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The present note is devoted to the discussion of a special
class of transformations that preserves the oscillatory or dis-
conjugacy nature of solutions for a type of first order differ-
ential system in a 2w-dimensional vector function, and which
includes as a particular instance a well-known transformation
of a real scalar second order homogeneous ordinary differential
equation to the canonical form y"(t) + γ(t)y(t) = 0.

It is well-known, (see, for example, Reid [4, 6, 7]), that for
self-adjoint differential systems conditions of oscillation may be charac-
terized by variational criteria, and, in particular, the property of
disconjugacy is equivalent to the positive definiteness of an associated
hermitian integral functional on a suitable class of vector functions.
Moreover, (see, for example, Reid [4; §5]; Hartman and Wintner
[2]), results for self-adjoint differential systems may be applied to
yield sufficient conditions for disconjugacy in the case of nonself-adjoint
systems. These criteria and procedures are of basic significance for
the utilization of the considered transformations in the study of
oscillation and comparison phenomena.

Matrix notation is used throughout; in particular, matrices of one
column are called vectors, and for a vector u = (ua), (a = 1, , n),
the norm \u\ is given by {\ux\

2 + + \un\
2)112; the linear vector space

of ordered ^-tuples of complex numbers, with complex scalars, is
denoted by CΛ. The n x n identity matrix is denoted by En, or by
merely E when there is no ambiguity, while 0 is used indiscriminately
for the zero matrix of any dimensions; the conjugate transpose of a
matrix M is denoted by M*. If M is an n x n matrix the symbol
v[M] is used for the maximum of \My\ on the unit ball {y: \y\ ̂  1}
in Cn. The notation M ̂  N, {M > N}, is used to signify that M and
N are hermitian matrices of the same dimensions, and M — N is a
nonnegative, {positive} definite hermitian matrix. In general, if M
is an n x n matrix, let $Re M and $m M denote the hermitian matrices
9ΐeM - i(M+M*), 3fmΛf = i/2(M* - M) so that M= 3ΐeM+ i $mM.
If the elements of a matrix function M(t) are a.c. (absolutely con-
tinuous) on arbitrary compact subintervals of a given interval /, then
M(t) is said to be locally a.c. on I; moreover, M'{t) signifies the
matrix of derivatives at values where these derivatives exist and the
zero matrix elsewhere. Correspondingly, if the elements of M{t) are
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M(t)dt de-
a

notes the matrix of integrals of respective elements of M(t). If M(t)
and N(t) are equal a.e. (almost everywhere) on their domain of defi-
nition we write simply M(t) = N(t). A matrix function is called
continuous, integrable, etc., when each of its elements possesses the
specified property.

For a given compact interval [α, b] on the real line the symbols
2nr[a, 6], 8>Z[a, b] are used to denote the classes of n x r matrix func-
tions M(t) — [Maβ(t)]> (a = 1, , n; β — 1, , r), which on [α, b] are
respectively integrable, measurable and essentially bounded, where in
each case measure and integral is understood to be in the sense of
Lebesgue. For brevity, SJα, b] and 8~[α, b] are written for S>nl[a> b]
and 8^[α, 6], respectively.

2* Transformations for differential systems* We shall be con-
cerned with a vector differential system of the form

L\u, v](t) = -v'{t) + C(t)u(t) - D(t)v(t) = 0 ,

L2[u, v](t) Ξ y,'{t) - A{t)u{t) - B(t)v(t) = 0 ,

in n-dimensional vector functions

u(t) = (Ui(t)h v(t) = (Vi(t)) ,

(i = 1, . . . , n). In terms of the 2^-dimensional vector function y(t) =
(Vσ(t)), (σ = 1, , 2ri), with i/4(ί) = u^t), yn+i(t) = v^t), (ί = 1, , n),
this system may be written also as

(2.1') ^f[y] = ^yr{t) + j^(t)y(t) = o ,

where

" 0 — JB1
(2.2)

0 - m

Throughout the discussion it will be assumed that the coefficient
matrix functions satisfy the following hypothesis.

(Hx) A(t), B(t), C(t), D(t) are n x n matrix functions defined on
a given interval I on the real line, and are of class 2nn[a, b] on arbi-
trary compact subintervals [α, b] of J.

Corresponding to the vector differential system (2.1), one has the
matrix differential system

Ll[U' V](t) Ξ ~ V'(t)

( # M) LJ[U, V](t) =Ξ U'(t) - A(t)U(t) - B(t)V(t) = 0 ,
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in n x r matrix functions U(t)9 V(t)9 while the associated 2n x r
matrix function Y(t) = (U(t); V(t)) with

Γ*,(ί) = Uiβ(t), Yn+i,β(t) = F<iB(ί) ,

(i = 1, , n; β = 1, , , r), is a solution of the equation

(2.1'*) Sf[Y\{t) = ^ Γ ' ( ί ) + J^(ί)Γ(ί) = 0 .

In particular, the linear homogeneous differential system (2.1) is
self-adjoint, or Hamiltonian, if the following conditions hold.

(Ha) B(t) and C(t) are hermitίan, and D(t) = A*(t) for tel.
In general, two distinct points tλ and t2 on / are said to be (mutu-

ally) conjugate with respect to (2.1) if there exists a solution (u(t);
v(t)) of this system with u(Q = 0 = u(t2), while u(t) Ξ£ 0 for t on the
subinterval with endpoints tx and t2. The system (2.1) is said to be
disconjugate on a subinterval IQ provided no two distinct points of
this interval are conjugate.

In the case of a self-adjoint system (2.1), one has the important
fact that if ya(t) = (ua(t); va(t)), a = 1, 2, are solutions of (2.1), then
the function yt(t)^yx(t) = vt(t)ux(t) — ufifyv^t) is constant on /. If
the value of this constant is zero, then yx(t) and y2(t) are said to be
(mutually) conjoined solutions of (2.1). In particular, if

Y(t) - (U(t); V(t))

is a 2n x n matrix which is a solution of (2.Γ¥), and whose n column
vectors are linearly independent solutions of (2.1') which are mutually
conjoined, then for brevity Y(t) is called a conjoined basis for (2.1).
Moreover, if Y(t) = (U(t); V(t)) is a conjoined basis for (2.1), and at
a point ί0 of I the n x n matrix U(t) is of rank n — k, then in ac-
cordance with the terminology of Morse [3] the point t0 is said to be
a focal point of Y(t) of order k.

For a compact subinterval [α, 6] of /, let ^ [ α , 6] denote the class
of ^-dimensional vector functions η(t) which are a.c. on [α, b] and
satisfy the differential equation

Lt[η, C](ί) = 7'(ί) ~ -A(ί)7(ί) - 5(«)C(ί) = 0

with ζ(ί)eS*[α, δj, while η(a) = 0 = 27(6). Moreover, let H+[α, 6] de-
'note the condition that the hermitian functional

(2.3) J[η; a, b] = (6{ζ*(ί)JB(ί)ζ(ί) + V*(ί)C(t)y(t)}dt

is positive definite on &Q[a, δ]. It is to be remarked that the value
of the integral in (2.3) is a function of η on ^ 0 [α, δ], since if ζx(ί)
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and ζg(t) are vector functions in 8~[α, b] such that L2[η, ζa](t) = 0 for
a = 1, 2, then ζ*(£)£(ί)ζi(O - ζ?(t)B(t)ζ2(t). As is well-known, (see,
for example, Reid [4; Th. 2.1]; Reid [7; Th. 5.1]), for self-adjoint
differential systems (2.1) the condition of disconjugacy is characterized
by certain variational conditions, that may be phrased as follows.

THEOREM 2.1. // conditions (HJ and (H2) hold, then for [a, b] a
compact subinterval of I condition H+[α, b] holds if and only if B{t) ^
0 for t a.e. on [a, &], and one of the following conditions holds:

( i ) (2.1) is disconjugate on [a, b];
(ii) there exists a conjoined basis Y(t) = (U(t); V{t)) for (2.1)

with U(t) nonsingular on [a, 6].
In particular, if B(t) ̂  0 for t a.e. on [a, 6], then the conditions

(i), (ii) and H+[α, b] are equivalent.

If T(t) and S(t) are nonsingular n x n matrix functions which
are locally a.e. on I, then under the transformation

(2.4) u(t) = T{t)u\t), v(t) = S(t)v°(t) ,

we have the identities

(2.5) L\u, v](t) = S(t)L°[u\v°](t), L2[u, v](t) = T{t)U2[u\ v°](t) ,

where

L\[u\ v°](t) Ξ -v«\t) + C\t)u\t) - D\t)v\t) ,
( ' } Ll[u°, v°](t) = u°'(t) - A\t)u\t) - B\t)v\t) ,

and the coefficient matrices of (2.1°) are given by

( 2 ' 6 ) C° - S-'CT, D° - S-'IS' + DS] .

Clearly one has the following result.

LEMMA 2.1. If (HO is satisfied, then distinct values t1912 on I
are conjugate with respect to (2.1) if and only if they are conjugate
with respect to (2.1°); in particular, (2.1) is disconjugate on a sub-
interval Io of I if and only if (2.1°) is disconjugate on this subinterval.

We shall be concerned with systems (2.1) in which the following
additional condition holds.

(H3) On I the matrix function B(t) is nonsingular, locally a.e,
and possesses a square root matrix Bll2(t) which is locally a.e. on
this interval.

It is to be remarked that if B(t) is nonsingular and locally a.e.
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on /, while there exists a nonzero locally a.c. scalar function p(t) such
that v[E - ρ{t)B{t)\ < 1 for t e I, then the binomial series may be
used to provide a locally a.c. square root Bll2(t) of B(t) with series
expansion

= [l/pιl2(t)]{E - Σ ek[E - p(t)B(t)]k\ ,
I k = ι )

where cx = 1/2, ck = [1-3 . (2ft - 3)]/[ft! 2*], (ft = 1, 2, •)> (for ex-
ample, see Reid [5; §4]). In particular, this condition holds whenever
B{t) is a positive definite hermitian matrix that is locally a.c. on /;
in this case the corresponding square root matrix provided by this
binomial series expansion is the unique positive definite hermitian
square root of B{t).

3* Special transformations which preserve disconjugacy* The
particular type of transformation to be used in the results of this
section is introduced in the following theorem.

THEOREM 3.1. If hypotheses (HJ and (H8) hold for (2.1), and
Bu\t) is a square root of B(t) as in (H3), with inverse B~ιl2(t), then
under the transformation

(3.1) u(t) = Bιl2(t)u°(t), v(t) = B-ll2(t)v°(t) ,

the system (2.1) is transformed into the system

U[u°, vQ](t) = -v°'(t) + C\t)u\t) - D\t)v\t) = 0 ,

Ll[uQ, v°](t) = uQ'(t) - A°(t)u\t) - v\t) = 0 ,

where

A° - B~ll2{AB112 - [B 1 / 2] '}, C° - J51 / 2CJ51 / 2,

^ D° = [-(Bιl2Y + Bίl2D]B~112 .

Now let the matrix functions A^t) and A2(t) be defined as

Ax(t) = i[A\t) + A°*(ί)] = Sle
( ' A8(ί) = i[A°(ί) - A°*(ί)] = i 3fm A\t) ,

so that A\t) = Ax{t) + A2(t) and A°*(t) = Λ(0 - Λ(ί). We shall also
assume that we have satisfied the further differentiability condition

(H4) Aλ{t) = 9ΐe A°(ί) is locally a.c. on I.
In particular, (H4) holds when A\t) is locally a.c. on /, and when

in addition to the previous condition on B(t) we have that [Bι'2(t)\ is
locally a.c. on I. In turn, this latter condition holds when B(t) and
the associated nonzero scalar function p(t) appearing in the discussion
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following (Hs) are individually continuously differentiate on 7, and
the respective derivative matrix and scalar function are locally a.c.
on I.

The following result may be verified directly.

LEMMA 3.1. If hypotheses (HO, (H8) and (H4) hold for the dif-
ferential system (2.1), then under the transformation

(3.5) u°(t) = u,{t), v\t) = vx(t) - A^u^t) ,

the system (3.2) becomes

tf) - A(«K(ί) = 0 ,v[(t)

u[(t) - A2(*K(ί) - v,{t) = 0 ,

where

C^t) = C\t) + Ax(t)A2(t) + D^A^t) + A[(t) ,

A(ί) - D\t) ~ A(t) .

Now let M(t) be the solution of the first order differential system

(3.8) M\t) - A2(t)M(t) = 0, Jlf(ί0) - E,

where t0 is some fixed point of /. Since A£(t) — —A2(t), the solu-
tion M(t) of (3.8) is unitary for t e I, so that

M(t)M*(t) = E~ M*(t)M(t) .

Moreover, under the transformation

(3.9) utf) = M(t)u2(t), v,{t) = M(t)v2(t) ,

the system (3.6) becomes

-v'2(t) + C2(t)u2(t) - D2(t)v2(t) = 0 ,
1 ' } vί(t) - v2(t) = 0 ,

where the matrix functions C2(t) and D2(t) are given by

(3.11) C2 - M*CM A = M*[A2 + DX]M = ikί*[i)0 - A«*]M .

In particular, (u2(t); v2{t)) is a solution of (3.10) if and only if x(t) =
w2(ί) is a solution of the linear homogeneous second order vector dif-
ferential equation

(3.12) α>"(ί) + D2(t)x'(t) - C2(t)x(t) = 0 ,

and v2(t) = »'(ί).
Combining these results, we have the following theorem.
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THEOREM 3.2. If hypotheses (HO, (H3) and (H4) hold, and M(t)
is the solution of the differential system (3.8), then (u(t); v(t)) is a
solution of (2.1) if and only if

(3.13) x(t) = M*(t)B~ιl2(t)u(t)

is a solution of (3.12), with x\t) = M*{t)[Bφv{t) + Ax(t)M(t)x(t)\.

From the form of the transformations occurring in (3.1), (3.5)
and (3.9), it follows readily that distinct points t1912 on / are conjugate
with respect to (2.1) if and only if these points are conjugate with
respect to the system (3.6) and (3.9). Also, (2.1) is disconjugate on
a subinterval Io if and only if the systems (3.6) and (3.9) are discon-
jugate on 70. In particular, from § 5 of Reid [4] we have the result
of the following theorem. For systems (2.1) with real coefficient
matrices, the conclusion of this theorem with λ = 0 is also a con-
sequence of results of Hartman and Wintner [2].

THEOREM 3.3. Suppose that hypotheses (HJ, (H3) and (H4) hold.
Then (2.1) is disconjugate on I if for each compact subinterval [α, b]
of I there exists a corresponding real constant λ such that the self-
adjoint equation

(3.14) [x'(t) + Q(t, X)x{t)\ - [Q*(t, λ)α'(ί) + P(ί, λ)a(ί)] - 0

is disconjugate on this interval, where

Pit, λ) - 3ΐe Ca(ί) + λ 9fm C2(ί),
( ' } Q ( ί , λ ) = - i ( l + λi)A*(ί)

4* Self-adjoint differential systems* If in the original differential
system (2.1) we have D(t) = A*(t), then whenever hypotheses (HJ
holds and B(t) is positive definite and locally a.c. we have

D\t) = A°*(t)

in (3.3). Correspondingly, when also (H4) holds, in (3.7) we have
A = D° - A, = A0* - Ax = -A21 and consequently D2(t) = 0 in (3.11),
so that in this case (3.10) reduces to the system

-vί(ί) + Ca(ί)tt2(ί) = 0 ,

u[{t) - v2(t) = 0 ,

and (3.11) becomes

(4.2) α?"(ί) - C2(t)x(t) = 0 .

Finally, if we have the further condition that C(t) is hermitian for
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t on I, then one may verify readily that C°(t), C^t) and C2(t) are also
hermitian matrix functions on I. Consequently, for self-adjoint systems
(2.1) we have the following result.

THEOREM 4.1. Suppose that hypotheses (HJ and (H2) hold for
(2.1), and that B(t) is a continuously differentiate positive definite
matrix function on I, such that A(t) and B'{t) are locally α.c. on I.
If M(t) is the solution of the corresponding system (3.8), then under
the transformation

u2(t) = M
1 ' } v2(t) = M*{t)[R'\t)v{t)

where A^t) is defined by (3.3), (3.4), the system (2.1) is reduced to
the system (4.1), with C2(t) defined by (3.3), (3.7), (3.11).

Under the hypotheses of Theorem 4.1 it may be verified readily
that (ua(t); va(t)), (a = 1, 2), are conjoined solutions of (2.1) if and only
if the associated (u2a(t); v2a(t)) defined for (4.3) are conjoined solutions
of (4.1). In particular, if (U(t); V(t)) is a conjoined basis for (2.1)
then the associated (U2(t); V2(t)) defined by (4.3) is a conjoined basis
for (4.1), and the order of a value t = t0 as a focal point of (U(t); V(t))
for (2.1) is the same as the order of that value as a focal point for
the associated conjoined basis (U2(t); V2(t)) for (4.1). Consequently,
results on disconjugacy and focal points for one of these differential
systems are immediately translatable into results for the associated
system. Under the assumption that the hypotheses of Theorem 4.1
hold, let Γ(t; A, B, C) denote the corresponding matrix function C2(t)
defined by (3.3), (3.7), (3.11). As examples of such results, we state
the following, which are consequences of well-known oscillation and
comparison theorems for general self-adjoint systems, (see, for example,
Morse [3] and Reid [4, 6, 7])

THEOREM 4.2.. Suppose that the hypotheses of Theorem 4.1 hold,
and [α, b] is a compact subinterval of I. Then the number of points
t0 e (α, b) which are conjugate to a, where each conjugate point is
counted a number of times equal to its order, is equal to the (nega-
tive) index of the hermitian functional

(4.4) \\\η\t) |2 + η*(t)Γ(t;A, B, C)η{t)}dt

on the class &ύ[a, b] of vector functions which are ax. on [α, b], with
Ύ]'(t) G 8^[α, 6], and η{a) = 0 = η(b). In particular, (2.1) is disconjugate
on [a, b] if and only if the functional (4.4) is positive definite on

a, b\.
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THEOREM 4.3. Suppose that A{a)(t), B{a){t), C{a\t), a = 1, 2, are
triples of matrix functions which individually satisfy the conditions
of Theorem 4.2, and for a — 1, 2 let (2.1)α denote the system (2.1)
wiίλ (A, B, C) = {A{a\ B{a\ Oa)). If

Γ(t; A{2\ B{2\ C(2)) ^ Γ(t; Aw, J5(1), C(1))

/or ί 6 /, and (2.1X is disconjugate on a subinterval Io of /, then (2.1)2

is αiso disconjugate on 70 Aϊso, ΐ/ (ί7α(ί); Va(t)) is a conjoined basis
for (2.1)α, cmd /or [α, b] a compact subinterval of I we have

(UMY, VΛα)) = (UM; Vt(a)) ,

then the number of focal points oj (U^t); Vγ{t)) on [α, b] is not less
than the number of focal points of (U2(t); V2(t)) on [a, b].

It is to be noted that the above reduction of (2.1) to (4.1) is a
generalization of a well-known reduction of the scalar differential
equation

(4.5) [r(t)u'(t)Y + p(t)u(t) = 0 ,

to the canonical form

(4.6) y"(t) + y(t)y(t) = 0 ,

where

(4.7) 7(ί) - {[r'(t)Y - 2r(t)r"(t) + 4r(t)p(t)}/{4r2(t)} .

In connection with this particular result, the reader is referred to
Birkhoff and Rota [1; p. 38, Exercises 4,6]. In particular, the com-
parison theorem on the distance between zeros of solutions of a pair
of ordinary differential equations which Sather [8; § 5] deduced from
properties of solutions of certain boundary problems for hyperbolic
partial differential equations may be established readily with the aid
of a preliminary translation of the involved intervals of existence,
and a subsequent application of the most elementary comparison
theorem of the classical Sturmian theory to the associated canonical
equations (4.6).
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