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Using the Beurling-Lax description of invariant subspaces
of H%(R), we describe the ideal structure of two large classes
of convolution algebras whose Fourier-Laplace Transforms are
entire functions. A closed ideal will be characterized by its
cospectrum or by its cospectrum together with a nonnegative
number related to the ‘‘rate of decrease at infinity’’; in the
latter case, the closed ideals having the same cospectrum form
a totally ordered family {I:}, £€[0, ), with I: 2 [, whenever
& <. New examples of algebras to which the results apply
are given,

The familiar notation for the spaces considered by Schwartz ([9])
is adopted and each space is equipped with its usual topology. Let
7" be the subspace of & (R) of functions ¢ for which

Il = _sup_exp (klx )| D*p(@)|

is finite for each k = 0,1, ---; the topology on . will be the one
induced by the semi-norms ||(+)|l;, ¥ = 0,1, --.. TUnder this topology
2" is a convolution algebra with separately continuous multiplication.
A detailed discussion of .2 along with associated spaces is given in
[4], [12] and [13] (note that Zielézny uses .27 instead of .2¢7). We
recall some of the results in the form most convenient for applica-
tions here.

Denote by #,/(.2%") the convolution operators on 2%, i.e., the
distributions Se &'(R) for which the convolution operator ¢ — Sx¢
is well-defined and continuous from .%  into 277 /(%) is given
the topology it inherits as a subspace of <5(.2%, .9%7), the continuous
linear mappings from 2% into 5% when &5(5¢, 2¢), has the topology
of uniform convergence on bounded subsets of .97 Alternatively, if
%" is the strong dual of .2, #/(.52") can be defined as the space
a2, %) of convolution operators on .2~ in the sense of Schw-
artz ([10], exposé 10) and given the topology acquired as a subspace
of A(%"', 2¢”"). These two definitions of 7/(.9¥") are, however,
entirely equivalent (cf. [13, Ths. 2(d’), 4]).

THEOREM 1. The space &7,'(5¢7) is a convolution algebra for which
(i) (S, T)— S«T is a separately continuous mapping from
N X ONF) into &( %),

625
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(ii) (S, ¢)— Sx¢ 1s a separately continuous mapping from
ONF) x % into %

Proof. (i) See [12, p. 319] for instance, or, more directly, use
the definition of the <4(. 9%, 2¢”) topology.

(ii) The continuity of ¢ — Sx¢ follows immediately from the de-
finition of S while the continuity of S — Sx¢ follows from the defini-
tion of the <4(.97; 5¢") topology on Z,)(5¢).

The Fourier-Laplace Transform &(z) of ¢ € 2% defined by

06) = @) = |~ sweda , s=ut v,

can be extended to &7/(. %) via the Parseval formula in the usual
way since & ( %) c 9%”. For both 2 and &,/(5¢") the correspond-
ing spaces K, ©7y(K) of Fourier-Laplace Transforms ¢, S respectively,
are algebras of entire functions under pointwise multiplication; more
precisely, if S, denotes the strip {z: | Rl{(z)| < a} in the complex plane:

THEOREM 2. An entire function @
(i) belongs to K +f and only if for each positive integer n

sup 1+ [z)"2(@)] < oo,

(ii) belongs to &y(K) if and only if there corresponds to each
positive integer n an integer | for which

sup (1 + [2))70()| < o .

Proof. See [4], [13].

These spaces K, @y (K) are given the topology carried over from
%, &)(2%") respectively by the Fourier-Laplace Transform. Just as
7,/ (2¢) is the algebra of convolution operators on .52, so Zy(K) is
the algebra of multiplication operators on K. This is in complete
analogy with the spaces &7, &y introduced by Schwartz ([9]y, p. 99)
where the space corresponding to .9 is then the space . of inde-
finitely differentiable functions of rapid decay at infinity (see [12] for
elaboration).

Finally, 27; (respectively <.(.5¢),) denotes the subspace of func-
tions in 9" (respectively distributions in £,/(2")) with support in
R, = [0, «).

2. Throughout the paper .& will denote a topological convolu-
tion subalgebra of £/(2¢") in which the convolution operation is
assumed to be separately continuous. We shall further assume that
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&7 contains an approximate identity of functions {g,} in 5 or 9%
in the sense that Sx*¢, converges to S in &% for each Se.o” Now
associated with each closed ideal I in .97 is the cospectrum cosp (I)
of I consisting of the zeros counted according to multiplicity common
to the Fourier-Laplace Transform of elements in I. If, in addition,
&7 /(). so that Se . has support in [0, =), as will denote
the largest nonnegative number such that S has support in [ag, ),
i.e., the convex support of S lies in [ag, ) but not in [¢, ) for any
¢ > ag. It is known that ay can be characterized as the largest number
for which

(1) lexp (as2)S(z)| = O(L + |z[") , RI(z) > u, ,

for some integer 7 and every u, > 0 (ef. [2, p. 52]). Thus ag is a
measure of the rapidity of decay of S at infinity. This definition
makes equally good sense for any Se . $/(R) with support in [0, o).

From the Beurling-Lax theorem deseribing the invariant subspaces
of H¥R) (see [6, p. 165]; [5, p. 107]), we shall deduce the following
results (c will always imply continuous embedding):

THEOREM A. Let .7 be a topological convolution subalgebra of
a(2%7) with
(2) o o).
Then each closed ideal in &7 s characterized by its cospectrum.
THEOREM B. Let & be a topological convolution subalgebra of
TNIE) . with
L CON(F )y .

Then each closed ideal I im 7 18 characterized by its cospectrum
together with the number

(8) a; = inf {as: SeI}.

. For each a € R denote by L:(R), 1 < p < o, the usual (equivalence
classes of) functions for which

171 = {] (5@ exp (@l yras}”

is finite and by L2 the intersection [N,s, LZ(R) provided with the
topology defined by |[(¢)|l,,.» @€ R.. Then L%(R) is a convolution
subalgebra of ,/(2¢") satisfying (2) with an approximate identity
from 9] even from & (use Theorem 2, for instance). Thus Theorem
A applies. Further examples can be obtained by this construction by
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imposing smoothness conditions, say differentiability or suitable Lips-
chitz conditions, on the functions. In the opposite direction, denote
by W:?(R) the (Sobolev type) space of functions f in L:(R) with
generalized derivatives Dif in LZ(R), j=1,---,7, and W:?(R) the
intersection MN.z0 Wi?(R), both spaces being given the usual topology.
Theorem A applies here also to W P(R), r =1,2, .+, 1 £ p < oo,
Theorem B applies, for instance, to analogously defined algebras with
R replaced by R,, extending any function or distribution defined on
R, to all of R by zero.

3. This section contains preliminary results the first of which
reduces the proof of Theorems A, B to the special case when & =
L:(R), L:(R.) respectively.

THEOREM 3. Let &7 be a convolution algebra with an approxim-
ate identity {¢.} from 27 and satisfying

(4) FiCc S O )

Then there is a one-to-one correspondence between the closed ideals of
&7 and the closed ideals of &,/(2¢).. More precisely, every closed
ideal I 7 1s the intersection with & of a unique closed ideal J
m 2, () such that

(5) I=Jn .7, cosp(l) =cosp(J), a; = ay;

conversely, every such intersection J N 7 1s a closed ideal in &7
satisfying (5).

REMARK. An entirely analogous result holds when .& contains
an approximate identity from 27" and satisfies (2).

Proof of Theorem 3. The final assertion is almost obvious in view
of (4). On the other hand, if I is a closed ideal in .9/, certainly
there exists at least one closed ideal J in &/(9%"), satisfying (5); for
let J be the closure of I in Z/(2%");. Then, clearly, IcJnN .27
cosp (I) = cosp(J) and a; = a,. Now, when {f,} is a net in I con-
verging in &,/(9% ), to geJ N .o/, by Theorem 1(ii) the net {f,*¢.}
converges for each k to g*¢, in % and hence in &% But then
9*¢,€ I and so g itself belongs to I, i.e., IDJ N 7

To check the uniqueness, suppose J,, J, are closed ideals in &7,/(5¢")..
for which J, N =I=J,N . Now I contains g+ .%; for each
ged, J, so I contains dense subsets of both J, and J, since &,/(2%"),
has an approximate identity from .2#;. Hence, with the notation of
the previous paragraph, J, = J = J,.
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Assuming Theorem B we obtain very easily the characterization
mentioned in the introduction of the closed ideals in .97 having the
same cospectrum.

COROLLARY. Under the hypotheses of Theorem 3 the closed ideals
n 7 having the same cospectrum form a totally ordered family
{I.}, £€]0, o), with I, 2 I, whenever & < 7.

Proof. 1t is enough to prove the result for & = 2,/(5¢7), (cf.
(5)). Let I be any closed ideal in &/(%"),. If a; # 0, say a; = »,
the set I, of \-left translates

Io = {S_;: Se 1, SH;_(“/') = S(x -+ )\:)}

(obvious modifications if S is not a function) is a closed ideal in
&N 27)+ with cosp (L)) = cosp (I) and a;, = 0. When a;, = 0 merely
set I, = I. Now define I, £e[0, ) by

I, = {S:: Se L, Si(x) = S(x — &)},

the &-right translates of elements in I,. This family {I.}, £€]0, ),
of closed ideals in ¢7/(¢7); certainly satisfies cosp (I,) = I, a,, = & as
is easy to see; hence it is totally ordered by reverse inclusion. Of
course, the original ideal I is I; in the family. By Theorem B any
closed ideal having the same cospectrum as I belongs to {I.}.

For the strip S,, H*(S,) denotes the space of functions analytic
in the interior of S, for which

1/2
| F|| = sup {S | Fu + iv) |2dv}
lu|<a R
is finite, H*(S,) then denotes the space

A(S,) = {G: G = <cos 4%)F Fe Hz(sa)} .

It is well known that L(R) is isomorphic to H*(S,) under the Fourier-
Laplace Transform (cf. [11, p. 130]). On the other hand, H*S,)
consists of those functions L*integrable on the boundary oS, of S,
with respect to the measure (cosh (wv/2a))~'dv whose Poisson integrals
are analytic in the interior of S,. This can be checked by consider-
ing for instance the mapping {— z = (4da/r) tan~"¢{ of the closed unit
disc onto S,. When H?*(S,) is given the norm

1G] = {SwalG(ia + )P (cosh %)"Ev}”z ,

it is easy to see the mapping z— w = exp (¢nz/2c) of S, onto the
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right hand half-plane Rl(w) = 0 induces an isomorphism between
HYR) (cf. [5, p. 107])* and H*S,). Since H*(R) is isomorphic with
the usual H* space for the unit disc ([5, p. 105]) the significance of
H*S,) is not surprising.

The spaces H>(S,), H*(R) of functions bounded and analytic in
the strip S, and the right half-plane respectively are isometrically
isomorphic under the mapping z — exp (i7z/2a). Thus, each F e H>(S,)
admits a factorization in the form

(6) F(2) = M exp (—p_¢"/ — p, e~ ) F(z) F\(2)

with (M| =1, o_ and o, in R,, F, an “inner” function and F, an
“outer” function by transferring the usual factorization for H=(R) to
H>(S,) (cf. [5, p. 133]). Each “inner” function can be further de-
composed again by transferring the analogous decomposition for the
half-plane case; at the risk of confusion the same terminology is used
as in the half-plane case—Blaschke product, ---.

We shall denote by H3(S,) the closed subspace of H?*(S,) corres-
ponding under the Fourier-Laplace Transform to the closed subspace
Li(R,) of L:(R). A doubly-invariant subspace I of H*(S,) will mean
one invariant under multiplication by ¢*, ac R, a simply invariant
subspace of HZ(S,) one invariant under multiplication by ¢=**, a e R,.

THEOREM 4. (a) FEach closed doubly-invariant subspace I of
H*(S,) 1s of the form I = FH*S,) for some inner function F e H(S,).
(o) If I is a closed simply-invariant subspace of Hi(S,) then

(7) I = e **GH(S,)

for some pe R, and G a function bounded and analytic in RI(z) >
—a having measurable boundary values of modules 1 a.e. on Rl(z) =
—a.

A simple lemma is needed in the proof of Theorem 4.

LEMMA 1. A closed doubly-invariant subspace I of H*S,) 1is
invariant under multiplication by every ¥ e H(S,).

Proof. The subspace J of L:(R) corresponding to I is invariant
under translation both to the left and to the right. Now, by Plan-
cherel’s theorem, the mapping F— ¥'F for Fe H*S,) gives rise to
a mapping f— fy of L.(R) commuting with translation. To prove
the lemma therefore, it is enough to show that whenever ¢ e L* ,(R)
and ¢xf* =0 for all feJ, then ¢x(fy)* = 0 the convolution ¢xg* be-

t H¥R) = {1 + w)f: f€ H¥R), H¥R) the Hardy space for the right half-plane}.
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ing defined by

pxg*(w) = SR¢(90 + y)g(y)dy .
But, if he LY(R) N Li(R),
(xfp)xh* = ¢x(fyxh)* = (pxf*)xh} =0

as an easy calculation shows. Such functions /& are dense in Li(R)
so ¢xfi = 0.

Proof of Theorem 4. (a) Since |cos (nz/4a) [’ = 4 cosh (7v/2a) on
88, the set I = (cos (mz/4a)) is a closed subspace of H*(S,) invariant
under multiplication by every ¥ e H=(S,). Thus the subspace of H*(R)
corresponding to I under the isomorphism of H*S,) and H*R) is of
the form F.H *(R) for some inner function F,e H*(R) applying the
Beurling-Lax result (cf. [5, p. 107]). Consequently, for some inner
function Fe H*(S,),

(cos %)I = F(cos :1%>H %S, .

Since cos (wz/4c) is zero-free throughout S, the result follows.

(b) Under the mapping F— F,, F. ) = F(z— «), Rliz) =0,
H(S,) is isomorphic with H*(R). In addition, the image of any closed
simply invariant subspace I of H2(S,) is an invariant subspace of H*(R)
in the terminology of Hoffman ([5, p. 106]). The expression (7) now
follows from the result of Lax ([6]; [5, p. 107)).

As mentioned earlier, if F is the Fourier-Laplace Transform of
a distribution in .&”’/(R) with support in [0, =), the mapping F — a,
with a, the largest number for which (1) holds, is well-defined. This
applies in particular to functions in H*R) or H=(R).

THEOREM 5. If F = xe**F,F, is the usual factorization of a
Junction Fe H¥R) or H(R), then o = ap.

THEOREM 6. When Fe H>(S,) is factorized in the form (6) the
numbers P, 0_ satisfy

lim log | F(w + iv)| _ —p_ cos%‘-

voe exp <—-ﬂ_> @
(8) 2a

lim log | F(u + 1v)] - —p, cos F¥%

exp | —
P < 2ar )
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Jor almost all u, |u| < a. In particular, if F belongs also to H*(S;)
Jor some B > «, then pp = p_=0.

A proof of Theorem 5 appears, for instance, in [8, Lemma 4].
Actually, the Ahlfors-Heins theorem [1, Th. A] gives an even stronger
result since

(9) ]imM:_pcosﬁ
r

r—o0

for almost all 4, —7/2 < § < w/2.> To prove Theorem 6 it is enough
to establish the first of the limits since the second follows after a
transformation z—2z. But, when S, is mapped onto Rl(w) = 0 via
the mapping 2z — w = exp (¢7z/2a), the limit (8) is precisely the an-
alogue for the strip S, of (9). Finally, when p_, o’ are corresponding
numbers in the factorization of F as a function in H=(S,), H=(S;)
respectively, we deduce

(10) lim 8L 2] oq T,
fa exp (_ﬂ) B
2B

for almost all u, |u] < B, in addition to (8). Choosing any u, |[u] <
«, on which (8) and (10) hold simultaneously we can soon check that
o_ must be zero if 8 > a. Similarly o, = 0.

4. The proofs of Theorems A and B can now be given.

Proof of A. In view of the remark following Theorem 3, Theorem
A need be proved only in the case . = L%(R).

Let I be a closed ideal in L:(R), I, the closure of I in Li(R).
Then I = N.sol,. For certainly I C N.xol.; on the other hand, the
topology on L:(R) being the topology defined by the semi-norms
I1(+*)|l.) i.e., the projective limit topology, each fe& Mo, is a limit
point of I in L:(R) hence MNuso l. = I. The set J, of Fourier Laplace
Transforms of functions in I, is a closed doubly-invariant subspace of
H*S,). Thus J, = FH*S, where F is an inner function in H=(S,)
depending on « of course. In the factorization of F

(11) F = exp (___.‘O_eizrz]Za _ p+e—izz[za)BS ,

with B a Blaschke product, S a singular function, the Blaschke pro-
duct is formed with the elements of cosp(I) lying in S,\0S,. On the

2 In the application of (9) we have in mind the singular function in F is identic-
ally 1. A proof of (9) in this case avoiding the Ahlfors-Heins theorem is given in [7]
(for the upper half-plane) on page 243.
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other hand, if « is chosen so that 9S, does not intersect cosp (I), the
singular function in (11) is identically 1; for if z,¢0S,, there exists
feI with f continuous on 8S, and nonzero at 2, in which case z, does
not belong to the support of the singular measure defining S (cf. [5,
p. 70]). Furthermore, as each f, fel, belongs to H=(S;) for every
8 > a, the constants o., o_ in the factorization of f, and hence in
(11), are both zero. Thus, with this choice of «, the inner function
reduces to the Blaschke product formed by the elements of cosp (I)
in S..

Now choose a monotonic unbounded sequence of «’s for which
cosp (I) N dS, is empty. Such a choice is always possible since any
such sequence is enough to describe L%(R) both algebraically and
topologically. If fis any function in L%(R) for which F(z) = 0 whenever
z e cosp (I) (with appropriate multiplicities), it is clear that 7 belongs to
every J, because the corresponding inner function (11), merely a
Blaschke product, divides f. Consequently, fe (Vasol, = I showing
that I is determined by cosp (I).

Proof of B. In this case it is enough to consider L3(R.). For a
closed ideal I in L%(R.), let I, be its closure in L%(R,). By the same
argument as in the proof of A we have I = [\.2¢1.,. The correspond-
ing set J, of Fourier-Laplace Transforms is a simply invariant subspace
of H:(S,) so is given by

(12) J. = e "GH(S,)

for some poe R, and “inner” function G. By much the same argu-
ment as in the proof of Theorem A, if « belongs to a suitably chosen
sequence, G consists only of the Blaschke product for a half-plane
formed with the elements of cosp (I) in the half-plane RIl(z) > —a.
Also, by Theorem 5, the number p in (12) is given by

o = inf{az: Fed}

since ¢ **GG is the greatest common divisor of the inner functions in
the factorization of elements in J,. But then, with the notation of
(3), p = a;. For certainly p < a, since I, D I; on the other hand, the
limit in L2(R*) of any sequence with convex support in [a;, =) again
has convex support in [a;, oo)—hence o = a,. Thus any fe Li(R.)
which is zero a.e. outside [a;, =) and whose Fourier-Laplace Trans-
form 7 is zero on cosp (I) (with appropriate multiplicities), belongs
to each I, hence to I = .20, Thus I is determined by cosp (1)
together with the number «,.
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