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It is well-known that, on a finitely connected, noncompact,
Riemann surface, the complex-dimension of the space of all
analytic differentials modulo the space of exact analytic dif-
ferentials is the first Betti number of the underlying surface,
and hence its real-dimension twice the first Betti number.
Further, it is well-known that the group of units of the
algebra of analytic functions on such a surface modulo the
subgroup of exponential functions is a free Abelian group
whose rank is again the first Betti number of the underlying
surface, Thus, in each case, the analytic obstruction on the
surface fully dualizes the continuous obstruction,

Interestingly, this is not the case on a finitely connected,
noncompact, nonorientable Klein surface; for example, in the
case of the first problem, the real-dimension is twice the first
Betti number minus one. In the second problem, the group
in question is isomorphic to the direct sum of the two element
group and the free Abelian group whose rank is the first Betti
number, of the underlying space, minus one. These calcula-
tions are first made using sheaf theory, in §2. Integration
theory is then applied, §3, to elucidate the reason that this
curious defect occurs. Application is then made, using in-
tegration, to a mixed harmonic—-analytic obstruction problem
in §4. Finally, the Dirichlet deficiency of the analogue of the
standard algebra on compact, nonorientable, Klein surfaces—
with boundary—is computed. Again the defect of minus one
occurs, Throughout, the reason why this defect occurs in
the nonorientable case is of prime concern,

0. Foundations. The analytic foundations of the theory of Klein
surfaces can be found in [11], [3], and [4]. Further, Greenleaf’s paper
[7], a companion to this, provides another reference, as well as proving
Cartan’s Theorem B in this context.

Let ¥) be a noncompact, nonorientable, Klein surface, (without
boundary), and let ¥ 59 be its complex double [4]: i.e., ¥ is a
Riemann surface and p a two-to-one local homeomorphism of X onto
9. Recall also that ¥ has an antianalytic involution 7z such that
poT = p. Let & be the structure sheaf on %X, &~ the constant sheaf
on X, and 2 the sheaf of germs of analytic differentials on . Given
an open set U of Y let 52 (U) = {se '(p~(U), &): s = d(s)}, where
0(s) = kosoT, £ denoting complex conjugation; thus 57 is a presheaf
on Y. Let .9 be defined by replacing < by &, 57 * be replacing
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2 NORMAN L. ALLING
& by &*, and & by replacing < by iZ.
LEMMA 0.1. 272, 97, 7%, and & are complete presheaves.

Let the associated sheaves be denoted by the same symbols and
let these sheaves be called, respectively, the sheaf of germs of holo-
morphic functions on ), twisted comstant sheaf on Y, the sheaf of
germs of nonzero holomorphic functions on %), and the twisted 12 sheaf
on Y. Holomorphic differentials can be defined on % in a variety of
ways. The method used in [4] was to choose U = (U, 2,);c,€ % and
to associate with it a family w = (w,);., of holomorphic functions, w;
being defined on U; subject to an appropriate compatability condition.
We then passed to equivalence classes, ete. Let o(w) = (0(®;));c,. The
following can be proved easily.

LemmA 0.2. o(w) is @ holomorphic differential on X. Further
if @ = fdg, f and g holomorphic on X, then o(®w) = a(f)da(g).

Let 4(U) ={wel(p*(U), 2):® = g(w)}; then it is easily seen
that 4 is a complete presheaf. Let 4 be the sheaf on Y associated
with this presheaf. Then it is easily seen that 4 is a locally free
sheaf of S#-modules of rank one on Y, and that following sequence
of sheaves and sheaf maps is exact:

d
(0.a) 0 4 o 4 0.

The de Rham problem, in this context, is the following: find
dim, 4(9)/ds57 (). Applying the cross section functor to (0.a), we
arrive at the following long exact sequence:

0— (Y) — 27(D) — 4Q)

(0.b) //
H(Y, 5) — H\@, 57) —> -+ .

Given an open set W in X and se I'(W, ), let exps = ¢**. The
following sequence of sheaves and sheaf maps on % is exact.

(0.c) 0—iZ — 7 =5 s 1.

It is easily seen that this sequence induces the following exact sequence
of sheaves and sheaf maps on 9.

exp

0.d) 0 7 > SF S+ > 1.

Applying the cross section functor to (0.d) results in the following
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long exact sequence:

exp

0—I'(Z, &)— oF Q) — #*?)

(0.e) //
HYZ, ©)—— H\D), 57) —> -~

This sequence will be used to analyze 57 *(9)/exp S~ (D), the
group of units modulo the subgroup of exponentials.

1. Introduction. Having the long de Rham cohomology sequence
(0.b) and the long exponential cohomology sequence (0.e), let us analyze
them, beginning with the first interesting terms, .27 (Y) and I'(Y, &),
by noting that these groups depend only on the topology on Y.

We assumed at the outset that Y is connected. If Y is orien-
table, .97 is just the constant sheaf &, so that .27 (Y) = ;C and
r'Y,z)=~1iZ. If Y is nonorientable, X is connected and, since
F(Y)={sel'(X,%):s=0(s)}, 2 (Y)=Rand I'(Y, &) = 0. Thus
we have the following.

PROPOSITION 1.1. If Y is orientable 25 (Y) = ;Cand I'(Y, &) =
iZ. However, if Y is monorientable 22 (Y) = R and I'(Y, &) = 0;
thus exp i1n (0.e) is injective in this case.

The following essential theorem is an easy consequence of a very
special case of Cartan’s Theorem B.

THEOREM. (Cartanr) 1.2. H'Y, 57) = 0.

Note. In the companion paper by Greenleaf [7] he gives a much
more general result. The proof is included here only to make this
paper more self-contained.

Proof. In case Y is orientable choose an analytic structure 9, < 9.
Since every Riemann surface is a Stein manifold H'(),, 57) = 0. As-
sume now that Y is nonorientable. By swelling out a triangulation
of Y a bit we can choose U = (U}, ?,);.,€ 9 that is locally finite such
that each U; and each U;N U, is simply connected and so that each
p~"(U;) has two components. Through an abuse of notation, let U
also denote (U,);., and let V = (p~'(U,));.,, and note that V is a
locally finite covering of X which is a Leray relative to <. Every
1-cocycle (resp. bounding 1l-cocycle) on U with coefficients in 57 is a
1-cocycle (resp. bounding 1-cocycle) on V with coefficients in #2. Thus
these inclusion maps induce an R-linear map I, of H*(U, 5#) into
HY(V, 7). Since ¢ is an R-linear involution of I'(p~%(U,), £7), it
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induces an R-linear involution ¢ of H'(V, <”) which has I (H'(U, 57))
as its set of fixed points. Let T, = (1 + 0)/2, and note that T,I, is
the identity map of H'(U, 5#°); thus I, is injective. By Cartan’s
Theorem B (see e.g., [8] for details), HYV, &) = 0, proving the
theorem.

Note: To define the normalized trace map 7', we divided by 2.
Thus it is not a-prior: true that I, maps H'(U, &) injectively into
H'\(V,iZ). Were I, injective in this case H'(Y, &) would be torsion
free.

COROLLARY 1.3. The following sequences are exact:

(La)  0— 5 (Y) — 52(@) — 4Q) — H'(Y, %) — 0.

ex

1b) 0—I(Y, &) — 52Q) =2 97*%(Y) — H(Y, ©) — 0 .
COROLLARY (Mittag-Leffler, Florack) 1.4. The Mittag-Leffler
theorem holds on ).

Proof (i). If Y is orientable use Florack’s argument, in which
she invokes Theorem B [6]. If Y is nonorientable, use that fact that
H'(), 57) = 0, as Florack did.

Proof (ii). In the nonorientable case, choose one singularity in
X over each singularity in Y, choose appropriate principal parts at
these singularities in X, use Florack’s result to obtain a global
meromorphic function on X having these singularities; on taking its
trace one is finished.

COROLLARY (Weierstrass, Florack) 1.5. The Weierstrass “pro-
duct” theorem holds on %).

Of course, if Y is orientable, this is nothing other than Florack’s
Theorem [6]. Assume that 9 is nonorientable. To utilize her argu-
ment here we need to know that H'(Y, &7 *) = 0. If we knew that
H*(Y, ) =0 we could use (0.e) to achieve this. This produces no
obstacle, however, since the analogue of Proof (ii) above easily proves
Corollary 1.5.

2. Cech cohomology on finitely connected klein surfaces and
applications. In §1 the problem of computing dimj 4(2)/d(S7 (D))
and 57 *(9)/exp &7 (YY) was reduced to computing dim, HYY, %) and
HY (Y, &) in (1.3). Let us restrict our attention to a Klein surface g
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which is the interior of a compact Klein surface J) that has a non-
empty boundary 0Y. Since HY(Y, .2¢") and HY(Y, &) do not depend
on the dianalytic structure ¥), but depend only on the topology of
Y—as the notation suggests—we can compute these group on spaces
homeomorphic to Y; thus the initial results of this section deal only
with topology, although analysis may creep into some of the proofs.

Let k& be the number of components of #Y; thus k is an integer,
k=1. It is well-known (see e.g., [9] as a general reference here),
that Y is characterized by knowing the following data: If it is
orientable or nonorientable, %, and y(Y)-the Euler characteristic of
Y. Let D={zcC:|2| <1}. If Y is nonorientable, adjoin a half-
twisted strip to D to form a Mobius strip D,; if not, let D, = D.
(Again see [9].) Now adjoin k& — 1 untwisted strips to D, to form
D,. Now adjoin & handles to D, in the form of pairs of interlocking
untwisted strips, to form D, so that y(D,) is reduced to either y(Y)
or to ¥(Y) + 1. In the first case let D, = D,, and in the second let
D, be formed from D, by adjoining a half-twisted strip; so that
x(D,) = x(Y) in either case. Thus y(D,) = 1 — (k —1) — 2h — m, where
m is the number of half-twisted strips adjoined. m = 0,1, or 2, the
surface being orientable if and only if m = 0. That each case arises
may be seen by letting Y = D, letting Y be a Mobius strip, and
letting Y be a disc with two half twisted adjoined. Clearly & and %
can assume any integer £ =1 and A~ = 0. To summarize:

(2.2) 2wWY)=1—(Fk—-1) —2h —m,

the integers k, # and m being a complete set of invariants for Y.
Let b(Y) be the first Betti number of Y. Then

(2.b) W(Y)=k—1+2h 4+ m.

PrOPOSITION 2.1. Assume that Y is orientable; then dim,p H'(Y,
7)) = 20(Y) and HY Y, <) is a free Abelian group of rank b(Y).

Proof. In this case .25~ is isomorphic to the constant sheaf C
and  to the constant sheaf ¢Z, proving the proposition.

Assume that Y is nonorientable; then X, its complex double, is
connected. If m =1,b(X) =2k —1)+4h + 1, and if m = 2,b(X) =
2(k — 1) + 4h 4+ 3. Hence

2.c¢) b(X) = 2(k — 1) + 4h + m(m + 1)/2, m=12.

LEMMA 2.2. Assume that Y is nonorientable. dim, H(Y, .5) =
3 dim, H'(X, ) = dim, H'(X, .2).
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Proof. The injection I of % into & and the trace T(=(1 + 0)/2)
of & onto .2¢" induce the following maps:

I
H{(Y, o) — H(Y, &) .
T

Since T1I is the identity map, I is injective. Since the elements of
R, 27 (9), and 4(Y) together with 7 times these elements—respec-
tively—generate C, ~2(X), and Q(X)-respectively; dim, H(X, &) =
2dim, H'(Y, .2¢"), proving the lemma.

THEOREM 2.3. dim, H'(Y, .9) 1s 2b(Y) if Y 1is orientable, and
20(Y) — 1 4f Y 4s nonorientable. In terms of k, h, and m, dim, H'(Y,
) = 2k — 1) + 4h + m(m + 1)/2.

At this stage, it is not immediately clear why in the nonorientable
case, the analytic obstruction, as evidenced by the solution of the de
Rhm problem in this case, is one less than the topological obstruction.
One of the main objectives of this paper is not only to compute the
analytic obstruction on nonorientable Y, but also to account for the
defect form what is expected from the topological obstruction.

Let us turn our attention to HYY, ©).

ExaMPLE 2.1. Let Y be a Mobius strip. Let Y be written as
follows:

(2.e) H U, % U, E Uy

TITTE

Let z; be a coordinate function on U,, so that all transition functions
are orientation preserving expect z,2;* and z:2;'. Let U = (U, U,, U,).
Let 0-cocycles on U with coefficients in & be written as (f,, f, f)-
The coboundary of (f,, fu f3), 0(f1, fa f3) is the 1-coeycle (f, — f.,
Ss— fou fi— fs). Let f, — f; be written in terms of z,. Clearly H{(U, &)
is eyclic, being generated by the 1-cocycle (0, 0, 7). Further 4(s, 4, 1) =
0, 0, 2¢); thus HYU, <), and also HY(Y, ), is isomorphic to Z,.

THEOREM 2.4. If Y 1is orientable, H(Y, ©) = Z'", and of Y
18 monorientable H\(Y, &) = Z, @ Z*" .

Proof. Assume that Y is orientable; then H(Y, ) ~ H(Y, Z) ~
Z'",  Assume that Y is nonorientable. If m = 1 we can treat the
twisted and untwisted strips adjoined to D, to form D, independently
and arrive at the results above. Assume that m = 2, and consider
the following example.
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ExAMPLE 2.2. Let Y be formed from D by adjoining two half-
twisted strips thus k= 1,2 =0, and m = 2. Let U, be the interior
of D. Let U,U U, form one half-twisted strip of Y, U,N U, U,N U,
and U,N U, being simply connected. Similarly, let U,U U, make up
the other half-twisted strip on Y subject to the same restraints. Let
225", 227, 227", and 2,27 be the only orientation reversing transition
functions, the family (Uj, 2;)jcq,2545 = U being an atlas of Y. Let
1-cocycles be written (. fos fai i S f5); thus a = (0,4, 0; 0, 0, 0)
and 8 = (0,0,0; 0,7 0) generate H'(U, &). Observing the same con-
ventions as were adopted in Example 2.1, the coboundary of the
0-cocycle (1, 1, 1, 1, %) is (0, 2¢, 0; 0, 2¢, 0): i.e., 2(a + B) = 0. Hence
HY (U, ) is isomorphic to Z x Z/(2,2)Z: i.e., H(U, &)= Z,P Z.
We conclude that HY(Y, <) = Z, P Z.

Returning now to the proof of (2.4), note that applying Example
2.2 to the case at point, HY, &) = (Z,P Z) P 2"V = Z, P Z*",
since the twisted and untwisted strips may be treated independently;
this proves the theorem.

Having analyzed H'(Y, >") and H'(Y, &), let us synthesize the
results of §1 and §2 to form the main theorem of this section.

THEOREM 2.5. dim, 4(9)/d=o# (D) is 2b(Y) or 2b(Y) — 1 according
as Y is ortentable or mot. S77*(¥)/exp 57 (D) s isomorphic to Z*Y)
or to Z, P Z*" according as Y 1is orientable or mnot.

It may come to the reader as a surprise to see that S7*(%)/
exp &7 (3)) has a nontrivial torsion group in case Y is nonorientable.
It is natural to wish to find a generator of this group.

THEOREM 2.6. Y 1s orientable if and only if —1leexp o~ %).
In case Y is nonorientable the residue of —1 in S7*(Q)/exp 57 (D)
generates its torsion group, and is order 2.

Proof. Assume that Y is orientable, then 7¢ 57 (%)) and exp /2 =
—1. Conversely, assume for a moment that there exists fe 57 (%)
such that exp f = —1, and that Y is nonorientable. Recall that
F Q) c o~ (X). Since exp f = —1, given ze X, f(x) = /2 + =1, for
some fixed integer n. Since X is connected f = 7/2 + mi. Since
feoAQ), f=o(f)i.e.,1/2+ ni=£ko(1/2 + ni) = —1/2 — nior n = —1/2;
which is absurd, proving that Y nonorientable implies —1 ¢ exp 52 ().
The rest of (2.6) follows (2.5), and can also be proved independently
with ease.

3. Integration and obstruction on 9. If ¥ is orientable one
way to approach the de Rham problem is by defining a bilinear pairing
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between 4(%)/ds7 () and H(Y, C), the first singular homology group
on Y with complex coefficients, with the aid of integration.

Until we have achieved the main theorem of this section, (3.6),
assume that Y is nonorientable. In this case the integration theory
of analytic differentials @ along arcs and curves on ¥ exists [4];
however, it requires care to apply it. For example, if /" is an oriented,
Jordan curve (see, e.g., [10]) in 9 which can be covered by a finite
number of dianalytic charts U = (U, 2;);.5, all of whose transition

functions are analytic, then \w is a well defind complex modulo the
choice of U. Such a curve Wrill be called an even curve in ¥). Note
that S ® is dependent on the choice of U in that if U = (U, Z,);., is
chosenrinstead, the resulting integral is the conjugate of the former.
These are also the only possibilities. An oriented Jordan curve /" in
Y which has no such covering will be called an odd curve in ). Let

I" be such a curve and let y,€ /. Let ye I" — {y,} and note that Iy,
the arc from ¥, to % in I, can be covered by such an oriented coordi-

nate system; thus S w is well defined up to complex conjugation.

Y
Tyo

Letting y approach y, by passing around /7 and taking the limit
defines a complex number ® uniquely, up to conjugation and the

I, y0 .

choice of y,. Fortunately Re 5 ® 1is uniquely determined by I°
r,yy

and @ and will be denoted by Reg ®. (For further details see [4]).
Ty

There exists a basis /7, -+, Iy, of the first singular homology
group on Y such that 77, -.-, [',,,_, are even curves and /7, is an
odd curve. These curves may be chosen as follows: If m =1 let
Iy, «++, [y _ be paths that go around the untwisted strips of ¥ and let
[y, go around the twisted stripof Y. Incasem=21let I", --+, [", s
go around the untwisted strips of Y, let 77,,_, go around both twisted
strips, once each, and let I',,, go around one of the twisted strips.

Let the following be defined.

3.a) p,(w) =fRe

Po(w) = Im

Py ry—o(®) = Im

|
|
Doy iy @) = ReS /27
|
|

Puvy— (@) = Re



ANALYTIC AND HARMONIC OBSTRUCTION ON NONORIENTABLE 9

Note that @, @,, +«+, Py y)_, are uniquely determined by the given
data (namely 7"}, « -+, I",y,), whereas @,, @,, «++, Puyy)—. are determined
only up to sign, the ambiguity of this choice being independent one
from the other.

An alternative to integrating differentials on ), using the theory
developed in [4], is to integrate we 4(Y) on X. For 1 <75 <b(Y) — 1,
I; lifts to two oriented Jordan curves I} and /", which are mapped—
one onto the other, preserving orientation—by 7. »~'(",y) is also an
oriented Jordan curve in X.

LEMMA 3.1. Let I" be an oriented Jordan curve (arc) in X and
let we 4(%); then S w = ICOS .
r

o(I")

Proof. This reduces to a local question for any subarc of /7, and
its image under z. Let xz,€7’. We may choose z€ 27 (¥)) having a
simple zero at x,, and necessarily also a simple zero at z(x,), by—for
example-the Weierstrass “product” theorem for ¥ (1.5). @ may be
written in the form fdz, f being in 2 (9)). =z is a local homeomor-
phism at z, (and also at z(x,)). Let U be an open set of z, in X on
which z is injective. Let z, be in the component of I"N U which
contains x,. (Necessarily r(x,) is in the component of (") N z(U) which
contains 7(x,).) Since f and z are symmetric (f(x,) — f(x0))(2(x,))) — (2(2,)) =
(a(f) (@) —a(f) (@) (o) (@) —0(2) (%) = (Ko f(T(x,) — £of (T(x0)))(£o2(T{w))) —
£o2(T(%0))) = £o[(f(z(x)) — f(T(@)))(2(T(x,)) — 2(z(x,))]. Since we are
dealing with a Riemann-Stieltjes integral, this proves the lemma.

COROLLARY 3.2. Let we 4(%); then S Lo = ICS W, for 1<75=<

I‘7 1"_7
b(Y) — 1, Reg a):ZReS ®, and I | ® = 0.

My ) Ty(y) Jo )

We will see that the last fact cited above is a revealing reflection
of the reason that the defect occurs in the nonorientable case. The
following is easily proved.

LEMMA 3.3. [viy ['i’, F;’ F;’, *t [YI’:(Y)—U F’bI(Y)—l a’nd p—l(Fb(Y)) con-
stitute a basis for the first singular homology group on X.

Let the following be defined

3.h) 0,(@) = Regr,w/Zn

1

0,(w) = Im Srla)/27r
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Oz ) s(@) = Reg , w/2m

Tp(¥)—1

02 vy —o(@) = ImS /21

Tyr)—1

Ouri@) =Re| oz,
PTHIy ()
With the aid of integration theory developed in [4], we have the
following.

PROPOSITION 3.4. 0, =@,, O,= Py, «++, Oy 2= FPoyrr—r Oapirr=
Poyirr—1y the stgns for even subscripts being independent of one another.

LEMMA 3.5. Let we 4(%) such that
P (w) = <pz(a)) = oo = Py (@) =0,

then we ds7(3); and conversely.

Proof.  is in 2(X). By (3.2), (3.3), and (3.4) all of its periods
are zero. Thus there exists fe £ (X) such that df = w. Let g =
f +o(f))/2e 7)), and note that dg = (0 + 0(®))/2 = 20/2 = v,
proving the lemma.

Using (3.5) we see that @,, @,, « -+, Ps)_, induce R-linear func-
tionals @,, @y, «++, Doy, o0 4(D)/d2# (D). Since, as we saw in (2.8),
dim, 4(9))/ds7 Q) = 2b(Y) — 1, we have arrived at the main theorem
of this section.

THEOREM 3.6. {®,, *++, Ppyp)_} 5 a basis of Homy (4(D))/dS7 (D),
R).

Let us now turn our attention to £77*()/exp 57 (3). Assume,
at the outset, that Y may be orientable.

Given ge 57*(9), let Myg) = dg/g; then X\ is a homomorphism of
the multiplicative group of 27 *(9) into the additive group 4(9). The
following sequence of Abelian groups and group homomorphisms is
exact, 7 *(Y) being the multiplicative group of units of the field
of constants of £ (¥); namely R* if Y is nonorientable and C* if
Y is orientable:

(3.0) 1— 4 (Y) — 74(Y) —— A(D) -

Given fe o7 (D), Mexp f) = 2zd f; thus Mexp 527 )) < do7(Y). This
shows that \ induces a homomorphism X making the following sequence
exact.
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(3.d) 1 — K — s57%(Q)/exp S2Y) —— 4D)/dS7 D) .

LEMMA 3.7. Let ge 57*() such that dg/g(=Mg)) = df, for some
feo~ Q). Then there exists ce 27 *(Y) such that g = cexp f.

Proof. Letk=(expf)/2r, and note that M(k) =27 (exp f)df/2mrexp f=
df. Hence N(g)=Mk). Note that (1/9k)(d(g9/k))=1/9k)(kdg— gdk)/k*=
(1/k*(dg/g — dk/k) = 0. We conclude that g/k = ¢, 2 *(Y), so g =
¢k = (¢,/27) exp f = cexp f, proving the lemma.

As an immediate consequence of this lemma we have the follow-
ing.

PROPOSITION 3.8. If Y is orientable, K(=\"0)) is {1}. If Y is
nonorientable K = {+1}.

Proof. 2¢*(Y)/exp 27 (Y) is isomorphic to C*/exp C or R*/exp R
according as Y is orientable or not: i.e., it is C*/C* or R*/{r € R: » > 0}.
Using this and (3.7), the proposition is proved.

Note. (8.8) may be considered an arithmetic characterization of
orientability or the lack thereof on Y.

Assume, until further notice, that Y is nonorientable.

LeMMmA 3.9. For all ge7*®), and all j, 1 <7 <b(Y),
1/27?8 dglgeiZ. If g = +exp f, for fe 57 %), then the integral above
['\

1s zero. Finally, Re <1/7c§ dg/g> = 0.

Ty (v)

Proof. Since 1/27z§ dglg = —_1—1/27L'S dglg, (3.4), it is =i times the
I, r’
winding number of g arodnd [, proving %he first assgrtion. By (3.2),
Re(l/ﬂg dg/g> = Re(l/ZnS dg/g). Since 1/271'@'3 dgl/g is the
Th(y) —Lury)

p—H p—1(I'y)
winding number of ¢ about »~'(I",), Re <1/7TS dg/g> = 0, proving the
Ty vy

. b(
proposition.

Using (3.8) we see that X (of (3.d)) induces a monomorphism X
of G = (s7*®)/exp 57 ())/{=1} into 4(9)/do7 (). Now recall that
P,y vy Poyyy—, are R-linear maps of 4(9))/ds7 (D) into R. Let @ =
(Por Pay *++1 Pisorr—) map 4(Y)/dS7(Y) into R*™~ and let p = Pol.
By (3.9), ¢ maps G into Z*™—,
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THEOREM 3.10. p is an isomorphism of G(= (o7 *(D)/exp 97 (D))/
{+1}) onto Z*-,

Proof. Let feo7*®) and let g be its residue in G. Assume
that z¢(g) = 0; then—by hypothesis @,(M(f)), P.(M(f)), « ) Posry - (M) =
0: ie, BN B -+, Puon (M) = 0. By (3.6), Wf) = 0;
thus X(g) = 0. Since X is injective, g = 0, proving that p is injective.
By (2.6), {£1} is the torsion group of 57 *(®)/exp 5~ (Y)); thus G is
a free Abelian group of rank 5(Y) — 1, (2.5), which shows that p is
surjective.

We conclude by noting that 57 *(9)/exp 57 (9) can be analyzed
in the nonorientable case by noting that {1}, its torsion group,
reflects its nonorientability and that p picks out the appropriate
geometric “periods” about 77, -+, I"yy)_i.

4. A mixed analytic and harmonic obstruction problem. As
noted [4], the real part Ref of an analytic function f on 2 is a well-
defined harmonic function % on ¥). This may also be seen if we think
of f as an analytic function on X fixed under o, since if f = u + v,
0(f) = uoT — twot; 80 u is a real-valued harmonic function that is
invariant under z: i.e., u engendered a real-valued harmonic function
u on 9. Let Li(¥) denote the space of all real-valued harmonic
functions on 9 and let Re 27 (%) = {Ref: f ¢ 57 (9)}. As noted above,
Re 57 (9) is a subspace of L (¥)). The question we treat in this section
is the following: what is the dimension m, over R, of L(%)/Re 57 (9)?
In case ¥ is orientable, m is well-known to be 8(Y). (See, e.g., [1].)
Thus assume, until further notice, that Y is nonorientable.

As noted above, L(¥) can be considered as the subspace of L(X)
whose elements are invariant under z. Given we L;(¥), it has a
harmonic differential du on X; thus we may form o(u) = 0 = du + 1*du,
an analytic differential on ¥. Assume first that there exists f e 27 (9)
such that f = u + 4v; then dv = *du and w = df. Two facts emerge:
(i) in this case we 4(9), and (ii) @ is exact.

LEMMA 4.1. For all ue Li(%), 6(u) = o is in 4(D): t.e., 0(®) = 0.

Proof. Let 2'e¢ X and let z(z’) = 2”. Since ® is an analytic
differential on % it is locally of the form dg for some locally defined
analytic function ¢ at 2/, where ¢ is of the form w + v locally at 2.
og(g) is an analytic function, defined locally at ', of the form
uoT — 1woT; thus the real part of o(w) at z” is du. Since this is
true for all 2’ e X, the real part of o(w) is du globally. Since an
analytic differential is uniquely determined by its real part, o(®) = ®,
proving the lemma.
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The following sequence of R-spaces and R-linear maps is exact:

(4.3) 0— R —— L) — 4(9) .

It was also noted above that d(Re 52 (%)) c d.57(9); thus ¢ induces an
R-linear map o of L,(9)/Re 57 () into 4(D)/d.57 (D).

LEMMA 4.2. 4 is injective.

Proof. Let ue L) for which there exists f e 57 () such that
o =df. Letf =a+ bi, a and b being real valued. Then du-+i*du =
® = da + idb; thus du = da, or w = a + ¢, ¢ being a real constant.
Hence v = Re (f + c¢), proving that « e Re 2~ (9), proving the lemma.

Having found the kernel of 4, namely zevo, let us describe its
cokernel. This will be done with the help of the linear functionals
@; on 4(9)/do7 (D) developed in § 3.

LEMMA 4.3. For all we L),
PUO(w) = P3(0(u)) = +++ = Py, (6(w)) = 0 .

Proof. The assertion is easily seen to boil down to the following
statement: Given a piece-wise C*Jordan curve I" in %, S du =0, a
,
fact which is obviously true, proving the lemma.

Using this rather crude lemma we obtain an upper bound on the
cardinal number we are trying to compute.

COROLLARY 4.4. dim, L;(P)/Re 573) < b(Y) — 1.

LEMMA 4.5 Let w e 4(9) such that @,(®), Py(@), « ) Poyryr(@) = 0;
then there exists we Li(9) such that 6(u) = w.

Proof. The real part & of w is a real harmonic differential on
X which is invariant under the map induced on such differentials by
7. The conditions above assure that all of the periods of « are zero;
thus it is of the form du for some u e Ly%)), proving the lemma.

In (3.6) we saw that {@n@zy "'ygjzb(y)—zy @20(1’)-—1} is a basis of
Hom, (4())/do# (D), R). Combining (4.3) and (4.5) with (3.6), we
arrive at the main lemms of the section.

LEMMA 4.6. (L,(Q)/Re 572\9)) is the annihilator of the R-sub-
space Of HomR (A@)/dc%”@), R) spanned by {‘7%: ‘7N)3y cty C/Zzbm—sy éﬁzbm—l}-
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Using this we have the main theorem of the section.

THEOREM 4.7. dimy Lp(Y)/Re 27 () =b(Y) —1 of Y 1is mnon-
orientable, and is b(Y) if Y is orientable.

ExAMPLE 4.1. Let 9 be a noncompact Mobius strip; then every
real-valued harmonic function on ) is the real part of an f in 272 (9).

5. Application to the standard algebra on 2. Let 2 be a
compact Klein surface whose boundary 0Y is nonempty. Let int 9
denote the interior of ), with dianalytic structure. The standard
algebra A(Y) on 9, defined and treated superficially in [2], is the
algebra of all continuous complex “functions” on ¥) that are analytic
on int 9. Alternatively, we can define A(Y)) using the orienting

double %L?) of 9, if ¥ is nonorientable. (See [4] for details.) %X
is then a compact orientable Klein surface and p a two-to-one dianalytic
covering map of X onto ¥), i.e., a morphism. Then A(Y) can be defined
to be the set of all elements of the standard algebra on X invariant
under ¢, where o(f) = kofor. Let f e A(Y) be represented as u + iv,
# and v being real-valued harmonic functions on X. % is then con-
tinuous on Y and harmonic on int ¥). Let Ref = #|0Y, and note that
Re is an R-linear map of A(Y) into Cr(0Y), the R-algebra of all
continuous real-valued functions on 0Y. TUnder the sup norm, C,(0Y)
is a real Banach algebra. Let clRe A(Y)) denote the -closure of
Re A®) in Cr(0Y) under the sup norm. Let D.d. (A®)) =
dim, Cr(0Y)/cl Re A(Y) be known as the Dirichlet deficiency of
A®). A®) will be called a hypodirichlet algebra if D. d. (A(D)) is
finite, and a Dirichlet algebra if D. d. (A(Y)) = 0. This notion is
well-known for function algebras.

In the orientable case, Wermer [12] has shown that A(Y) is a
hypodirichlet algebra whose Dirichlet deficiency is bounded above by
b(Y), the first Betti number of Y, with a strong suggestion that
equality occurs. (For a proof that D. d. (A4(9)) = b(Y) see, e.g., [1].)
The object of this section is to show, in the nonorientable case, that
A(Y) is a hypodirichlet algebra, and to compute D.d. A(¥)). In so
doing we follow very much in Wermer’s footsteps, except for a detour
or two occasioned by the nonorientable terrain.

Let g e Cr(0Y), and regard ¢ as a symmetric element g of C,(0X):
i.e., goz = g. Using the Dirichlet principle, valid on X, there exists
a continuous real-valued function W on X, harmonic on int X such
that W|0Y = g. Let U= (W + Wort)/2. Note that U is continuous
on X, harmonic on int X, U|0X = g, and Uot = U. (Of course by
uniqueness U = W.) Thus we have proved the following.
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LEMMA 5.1. The Dirichlet principle is valid on 9.

Let harg = Ulint Y = %; then har is an R-monomorphism of
Cr(0Y) into L(int ), the space of all real-valued harmonic functions
on int 9.

Recall that 9, defined in §4, takes ue Ly(int9) to du + t*du =
w e Q(int ¥) which turns out (4.1) to be in 4(int ¥). Thus 7;: g— P;
(0(har (g))) are linear functionals on C,(0Y), 1 <5 <2(Y)— 1. By
(4.3), D1y sy * ¢y Nypy)—, are Zero.

LEMMA 5.2. If geRe A(Y), then 0, (9), 0dg)s =+ ) Duprr—2(9) = 0.

Proof. Let feA®)c A(X) be written in the form u + v on
X, u and v real-valued functions, u|int X = har Re f, and ¢ (har Re f) =
du + 1*du, on int X, equals du + idv = df on int X. Since all the
periods of df are zero, we may use (3.5) to conclude that 7,(g) =

774(9) = e = 77:1;(1/)—2(9) = 0.

From (5.2) we conclude that Re A(Y) is contained in H, the
hyperplane of Cr(0Y) of functions annihilated by 7, %s +++) Dopr)—s-
In order to be able to conclude that clRe A(Y)c H, it suffices to
prove the following.

LEMMA 5.3. 75 Dy =y Dupiry—2 @re continuous on CL(0Y) (under
the sup morm topology).

Proof. Let (¢,)..y be a null sequence in Cr(0Y) and let U, be
the real-valued continuous extension of g, to X which is harmonic
on int ¥. Using the maximum principle (U,),.y is uniformly a null
sequence on X. Let 3 be a tubular neighborhood of 77}, 1 <j <
b(Y) — 1, which is an annular compact bordered Riemann surface.
Let 8 be embedded in C as an annulus ¥, ={zcC:r < |z| < 1/r} for
some 7, 0 < r < 1. Thus, without loss of generality, we may assume
that ¥ = .. U, is obtained by integrating g, times the normal
derivative of the appropriate Green’s functions on X. 4U,/0x and
oU,/0y are obtained by integrating g, times the appropriate derivative
of this kernel; thus 0U,/ox and dU,/0y tend uniformly to zero. Thus

1/27T7JS *qU, tends to zero, proving the lemma.
1‘}-

COROLLARY 5.4. H s a closed hyperplane of Cr(dY); thus
clRe A®)c H and D.d. A®)) =b(Y) — 1.

LEMMA 5.5. Lst g be a C>-function in H. There exists f e A(D)
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such that Re f = g; hence H = cl Re A(Y).

Proof. Let w = 6(9); then w e 4(int ¥)). Since g e H, w is without
periods on X. By (3.5), there exists f analytic on int ¥ such that
w=df. Let a be the real part of f; then da = du, where v = har g.
a and u differ by a real constant, which we may assume is zero. Since
g is C* on 0Y, f extends to a unique element fe A(Y). Clearly
Re f =g. Since the C*-functions in C,(0Y) are dense, H = cl Re A(),
proving the lemma.

We come then to the main theorem of the section.

THEOREM 5.6. Let 9 be a compact Klein surface. A(%)) is a
hypodirichlet algebra whose Dirichlet deficiercy is b(Y) if 9 1s
ortentable and b(Y) — 1 if 9 is nonorientable.

Wermer [12] goes on to prove somewhat more in the orientable
case; namely that there exist f,, -+, fir) € A%(Y), the group of units
of A(Y), such that the real vector space spanned by Re A(9) U {log|f.l,
--+,log | fo |} is dense in Cr(0Y). Let us consider this in case 9 is
nonorientable. First note that even though fe A*(¥) may not be a
function on Y, |f]| is a function on Y: i.e., considered as a function
on X, |f| is invariant under .

THEOREM 5.7. Assume that %) 1is mnonorientable. There exist
S ooy foara € A*D) such that the real wvector space spanned by
Re A®Q) U {log [ fi], =+, 108 | foam— |} in Cr(0Y) is demse in Cr(0Y).
Fusrther the tmages of log|f.], -+, 10g | fiarm| i V= Cr0Y)/H
form a basis of V over R.

Proof. Proceeding much as Wermer did [12], let X be analytically
embedded in a slightly larger noncompact Riemann surface T in such
a way that 17, "), I3, Iy, « oy Thysy I8 4yt and p7(L7 ) are still
a basis for the first singular homology group on W. By (3.6) and
(4.6), there exist u,, «--, U,y € L(W), invariant under 7, such that
Poi(0(1r)) = 031y 1 =5, k= 0(Y) — 1. Let o, =0{n), L=k =b(Y) — 1.
Letx, € p~'({'},,) and consider expressions exp(27rsx W, — ngh(ww,c), where

2
the last integral is taken via a fixed Jordan arc /" on .X1 from =z, to
7(x,). Recall that o, = du, + 1*du,; thus ®, has no real periods, only
imaginary periods. By the choice of w,, *du, has only integral periods;
thus the expression above is a well defined analytic function f,(x) on
W. We now wish to show that a(f,) = f;.
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o(f)(x) = koexp (2%8”1)0),, - ﬁsmo)a)k>

20 20

(zg) (%) (2zg)
= Koexp (2715 w, + 27:S w, — 72:5 a)k>

E2) T(xg) E2

() (%)
= Koexp <27r§ w, + TES ’ cok)

= (@g) ET)

z T (%)
exp (2/75 w, + mcog e cok) .
ER) zq
Since x,€ p~' ("), T(%,) is necessarily in this set; thus we may
assume that I” is a subarc of p~'({,y) and hence that I" + ¢(I") =
(L. By (3.2) S _ @.=ais real. By definition (3.b) and by
=y y))

(3.4), @ = 2Py (®,). Since w, = d(uy), and u, € Lx(3), we may apply
(4.3) and conclude that a = 0. By (3.1) S W, = IEOS w,; thus
r o(I)

0= |

a)k:SwH—S a),c:ka—F/coS(a)k):ZRegwk.
JoT Ty py) r (I r r r

. . . (=)
a)k> is purely imaginary. As a consequence KOS W, =

%0

(2g)

Henceg mk<ES
ctag) r g
—S o, and o(f,)(x) = fi(x) for all xe W. This shows that f, is

%0

invariant under ¢ and thus when restricted to X is in A*(Y).
log | fi(z)| = 27 Sx dw, = 2m(u(x) — u(2,)); thus @,;(0(log | f])) = 2mo;

0

for 1 <j, k<b(Y) — 1. The rest follows from (4.2), (4.6), (3.6), and
(5.5).

Note. The author is indebted to Newcomb Greenleaf for sug-
gesting, in a different context (namely in [4, I, §10]), the trick of

T(2q)
subtracting S Oa),,.

%0

In case 9 Is orientable it is essentially well-known, and was noted
in [1, § 9], that the real linear span of log | A*(¥)| is dense in CR(0Y):
i.e., A*(Q) is an Arens-Singer algebra [1, §9]. Thus we have the
following.

COROLLARY 5.8. A(Y) is an Arens-Singer algebra whether 3 1is
orientable or mot: i.e., the real linear span of log|A*(Y)| in Cr(0Y)
1s demnse 1n Cr(0Y).

6. Conclusion. As noted in the synopsis, the purpose of this
paper was not only to study the analytic and harmonic obstruction
on nonorientable Klein surfaces %), which resembles the orientable
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case very closely, but to try to elucidate the reason why the defect
of minus 1, which we will call the Klein defect, occurs. The de
Rham problem (0.b) on ¥ occasioned our first insight into the reason
that the Klein defect occurs, when we note that when Y is doubled
to form X each untwisted strip doubles, whereas if m = 1 this
untwisted strip gives rise to only one strip on X, and if m = 2 these
two twisted strips give rise to three strips on X (2.c). The reason
that the Klein defect occurs in the units modulo exponentials problem
(0.e) lies a bit deeper, but may be seen through the language of Cech
cohomology in Examples 2.1 and 2.2, and (2.4).

Integration theory was introduced in §3 to see how the Klein
defect manifests itself in this more classical setting and to develop

a powerful method thereby. The prime fact is that ImS w =0

7T (yy)

for all we 4(9), (3.2). In [4] we saw that only the real part of

w is well defined, the imaginary part being without invariance—
I"b(x)

not even being defined up to sign. This “missing” imaginary period
results in the emergence of the Klein defect in (3.6), (3.10), (4.6), (4.7),
(5.6), and (5.7): i.e., in the rest of the main theorems of the paper.
The presence of two torsion in 57 *(¥)/exp 27 () is not detected by
integration theory in this paper, since \(g) = dg/g = M(—g). The
winding numbers of g around the untwisted strips is, however, re-
captured by integration in (8.10). The two torsion in this context is
thus seen as only arithmetic, even though in the language of Cech
cohomology it does manifest itself geometrically.

Not only has an instance of torsion occurring in analysis been
found, but the answers to each of these analysis problems; the de
Rham problem, (2.5) and the units modulo exponentials problem (2.5);
distinguish between the orientable and the nonorientable case; thus
each of these problems (and also HY(Y, .%") and H'(Y, ¥)) are more
sensitive and revealing of the topology on % than anything in
homotopy theory, or than any homology or cohomology theory for
which the homotopy axiom [5] holds. Similarly, given the rank b(Y)
say of the first homology group of Y and the solution of either the
harmonic functions modulo the real part of an analytic function
problem (4.7), or the Dirichlet deficiency problem (5.6), more is re-
vealed about the topology on Y than by all of algebraic topology
which is homotopy invariant.

Thanks are due to Newcomb Greenleaf with whom the author
consulted on several occasions, and whose criticisms of the penultimate
version the manuscript resulted in a number of important changes.
Thanks are also due to Burt Rodin with whom the author conversed
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oft and many a time while in La Jolla. Particular thanks are due
to Helmut Rohrl who helped make the author’s very productive stay
in La Jolla, California possible; this paper having been largely written
there within sight of the Pacific.
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