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This note deals with a finitely generated faithful module
E over a commutative semi-prime noetherian ring R, with
commutative endomorphism ring HomJ2(Er, E) = Ω(E). It is
shown that E is identifiable to an ideal of R whenever Ω(E)
lacks nilpotent elements; a class of examples with Ω(E) com-
mutative but not semi-prime is discussed.

1* Main result* Throughout R will denote a commutative
noetherian ring and modules will be finitely generated. In order to
use the full measure of the ring, we shall consider mostly faithful
modules. As for notation, unadorned ® and Horn are taken over
the base ring.

In case R is semi-prime (meaning here: no nilpotent elements
distinct from 0) we recall that its total ring of quotients K is semi-
simple, and thus a direct sum of fields K — 0 Σ Kn 1 ^ i ^ w. Any
ideal / of R has the property that Horn (I, /) is commutative and
semi-prime: for if S denotes the set of regular elements of R,

Horn (/, J) S Horn (/, I)s - ΈίomRs (Is, I8) .

But this last is a subring of K. The content of the next theorem
is precisely a converse to this observation.

THEOREM 1.1. Let E be a finitely generated faithful module
over the semi-prime ring R. Then, if Horn (E, E) is commutative
and semi-prime, E is isomorphic to an ideal of R.

Proof. Denote by T the torsion submodule of E, i.e., let T be
the set of elements of E annihilated by a regular element of R. If
T = 0, then Horn (E, E) S Horn (E, E)s = Hom^ (ES9 Es); using the
decomposition of Rs = K as a direct sum of fields,

Ή.omκ(E®K, E® K) - 0 Σ RomK.(E®Ki,

Since UomK(E(g) K, E(g) K) is commutative, we must have, for each
i, E®Ki = 0 or isomorphic to ϋQ. This allows identification of Es

to a submodule of K and consequently of E to an ideal of R, since
E is finitely generated.

Assume then, by way of contradiction, T Φ 0 and consider the
exact sequence

0 >τ >E-^->F >0 .
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It yields

(1) 0 Horn (E, T) Horn (E, E) — Horn (F, F)

as T is a characteristic submodule of E; observe also that π* is an
jB-algebra homomorphism. Let P be a prime ideal of R minimal
over the annihilator J of T. Then TP Φ 0 and can be viewed as a
RpjJp-module; by the choice of P this last ring is artinian [2; Chap.
IV, p. 147] and TP has finite length as an iϋP-module. On the other
hand, localization at P does not introduce nilpotent elements in either
RP or Ω = Ή.omBp(EPf EP) ( = Hom (E, E)P). Let I denote Horn (E, T)P;
since TP has finite length, I also has finite length and the sequence

J 2 I 2 2 2 JΛ 2 •

must eventually become stationary. Say In = I2% for some w; by
[2; Chap. I, p. 83] J* is generated by an idempotent e of β. Actu-
ally, I — Ωe, for Ω lacks nilpotent elements and (1(1 — e))n = 0. The
idempotent e induces the direct sum decomposition M = eMφ(l — e)M,
with M = j^p. Thus

_ ΓΉom^ (eAf, βΛf) Hom^^ (eAf, (1 - e)M)

™ LHom^^ ((1 - e)M, eM) HomΛp (1 - e)mf (1 - e)M)

Since is semi-prime, Hom^^ ((1 — e)M, eM) = 0. Observe that βilί g 31

and thus (1 — e)M is a faithful 22 -module. To conclude we need
the

LEMMA 1.2. If A is a finitely generated faithful module over
the commutative ring R, then every simple R-module is a homomor-
phic image of A.

Proof. Just note that for each maximal ideal P, PA Φ A [2;
Chap. I, p. 83 again].

Returning to the proof of the theorem, observe that eM must
contain a simple submodule, unless e = 0. Then / = 0 and again by
the lemma, TP = 0.

2* Examples* In order to construct examples of faithful modules
E with commutative Ω{E) but not isomorphic to ideals, by the pre-
ceding it will be necessary to waive the requirement that Ω(E) be
semi-prime.

We shall need a special case of the following result, which has
various amusing consequences. Let R, as before, be a commutative
noetherian ring and E a finitely generated iϋ-module. Assume that
E is faithful; then R can be viewed as a subring of the center C of
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Horn (E, E). E is said to be balanced if R = C. A mild homological
hypothesis will imply that torsion-less modules (i.e., submodules of
direct products of R) are, very often, balanced.

To state this condition we recall the notion of grade of an ideal
/: it is the smallest integer n such that / contains no iϋ-sequence of
length n+1 [3].

PROPOSITION 2.1. Let E be a finitely generated, torsion-less,
faithful R-module. Then if EP is RP-free for each prime ideal P
with grade PRP <£ 1 (as RP ideal), then E is balanced.

Proof Consider the exact sequence

( 2 ) 0 > R > C > L >0

induced by the inclusion of R into C. With the present finiteness
conditions, "C localizes", i.e., for each prime ideal P, CP is the cen-
ter of Horn (E, E)P = Ή.omRp(EP, EP). Thus for each prime ideal P,
with grade PRP ^ 1, LP = 0 as EP is then i2P-free. Let J be the
annihilator of L. The preceding says that J has grade ^ 2 . Apply-
ing Horn (R/J, —) to the sequence (2) we get

0 > Horn (R/J, R) > Horn (R/J, C)

> Horn (R/J, L) > Ext (R/J, R) .

Since C is torsion-free, Horn (R/J, C) = 0, while by [3]

Ext (R/J, R) = 0 .

Thus Horn (R/J, L) = 0, which evidently leads to L = 0.
The following are cases where the proposition applies:
( i ) I ideal of R of grade 2; then Horn (/, I) = R.
(ii) Serre's normality criterion [4; 111-13].
(iii) E is a finitely generated, torsion-less, faithful J2-module of

finite projective dimension; then E is balanced.
(iv) Commutative noetherian rings of finite global dimension

are integrally closed.

EXAMPLE 2.3. Let P be a maximal ideal of a commutative domain
R, such that grade P ^ 2. Then Ext (P, R/P) Φ 0, as otherwise RP

would be a discrete valuation ring, which is not the case [1]. Let
E be a nontrivial extension of P by R/P, that is, consider a non-
splitting sequence

π
(3) 0 >R/P >E >P *0.
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The exact sequence corresponding to (1) is

0 > Horn (E, R/P) > Horn (E, E) - ί U Horn (P, P) .

By (i) above, Horn (P, P) = R and π* is actually a surjection with
the endomorphisms of E induced by multiplication by elements of R
mapping injectively onto Horn (P, P). Thus

Horn (E, E) = R + I

with 1 = Horn (E, R/P). By Lemma 1.2 we know that Iφ 0. Horn
(E, E) will be commutative if P = 0. If Γ =£ 0, there would be
f,gel, with fog Φ Q. This however says that /:2? >ϋJ/P is non-
trivial on R/P. We could then modify / by multiplication by an
element in R — P, and thus accomplish a splitting of (3), against the
assumption.

In the example above the protective dimension of E is at least
2; it would be interesting to find an example with similar properties
but lower projective dimension ( = 1).

If R is no longer noetherian, then Theorem 1.1 looks still plausi-
ble if E is assumed of finite presentation.

As a final remark, in a ligther vein, it should be of interest to
determine all commutative rings R in which endomorphism rings of
ideals are always commutative. In the noetherian case, we conjecture
that the total ring of quotients of R is quasi-Frobenius.

The author is grateful to the referee for various constructive
suggestions.
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