THE SUSLIN-KLEENE THEOREM FOR V_κ WITH COFINALITY $(\kappa) = \omega$

CHEN CHUNG CHANG AND YIANNIS (JOHN) NICOLAS MOSCHOVAKIS
THE SUSLIN-KLEENE THEOREM FOR
V_κ WITH COFINALITY(κ) = ω

C. C. CHANG AND YANNIS N. MOSCHOVAKIS

It is easy to extend to arbitrary structures $\mathcal{U} = \langle A, R_1, \cdots, R_t, f_1, \cdots, f_n \rangle$ the concepts of Π^1_1 and inductively definable relations, which are familiar for the structure of the integers. The second author showed in a recent paper that these two concepts coincide for countable \mathcal{U} that satisfy certain mild definability conditions—this is a generalization of the classical Suslin-Kleene theorem. Here we generalize the Suslin-Kleene theorem in a different direction.

Main Result. Let V_κ be the set of sets of rank less than κ, i.e., $V_0 = \emptyset$, $V_{\kappa+1} =$ power of V_κ, $V_\kappa = \bigcup_{\xi<\kappa} V_\xi$, if κ is limit.
The classes of inductively definable and Π^1_1 relations on the structure $\mathcal{V}_\kappa = \langle V_\kappa, \in \uparrow V_\kappa \rangle (\kappa \geq \omega)$ coincide if and only if κ is a limit ordinal with cofinality ω.

This implies several corollaries about the class of Π^1_1 relations on V_κ, when cofinality(κ) = ω, e.g., that it has the reduction property.

The nontrivial part of the theorem is the implication $\Pi^1_1 \Rightarrow$ inductively definable for \mathcal{V}_κ with cofinality(κ) = ω.

1. Proof of the main result. We assume familiarity with [7], whose notation we shall use.

Notice first that for each $\kappa \geq \omega$, \mathcal{V}_κ is an acceptable structure, in the sense of [7]. This is immediate for limit κ, by taking the ordinary set-theoretic pair and the standard ω for the integers within V_κ. For successor κ the proof is by induction; let $\kappa = \lambda + 1$, let $(\cdot, \cdot)_1$ be a definable pair in \mathcal{V}_λ, for x_1, \cdots, x_n in V_κ put
$$
\langle x_1, \cdots, x_n \rangle = \{(1, u)_1 : u \in x_1\} \cup \cdots \cup \{(n, u)_1 : u \in x_n\}.
$$
These n-tuple functions are definable in \mathcal{V}_κ and using them one can easily define a pair for \mathcal{V}_κ and also show that first-order definability on \mathcal{V}_κ is preserved under inductive definitions.

Since \mathcal{V}_κ is acceptable, the inductively definable relations on \mathcal{V}_κ are Π^1_1 by the argument given in §3 of [7]. Also, if $\kappa \geq \omega$ and κ is a successor or cofinality(κ) > ω, then the relation
$$S \in WF \iff \text{there is no sequence } u_0, u_1, \cdots, \text{ so that } (n)[(u_n, u_{n+1}) \in S]$$
is first-order definable on \mathcal{V}_κ, so that by the usual analysis of trans-
finite inductions "from within", each inductively definable relation is Σ^i_1, and hence these relations do not exhaust Π^i_1. To complete the proof we must show that if cofinality $(\kappa) = \omega$, then each Π^i_1 relation on \forall^ω_κ is inductively definable.

Let $P(x) \iff (\alpha)(\forall y)Q(\alpha, y, x)$ be a typical Π^i_1 relation, where $Q(\alpha, y, x)$ is defined by the simple, quantifier-free formula $Q(\alpha, y, x)$ of \forall^ω_κ, let $t_1(x, y), \ldots, t_d(x, y)$ be the finitely many terms s such that the term $\alpha(s)$ occurs in $Q(\alpha, y, x)$, let $t^1, \ldots, t^d(x, y)$ be the functions on V_κ that these terms define, choose $Q^*(z, y, x)$ as in §4 of [7] so that

$$(1)
Q(\alpha, y, x) \leftrightarrow Q^*(z, y, x)
$$

whenever

$$(2)
\text{Seq } (z) \& K(z) = d \& (i)_{i \leq d}[z_i = \alpha(t_i(x, y))].
$$

We shall define for each $x \in V_\kappa$ a game $G(x)$ so that when cofinality $(\kappa) = \omega$,

$$P(x) \iff \text{I has a winning strategy in } G(x).
$$

In the game $G(x)$, player I chooses $a_i(a_i \in V_\kappa)$, player II chooses a pair $b_i, c_i(b_i, c_i \in V_\kappa)$, then I chooses a_ζ, then II chooses b_ζ, c_ζ, etc. We say that *the outlook is good for player II at step k*, when $a_\zeta, \ldots, a_k, b_\zeta, c_\zeta, \ldots, b_k, c_k$ have been played, if the following conditions are satisfied.

(i) For each $i \leq k, b_i$ is a function with domain ω and range power (a_i), so that

$$\bigcup_{j \in \omega} b_i(j) = a_i.
$$

(Thus II decomposes a_i into an ω-sequence of sets.)

(ii) c_k is a function with domain $\{(i, j): i, j \leq k\}$ which assigns to each pair (i, j) a function $f^k_{i,j}$ with domain $(f^k_{i,j}) = b_i(j).

(iii) The union

$$f^k = \bigcup_{i,j \leq k} f^k_{i,j}
$$

is a function.

(iv) There is no element $y \in V_\kappa$ such that all $t_1(x, y), \ldots, t_d(x, y)$ are in the domain of f^k and such that (1) holds when we choose z so that (2) holds with $f^k(t_i(x, y))$ substituted for $\alpha(t_i(x, y)), i = 1, \ldots, d$.

At the end of the game, player II wins if the outlook is good for him at every step k, otherwise player I wins.

Lemma 1. If cofinality $(\kappa) = \omega$ and player I has a winning strategy in $G(x)$, then $(\alpha)(\forall y)Q(\alpha, y, x)$.

Proof. Given a function \(\alpha \) on \(V_\kappa \) to \(V_\kappa \), consider the game where I plays \(a_1, a_2, \cdots \) following his winning strategy and II plays as follows. Since cofinality \((\kappa) = \omega\), we can choose a countable sequence \(v_1, v_2, \cdots \) of elements of \(V_\kappa \) such that

\[
V_\kappa = \bigcup_{j \in \omega} v_j.
\]

For each \(k \), the function \(\alpha \upharpoonright a_k \) is a subset of \(V_\kappa \) and it can be decomposed into a countable union of subfunctions which are elements of \(V_\kappa \),

\[
\alpha \upharpoonright a_k = \bigcup_{j \in \omega} ((\alpha \upharpoonright a_k) \cap v_j).
\]

At step \(k \), II chooses a \(b_k \) so that

\[
b_k(j) = \text{domain} ((\alpha \upharpoonright a_k) \cap v_j) \quad (j \leq k)
\]

and a \(c_k \) so that

\[
f^{k}_{i, j} = (a \upharpoonright \alpha_i) \cap v_j \quad (i, j, \leq k).
\]

It is now clear that at each \(k \), conditions (i), (ii), (iii) above are satisfied. Since I wins the game, there must be a \(k \) at which condition (iv) fails. For that \(k \) we have \(Q^*(z, y, x) \) for some \(y \) and some \(z \) that codes a subfunction of \(\alpha \), so that by (1) we have \(Q(\alpha, y, x) \) and the proof is complete.

Lemma 2. If cofinality \((\kappa) = \omega \) and \((\alpha)(Ey)Q(\alpha, y, x)\), then I has a winning strategy in \(\mathcal{G}(x) \).

Proof. Let I simply play \(a_k = v_k \), where the \(v_j \) are elements of \(V_\kappa \) such that \(V_\kappa = \bigcup_{j \in \omega} v_j \). Any winning sequence of plays for II determines a completely defined function \(\alpha \) on \(V_\kappa \) to \(V_\kappa \), so by hypothesis there is some \(y \), so that \(Q(\alpha, y, x) \). Now \(y \in a_i \), for some \(i \), and for large enough \(j \), all \(t_1(x, y), \cdots, t_4(x, y) \) must be elements of \(b_i(1) \cup \cdots \cup b_i(j) \). It is then clear that the outlook is not good for II at step \(k = \max (i, j) \), since condition (iv) will fail at that \(k \).

Proof of the main result from these two lemmas is just like the proof in §5 of [7] and we shall omit it. The key points are that the game \(\mathcal{G}(x) \) is open (i.e., if I wins, then he knows it at some point \(k \) of the game) and that conditions (i)-(iv) are first-order definable on \(\forall^* \).

The result can be easily relativized to relations on functions on \(V_\kappa \) to \(V_\kappa \) as in §6 of [7]. One can also imitate the argument of §7 of [7] to show that the result cannot be proved by the classical method of representing \(\Pi^1 \) relations via the property of well-foundedness.
We start with some λ with cofinality $(\lambda) > \omega$ and then use the Montague-Vaught method of [4] to find a $\kappa < \lambda$, with cofinality $(\kappa) = \omega$ and such that for some $C' \subseteq \text{power} \, (V_\kappa)$, the structure $\langle V_\kappa, C', \varepsilon \rangle$ is an elementary substructure of $\langle V_\lambda, \text{power} \, (V_\lambda), \varepsilon \rangle$. It is then easy to show that some Π^1_1 relation $P(x)$ on \forall^*_ε is not of the form

$$P(x) \iff \lambda uv \, Q(x, u, v) \text{ is well-founded},$$

with first-order definable $Q(x, u, v)$.

2. Corollaries and comments. Let Γ be a class of relations on some acceptable structure \mathcal{A}. We say that Γ is parametrized if there is a binary relation $G(z, x)$ in Γ, so that each unary relation $P(x)$ in Γ is of the form

$$P(x) \iff G(z_0, x)$$

for some fixed z_0 in the domain of the structure. It is easy to verify that the classes of Π^1_1, Σ^1_1 and inductively definable relations on an acceptable structure are parametrized.

Suppose Γ is parametrized by $G(z, x)$. Put

$$Prewellordering (\Gamma) \iff \text{there is a function } \Psi \text{ on (the extension of) } G \text{ into some ordinal } \kappa \text{ and relations } \leq \text{ and } \preceq \text{ in } \Gamma \text{ and } -\Gamma (= \text{ the class of negations of relations in } \Gamma) \text{ respectively, so that}$$

$$G(z, x) \Rightarrow (u)(v)[(u, v) \leq (z, x) \Rightarrow (u, v) \preceq (z, x)$$

$$\Rightarrow [G(u, v) \land \Psi(u, v) \leq \Psi(z, x)]] .$$

It is well-known that if Γ satisfies reasonable closure conditions, then $Prewellordering (\Gamma)$ implies that Γ satisfies many interesting structure properties - e.g., see [5], [3], [6]. One of them is

$$Reduction (\Gamma).$$

Given relations $P(x), Q(x)$ in Γ, there exist relations $P_1(x), Q_1(x)$ in Γ such that

$$P_1(x) \Rightarrow P(x), Q_1(x) \Rightarrow Q(x),$$

$$P(x) \lor Q(x) \Rightarrow P_1(x) \lor Q_1(x),$$

$$(x) \neg [P_1(x) \land Q_1(x)] .$$

Others include the existence of a hierarchy on $\Gamma \cap -\Gamma$, where Γ now must satisfy fairly strong closure properties.

Our main result here together with the results in [5] gives

$$\text{cofinality} (\kappa) = \omega \Rightarrow Prewellordering (\Pi^1_1 (\forall^*_\varepsilon)) ,$$

where $\Pi^1_1 (\forall^*_\varepsilon)$ is the class of Π^1_1 relations on \forall^*_ε. Since $\Pi^1_1 (\forall^*_\varepsilon)$
satisfies all the required closure properties, this further gives Reduction (\(\Pi^1_1(\forall \epsilon)\)) and the existence of a hierarchy on \(\Delta^1_1(\forall \epsilon) = \Pi^1_1(\forall \epsilon) \cap \Sigma^1_1(\forall \epsilon)\).

The classical arguments of Gödel and Addison [1], [2] suffice to show

\[
[Axiom \ of \ Constructibility \ & \ \kappa \ a \ successor \ or
\cofinality (\kappa) > \omega] \Rightarrow Prewellordering (\Sigma^1_1(\forall \epsilon)).
\]

However we do not know how to settle Prewellordering (\(\Pi^1_1(\forall \epsilon)\)) or Prewellordering (\(\Sigma^1_1(\forall \epsilon)\)) when \(\kappa\) is a successor or cofinality (\(\kappa\)) > \(\omega\) in Zermelo-Fraenkel set theory or in extensions of that theory by strong axioms which do not restrict our conception of arbitrary set. The problem has been attacked without success by some people for the case \(\kappa = \omega + 1\), corresponding to the class of \(\Pi^1_1\) or \(\Sigma^1_1\) relations on the continuum in type-theoretic notation. We suspect that it may be easier to settle for limit \(\kappa\) with cofinality (\(\kappa\)) > \(\omega\), perhaps for \(\kappa\) satisfying strong axioms of infinity. An optimist would hope that for each \(\kappa\), one of \(\Pi^1_1(\forall \epsilon)\) or \(\Sigma^1_1(\forall \epsilon)\) must satisfy the prewellordering property.

REFERENCES

Received September 26, 1969 and in revised form May 1, 1970. Preparation of this paper was sponsored in part by NSF Grant GP-8827.

UNIVERSITY OF CALIFORNIA, LOS ANGELES
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California 94305

RICHARD PIERCE
University of Washington
Seattle, Washington 98105

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH
B. H. NEUMANN
F. WOLE
K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
CHEVRON RESEARCH CORPORATION
TRW SYSTEMS
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>John D. Arrison and Michael Rich</td>
<td>On nearly commutative degree one algebras</td>
<td>533</td>
</tr>
<tr>
<td>Bruce Alan Barnes</td>
<td>Algebras with minimal left ideals which are Hilbert spaces</td>
<td>537</td>
</tr>
<tr>
<td>Robert F. Brown</td>
<td>An elementary proof of the uniqueness of the fixed point index</td>
<td>549</td>
</tr>
<tr>
<td>Ronn L. Carpenter</td>
<td>Principal ideals in F-algebras</td>
<td>559</td>
</tr>
<tr>
<td>Chen Chung Chang and Yiannis (John) Nicolas Moschovakis</td>
<td>The Suslin-Kleene theorem for V_κ with cofinality $(\kappa) = \omega$</td>
<td>565</td>
</tr>
<tr>
<td>Theodore Seio Chihara</td>
<td>The derived set of the spectrum of a distribution function</td>
<td>571</td>
</tr>
<tr>
<td>Tae Geun Cho</td>
<td>On the Choquet boundary for a nonclosed subspace of $C(S)$</td>
<td>575</td>
</tr>
<tr>
<td>Richard Brian Darst</td>
<td>The Lebesgue decomposition, Radon-Nikodym derivative, conditional expectation, and martingale convergence for lattices of sets</td>
<td>581</td>
</tr>
<tr>
<td>David E. Fields</td>
<td>Dimension theory in power series rings</td>
<td>601</td>
</tr>
<tr>
<td>Michael Lawrence Fredman</td>
<td>Congruence formulas obtained by counting irreducibles</td>
<td>613</td>
</tr>
<tr>
<td>John Eric Gilbert</td>
<td>On the ideal structure of some algebras of analytic functions</td>
<td>625</td>
</tr>
<tr>
<td>G. Goss and Giovanni Viglino</td>
<td>Some topological properties weaker than compactness</td>
<td>635</td>
</tr>
<tr>
<td>George Grätzer and J. Sichler</td>
<td>On the endomorphism semigroup (and category) of bounded lattices</td>
<td>639</td>
</tr>
<tr>
<td>R. C. Lacher</td>
<td>Cell-like mappings. II</td>
<td>649</td>
</tr>
<tr>
<td>Shiva Narain Lal</td>
<td>On a theorem of M. Izumi and S. Izumi</td>
<td>661</td>
</tr>
<tr>
<td>Howard Barrow Lambert</td>
<td>Differential mappings on a vector space</td>
<td>669</td>
</tr>
<tr>
<td>Richard G. Levin and Takayuki Tamura</td>
<td>Notes on commutative power joined semigroups</td>
<td>673</td>
</tr>
<tr>
<td>Robert Edward Lewand and Kevin Mor McCrimmon</td>
<td>Macdonald’s theorem for quadratic Jordan algebras</td>
<td>681</td>
</tr>
<tr>
<td>J. A. Marti</td>
<td>On some types of completeness in topological vector spaces</td>
<td>707</td>
</tr>
<tr>
<td>Walter J. Meyer</td>
<td>Characterization of the Steiner point</td>
<td>717</td>
</tr>
<tr>
<td>Saad H. Mohamed</td>
<td>Rings whose homomorphic images are q-rings</td>
<td>727</td>
</tr>
<tr>
<td>Thomas V. O’Brien and William Lawrence Reddy</td>
<td>Each compact orientable surface of positive genus admits an expansive homeomorphism</td>
<td>737</td>
</tr>
<tr>
<td>Robert James Plemmons and M. T. West</td>
<td>On the semigroup of binary relations</td>
<td>743</td>
</tr>
<tr>
<td>Calvin R. Putnam</td>
<td>Unbounded inverses of hyponormal operators</td>
<td>755</td>
</tr>
<tr>
<td>William T. Reid</td>
<td>Some remarks on special disconjugacy criteria for differential systems</td>
<td>763</td>
</tr>
<tr>
<td>C. Ambrose Rogers</td>
<td>The convex generation of convex Borel sets in euclidean space</td>
<td>773</td>
</tr>
<tr>
<td>S. Saran</td>
<td>A general theorem for bilinear generating functions</td>
<td>783</td>
</tr>
<tr>
<td>S. W. Smith</td>
<td>Cone relationships of biorthogonal systems</td>
<td>787</td>
</tr>
<tr>
<td>Wolmer Vasconcelos</td>
<td>On commutative endomorphism rings</td>
<td>795</td>
</tr>
<tr>
<td>Vernon Emil Zander</td>
<td>Products of finitely additive set functions from Orlicz spaces</td>
<td>799</td>
</tr>
<tr>
<td>G. Sankaranarayanan and C. Suyambulingom</td>
<td>Correction to: “Some renewal theorems concerning a sequence of correlated random variables”</td>
<td>805</td>
</tr>
<tr>
<td>Joseph Zaks</td>
<td>Correction to: “Trivially extending decompositions of E^n”</td>
<td>805</td>
</tr>
<tr>
<td>Dong Hoon Lee</td>
<td>Correction to: “The adjoint group of Lie groups”</td>
<td>805</td>
</tr>
<tr>
<td>James Edward Ward</td>
<td>Correction to: “Two-groups and Jordan algebras”</td>
<td>806</td>
</tr>
</tbody>
</table>