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In this paper, it is proved that if a separating (not
necessarily closed) subspace X of C (S) which contains all the
constant functions is generated by a weakly compact convex
subset, then the peak points for X are dense in the Choquet
boundary for X. In order to prove the theorem the extremal
structure of convex subsets of the conjugate space of a
normed linear space is studied.

Let S be a compact Hausdorff space, C(S) the Banach space of
all continuous complex functions on S with the sup norm and let X
denote a separating subspace of C(S) which contains all the constant
functions. X need not be closed under the sup norm. If X is a
closed sub-algebra of C(S) and S is metrizable, then the Choquet
boundary for X is exactly the set of peak points for X, [cf. 2]. If
X is not an algebra, this conclusion may fail to hold. However, if
X is closed and separable, then the peak points for X are dense in
the Choquet boundary for X (cf. [5]). In this paper the latter will
be generalized for certain nonclosed subspaces of C(S). In §2, it
will be shown that if a subspace X is generated by a weakly com-
pact convex subset than the set M= { x * e P ; $*(1) = 1 = ||a?*||} is
the weak* closed convex hull of its weak* absolute exposed points
(see Definition 2.3 in § 2 for absolute exposed points). In § 3 it will
be proved that a functional x* in M is a weak* absolute exposed
point of M if and only if there is a peak point se S for X such that
#* = φ(s) where <f> is the natural embedding of S into X*. The
main theorem is a simple consequence of the above two theorems.

2* Normed linear spaces generated^by weakly compact convex
subsets* Let K be a weakly compact subset of a normed linear space
Y. If the linear span of K is norm dense in Y, then Y is said to
be generated by a weakly compact subset K. The set K is called a
fundamental subset of Y. In a Banach space, the closed convex hull
of a weakly compact subset is weakly compact, and hence a Banach
space is generated by a weakly compact convex subset if it is gen-
erated by a weakly compact subset. But there is an incomplete
normed linear space generated by a weakly compact subset which
does not contain a weakly compact convex fundamental subset (see
Example 3 in §3). It is clear that every separable normed linear
space is generated by a weakly compact subset. Therefore, every
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norm bounded linear image of a separable Banach space is generated
by a weakly compact convex subset.

Let F be a subspace of the conjugate space F* of a normed
linear space Y.

DEFINITION 2.1. A point x of a convex subset C of Y is an F-
exposed point of C if there exists a functional / in F such that
Re f{x) > Re f(y) for all yeC, y Φ x.

If F coincides with the conjugate space Y*9 then an ^-exposed
point is called an exposed point. If 7 is a conjugate space of a
normed linear space and F is the set of all weak* continuous func-
tionals on Y, then an .P-exposed point is called a weak* exposed
point. General information about exposed points can be found in
either [3] or [4].

Our first theorem is an easy consequence of methods used by
Amir and Lindenstrauss in proving a related result, Theorem 4 of [1].

THEOREM 2.2. Let Y be a normed linear space generated by a
weakly compact convex subset. Then every weak* compact convex
subset C of the conjugate space Y* is the weak* closed convex hull
of its weak* exposed points.

Proof It is clear from the proof of Proposition 2 of [1] that the
latter is valid for an incomplete space if it is generated by a weakly
compact convex set. The reasoning of Theorem 4 of [1] applies to
yield the desired conclusion.

DEFINITION 2.3. A point x of a convex subset C of a normed
linear space Y is an (weak*) absolute exposed point of C if there is
a (weak*) continuous linear functional / such that

f{x) - sup {\f(y) I: ye C} and fix) Φ Έtefiy) for all yeC, y Φx .

If x is an absolute exposed point of a convex set C and if / is a
functional which realizes its maximum modulus over C at x then the
affine functional / + 1 peaks at x. An absolute exposed point is an
exposed point but the converse does not hold, (see Example 1 in § 3).
However, it is clear from the definition that every exposed point of a
circled convex set is an absolute exposed point of the set.

LEMMA 2.4. Suppose that z — Σ * β l tjaj> where \ a3 | ^ 1 and

tj > 0 for each j and Σ?=i *y = l If Re z > V 1 — d2 for a given

0 < δ < 1, then Σ?=i <i I Im as \ < δ.
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Proof. Let z, = Σ?=i ^ ( R e #i + i I Imay|). Then Re z = Re ̂
and I Sj. | ^ 1. Now

Σ tj I Irnα, |Y = (Im z,)2 = I zL |2 - (Re ̂ ) 2 < 1 - (1 - S2) = S2 .
3=1 /

THEOREM 2.5. Let X be a separating subspace of C(S) with
le X. If X is generated by a weakly compact convex subset, then
M— {x*eX*; x*(ΐ) — 1 = ||#*[|} is the weak* closed convex hull of
its weak* absolute exposed points.

Proof. Let M1 be the weak* closed convex hull of

Mo = {ax*; a = a + ib with | a \ ̂  1 and x* e M) .

Since Mι is a circled weak* compact convex set, it is the weak*
closed convex hull of its weak* absolute exposed points by Theorem
2.2. Let C be the weak* closed convex hull of all the weak* abso-
lute exposed points of Mγ which are in M. It suffices to show that
C — M. Suppose that C φ M and let z* be a functional in M — C.
By the separation theorem, we may choose a function z in X with
I! z || = 1 and a number <5, 0 < δ < 1, such that

Re z*(z) > 2δ + sup {Re x*(z); x* e C} .

Since x*(l) = 1 for all x* in M we may assume that Re x*(z) 2s 0
for all x* in M. On the other hand, since the functional z* is in
Mi, the weak* closed convex hull of weak* absolute exposed points
of itself, for the number 3 we may choose a functional

where Σ?=i U = h 0 < ί< < 1 and ?/* is a weak* absolute exposed
point of Mi, i = 1,2, , n, such that

(1) \z*{z) -y*{z)\ <δ

and

(2) i z*(i) - r (l) ι < i - Vi-δ2.

Note that y* — a{ z*, where a{ is a complex number with [ a{ \ ̂  1
and z* is a function in M which is a weak* absolute exposed point
of Mi, since every exposed point of Mι belongs to Mo by Milman's
theorem. Therefore,

2/* = Σ (U Ob) zf .
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Since z*, zf e M, z*(l) = 1 and z*(ϊ) = 1, hence, taking the real part

of z*(ΐ) - y*(ΐ) of (2) we see that Re y*(ΐ) > V1 - d2. Therefore,

Σ?=i ti I Im a{ I < δ by the lemma.

Now,

I z*(z) - y*(z) I ̂  I Re s*(s) - Re */*(*) |

Σ <» [Re z*(z) - (Re α<) (Re s?(z))]
= l

*< (Im «i) (Im z? (2

Im α< I

This contradicts (1). Therefore M = C.

3* Function spaces generated by weakly compact convex sub-
sets* Throughout this section, S will denote a compact Hausdorff
space and X a (not necessarily closed) subspace of C(S) with the sup
norm. The mapping φ: S—>X*, defined by φ(s)x = x(s) for all xeX
and for each s e S, is a homeomorphism between S and φ (S) with
respect to the weak* topology of X*. The convex set

M - {£* G X*; a?*(l) = 1 = || a* ||}

is the weak* closed convex hull of φ(S) and if #* is an extreme point
of My there is a point S G S such that φ(s) = x*. The set of extreme
points of M is called the Choquet boundary for X (cf. [2] and [5]).
By a peak point for X we mean a point s of S such that there
exists a function x in X with the property that | x(s) | > | x(t) \ for all
t e S, tΦs.

THEOREM 3.1. Let X be a separating subspace of C(S) with
leX and let M = {x* e X*; x*(l) = 1 = || x* ||}. T^en a linear func-
tional x* e M is a weak* absolute exposed point of M if and only
if there exists a peak point se S for X such that x* = φ(s).

Proof. (=>) If x e X exposes x* = φ(s) absolutely, it follows
easily that x + 1 peaks at s.

(<=) Suppose that s e S is a peak point for X and let x be a
function in X which peaks at s. Then φ(s) is the only functional in
φ(S) such that φ(s)x — 1. Let

Mx = {x* e M; x*(x) = 1} .
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Since every extreme point of the weak* compact convex set Mx is
an extreme point of M, hence in φ(S), we see that Mx = {Φ(s)} and
therefore φ(s) is a weak* absolute exposed point of M.

The following example shows a weak* exposed point which is
not a weak* absolute exposed point.

EXAMPLE 1. Let S = {ζ = ξ + iη; 54 + Ϋ ^ 1} and let I c C ( S )
be the linear span of x and 1, where x(ζ) — ζ for each ζeS. Then
the boundary of S is the Choquet boundary for X since M is affinely
homeomorphic to S. The points ± 1 , ±i are not weak* absolute
exposed points of M (i.e., they are not peak points for X), although
they are weak* exposed points of M.

Our main theorem is an immediate consequence of Theorem 2.5
and Theorem 3.1.

THEOREM 3.2. Let X be a separating subspace (not necessarily
closed) of C(S) such that 1 e X. If X is generated by a iveakly
compact convex subset, then the peak points for X are dense in the
Choquest boundary for X.

Proof The set M= {x*eX*; x*(l) = 1 = \\x*\\} is the weak*
closed convex hull of its weak* absolute exposed points. Since weak*
absolute exposed points of M are peak points for X the theorem
holds by MiΓman's theorem.

REMARK. The real case of Theorem 3.2 can be proved without
the need of Theorem 2.5.

COROLLARY 3.3. Let X be a separating subspace of C(S) such
that le X. If there is a Banach space Y generated by a weakly
compact subset and a bounded linear operator from Y onto X, then
the peak points for X are dense in the Choquet boundary for X.

Proof. Let K be a weakly compact fundamental subset of Y.
Then the continuous linear image of the closed convex hull of K is
a weakly compact convex fundamental subset of X.

EXAMPLE 2. Let X be a separable, commutative, semi-simple
Banach algebra with identity. X is isomorphic to a subspace of C(^fέ)
where ^/έ is the maximal ideal space of X. By the Corollary 3.3
peak points for X are dense in the Choquet boundary for X.
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EXAMPLE 3. Let S be the Cantor set in [0,1]. Let

X — {fe C(S); f is a simple function} .

X is clearly a separating subalgebra of C(S) with l e i but X con-
tains no peaking function and hence there is no peak point for X in
S. Since X is separable, it contains a weakly compact fundamental
subset, however it contains no weakly compact convex fundamental
subset by Theorem 3.2.

The author would like to express his sincere gratitude to Pro-
fessor P. C. Curtis, Jr., the author's thesis advisor, for valuable
advice and consultation.
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