Vol. 35, No. 3, 1970

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 294: 1
Vol. 293: 1  2
Vol. 292: 1  2
Vol. 291: 1  2
Vol. 290: 1  2
Vol. 289: 1  2
Vol. 288: 1  2
Vol. 287: 1  2
Online Archive
The Journal
Editorial Board
Special Issues
Submission Guidelines
Submission Form
Author Index
To Appear
ISSN: 0030-8730
On the ideal structure of some algebras of analytic functions

John Eric Gilbert

Vol. 35 (1970), No. 3, 625–634

Using the Beurling-Lax description of invariant subspaces of H2(R), we describe the ideal structure of two large classes of convolution algebras whose Fourier-Laplace Transforms are entire functions. A closed ideal will be characlerized by its cospectrum or by its cospectrum together with a nonnegative number related to the “rate of decrease at infinity”; in the latter case, the closed ideals having the same cospectrum form a totally ordered family {Iξ}[0,), with Iξ Iη whenever ξ < η. New examples of algebras to which the results apply are given.

Mathematical Subject Classification
Primary: 30A98
Received: 30 September 1969
Revised: 25 April 1970
Published: 1 December 1970
John Eric Gilbert