi_1, \ldots, \xi_n \) be any set of \(n \) complex numbers and consider the function \(f = \sum_{k=1}^{n} \xi_k K_k \). The inner product \((R(\zeta)f, f) = \sum_{k=1}^{n} \xi_k \overline{\xi}_k (R(\zeta)K_k, K_k) \). Now \(R(\zeta)K_i(z) = (K_i, K_{i\zeta}) \), where \(K_{i\zeta}(w) = K(z, w, \zeta) = K(w, z, \zeta) \). Consequently,
\[R(\zeta)K_i(z) = \frac{\partial^{i-1}}{\partial w^{i-1}} K(z_0, z, \zeta) , \]
and
\[(R(\zeta)K_i, K_j) = \frac{\partial^{i+j-2}}{\partial z^{i-1}\partial \bar{z}^{j-1}} K(z_0, z_0, \zeta) = \psi_{ji}(\zeta) . \]

Using the resolvent equation it is not hard to see that
\[\text{Im} (R(\zeta)f, f)/\text{Im} (\zeta) = \| R(\zeta)f \|^2 \geq 0 \]
and hence
\[\sum_{i,j=1}^{n} \frac{\text{Im} \psi_{ji}(\zeta) \xi_i \overline{\xi}_j}{\text{Im} (\zeta)} \geq 0 . \]

This completes the proof.

It is shown in [2] that Theorem 3.4 implies the existence of a spectral matrix \(\rho \) for the resolvent \(R \).

Theorem 3.5. The matrix \(\rho \) defined by
\[\rho(\lambda) = \lim_{\varepsilon \to +0} \frac{1}{\pi} \int_0^i \text{Im} (\nu + i\varepsilon) d\nu \]
exists, is nondecreasing, and is of bounded variation on any finite interval.
We now consider the projections E_Δ corresponding to the interval $\Delta = (a, b]$. It follows from the proof of Theorem 3.2, that E_Δ is an integral operator with kernel $e_\Delta(z, w) = E_\Delta K_w(w)$. The following theorem shows how $e_\Delta(z, w)$ can be described in terms of the basis ϕ_1, \cdots, ϕ_n and the spectral matrix given by Theorem 3.5.

Theorem 3.6. If a and b are continuity points of E then

$$e_\Delta(z, w) = \sum_{i,j=1}^n \phi_i(z, \nu)\overline{\phi_j(w, \nu)}d\rho_{ij}(\nu),$$

where $\rho = (\rho_{ij})$ is the spectral matrix given by Theorem 3.5.

Proof. The idea is to use the inversion formula

$$(E_\Delta f, g) = \lim_{\varepsilon \to 0} \frac{1}{2\pi i} \int_{\gamma} ((R(\nu + i\varepsilon)f, g) - (R(\nu - i\varepsilon)f, g))d\nu,$$

for all f and g in \mathcal{S}, a and b continuity points of E_Δ. Since E_Δ is self-adjoint $e_\Delta(z, w) = (E_\Delta K_w, K_z)$ and hence

$$e_\Delta(z, w) = \lim_{\varepsilon \to 0} \frac{1}{2\pi i} \int_{\gamma} (K(\nu + i\varepsilon)K_w, K_z) - (K(\nu - i\varepsilon)K_w, K_z))d\nu.$$

For $z, w \in \partial D$, this becomes

$$\lim_{\varepsilon \to 0} \frac{1}{2\pi i} \int_{\gamma} \sum_{i,j=1}^n \psi_{ij}(\nu + i\varepsilon)\overline{\phi_i(z, \nu + i\varepsilon)}\phi_j(w, \nu - i\varepsilon)$$

$$- \psi_{ij}(\nu - i\varepsilon)\overline{\phi_i(z, \nu - i\varepsilon)}\phi_j(w, \nu + i\varepsilon)d\nu$$

$$+ \lim_{\varepsilon \to 0} \frac{1}{2\pi i} \int_{\gamma} G(z, w, \nu + i\varepsilon) - G(z, w, \nu - i\varepsilon)d\nu.$$

Since $G(z, w, \gamma)$ is entire in γ the later integral tends to zero as $\varepsilon \to 0$.

We now rewrite the first integrand as

$$\sum_{i,j=1}^n \left[\psi_{ij}(\nu + i\varepsilon) - \psi_{ij}(\nu - i\varepsilon)\right]\phi_i(z, \nu)\overline{\phi_j(w, \nu)} +$$

$$\sum_{i,j=1}^n \psi_{ij}(\nu + i\varepsilon)[\phi_i(z, \nu + i\varepsilon)\overline{\phi_j(w, \nu - i\varepsilon)} - \phi_i(z, \nu)\overline{\phi_j(w, \nu)}] +$$

$$\sum_{i,j=1}^n \psi_{ij}(\nu - i\varepsilon)[\phi_i(z, \nu)\overline{\phi_j(w, \nu)} - \phi_i(z, \nu - i\varepsilon)\overline{\phi_j(w, \nu + i\varepsilon)}],$$

and denote the three sums by $I_1(\nu, \varepsilon)$, $I_2(\nu, \varepsilon)$, and $I_3(\nu, \varepsilon)$ respectively. Consider $I_i(\nu, \varepsilon)$,
\[\lim_{\varepsilon \to +0} \frac{1}{2\pi i} \int_{\Delta} I_i(\nu, \varepsilon) d\nu = \lim_{\varepsilon \to +0} \frac{1}{\pi} \int_{\Delta} \sum_{i,j=1}^{n} \text{Im} \psi_{ij}(\nu + i\varepsilon)\phi_i(z, \nu)\overline{\phi_j(w, \nu)} d\nu. \]

Now
\[\rho(\lambda) = \lim_{\varepsilon \to +0} \frac{1}{\pi} \int_{\Delta} \text{Im} (\psi(\nu + i\varepsilon) d\nu \]
and it follows from a theorem of Helly that
\[\lim_{\varepsilon \to +0} \frac{1}{2\pi i} \int_{\Delta} I_i(\nu, \varepsilon) d\nu = \int_{\Delta} \sum_{i,j=1}^{n} \phi_i(z, \nu)\overline{\phi_j(w, \nu)} d\rho_{ij}(\nu). \]

As is shown in [2] we have the following estimate
\[\sum_{i,j=1}^{n} \int_{\Delta} |\psi_{ij}(\nu \pm i\varepsilon)| d\nu = O\left(\log \frac{1}{\varepsilon} \right) \quad (\varepsilon \to +0). \]

Since the \(\phi_i(z, \nu) \) are entire in \(\nu \) for fixed \(z \) there exists a constant \(M > 0 \) such that for \(\varepsilon \) sufficiently small
\[|\phi_i(z, \nu + i\varepsilon)\overline{\phi_j(w, \nu - i\varepsilon)} - \phi_i(z, \nu)\overline{\phi_j(w, \nu)}| < M\varepsilon \]
for all \(\nu \in \Delta. \)

Combining (3.15) and (3.16) we see that
\[\frac{1}{\pi} \int_{\Delta} I_2(\nu, \varepsilon) d\nu = O\left(\varepsilon \log \frac{1}{\varepsilon} \right) \quad (\varepsilon \to +0), \]
which tends to zero as \(\varepsilon \to +0. \) A similar result holds for
\[\frac{1}{\pi} \int_{\Delta} I_3(\nu, \varepsilon) d\nu. \]

Consequently we have
\[e_d(z, w) = \int_{\Delta} \sum_{i,j=1}^{n} \phi_i(z, \nu)\overline{\phi_j(w, \nu)} d\rho_{ij}(\nu). \]

The author wishes to express his gratitude to Professor Earl Coddington for his encouragement and guidance in this work.

Bibliography

Received February 20, 1970. This work is part of a doctoral dissertation written at the University of California at Los Angeles under Professor Earl Coddington and supported in part by NSF Grant GP-3594.

UNIVERSITY OF CALIFORNIA, LOS ANGELES
AND
SAN DIEGO STATE COLLEGE
Valentin Danilovich Belousov and Palaniappan L. Kannappan, *Generalized Bol functional equation* ... 259
Charles Morgan Biles, *Gelfand and Wallman-type compactifications* 267
Louis Harvey Blake, *A generalization of martingales and two consequent convergence theorems* .. 279
Dennis K. Burke, *On p-spaces and wΔ-spaces* .. 285
John Ben Butler, Jr., *Almost smooth perturbations of self-adjoint operators* 297
Michael James Cambern, *Isomorphisms of C₀(Y) onto C(X)* 307
David Edwin Cook, *A conditionally compact point set with noncompact closure* 313
Timothy Edwin Cramer, *Countable Boolean algebras as subalgebras and homomorphs* ... 321
John R. Edwards and Stanley G. Wayment, *A v-integral representation for linear operators on spaces of continuous functions with values in topological vector spaces* ... 327
Mary Rodriguez Embry, *Similarities involving normal operators on Hilbert space* ... 331
Lynn Harry Erbe, *Oscillation theorems for second order linear differential equations* ... 337
William James Firey, *Local behaviour of area functions of convex bodies* 345
Joe Wayne Fisher, *The primary decomposition theory for modules* 359
Gerald Seymour Garfinkel, *Generic splitting algebras for Pic* 369
J. D. Hansard, Jr., *Function space topologies* .. 381
Keith A. Hardie, *Quasifibration and adjunction* ... 389
G. Hochschild, *Coverings of pro-affine algebraic groups* 399
Melven Robert Krom and Myren Laurance Krom, *Groups with free nonabelian subgroups* ... 425
James Robert Kuttler, *Upper and lower bounds for eigenvalues by finite differences* ... 429
Dany Leviatan, *A new approach to representation theory for convolution transforms* ... 441
Richard Beech Mansfield, *Perfect subsets of definable sets of real numbers* .. 451
Brenda MacGibbon, *A necessary and sufficient condition for the embedding of a Lindelof space in a Hausdorff Σσ space* 459
David G. Mead and B. D. McLemore, *Ritt's question on the Wronskian* 467
Edward Yoshio Mikami, *Focal points in a control problem* 473
Paul G. Miller, *Characterizing the distributions of three independent n-dimensional random variables, X_1, X_2, X_3, having analytic characteristic functions by the joint distribution of (X_1 + X_3, X_2 + X_3)* .. 487
Douglas B. Smith, *On the number of finitely generated O-groups* 499
J. W. Spellmann, *Concerning the domains of generators of linear semigroups* .. 503
Arne Stray, *An approximation theorem for subalgebras of H∞* 511
Arnold Lewis Villone, *Self-adjoint differential operators* 517