A CRITERION FOR n-CONVEXITY

Peter Southcott Bullen
A CRITERION FOR \(n\)-CONVEXITY

P. S. BULLEN

The development of the \(P^n\)-integral of R. D. James and W. H. Gage is based on certain properties of \(n\)-convex functions. In order to develop this integral systematically a more detailed study of \(n\)-convex functions is needed. In the second section of this paper various derivatives are defined and some of their properties given, in the third and last sections properties of \(n\)-convex functions are developed.

2. Definitions and some simple properties of generalized derivatives. Suppose \(F \) is a real-valued function defined on the bounded closed interval \([a, b]\) then if it is true that for \(x_0 \in]a, b[\)

\[
\frac{F(x_0 + h) + F(x_0 - h)}{2} = \sum_{k=0}^{r} \beta_{2k} \frac{h^{2k}}{(2k)!} + o(h^{2r}), \quad \text{as } h \to 0
\]

where \(\beta_0, \beta_1, \ldots, \beta_{2r} \) depend on \(x_0 \) only, and not on \(h \), then \(\beta_{2k}, 0 \leq k \leq r \), is called the \textit{de la Vallée Poussin derivative of order} \(2k \) of \(F \) at \(x_0 \), and we write \(\beta_{2k} = D_{2k}F(x_0) \).

If \(F \) possesses derivatives \(D_{2k}F(x_0), 0 \leq k \leq r - 1 \), write

\[
\frac{h^{2r}}{(2r)!} \theta_r(F; x_0, h) = \frac{F(x_0 + h) + F(x_0 - h)}{2} - \sum_{k=0}^{r-1} \frac{h^{2k}}{(2k)!} D_{2k}F(x_0)
\]

and define

\[
\bar{D}_{2r}F(x_0) = \limsup_{h \to 0} \theta_2(F; x_0, h),
\]

\[
D_{2r}F(x_0) = \liminf_{h \to 0} \theta_2(F; x_0, h).
\]

\(F \) will be said to satisfy \textit{Condition} \(C_{2r} \) in \([a, b]\) if and only if

\begin{enumerate}
 \item \(F \) is continuous in \([a, b]\),
 \item \(D_{2k}F \) exists, is finite, and has no simple discontinuities in \([a, b]\), \(0 \leq k \leq r - 1 \),
 \item \(\lim_{k \to 0} \theta_{2r}(F; x, h) = 0 \), \(x \in]a, b[\sim E \), where \(E \) is countable.
\end{enumerate}

In particular \(C_2 \) requires \(F \) to be continuous in \([a, b]\) and smooth in \([a, b]\sim E \).

In a similar way \textit{the de la Vallée Poussin derivatives of odd order} can be defined by replacing (1) by

\[
\frac{F(x_0 + h) - F(x_0 - h)}{2} = \sum_{k=0}^{r} \beta_{2k+1} \frac{h^{2k+1}}{(2k + 1)!} + o(h^{2r+1}),
\]
as $h \to 0$, with similar changes in (2), (3) and (4).

If it is true that

\[F(x_0 + h) - F(x_0) = \sum_{k=1}^{r} \alpha_k \frac{h^k}{k!} + o(h^r), \quad \text{as } h \to 0 \]

where $\alpha_1, \ldots, \alpha_r$ depend on x_0 only, and not on h, then $\alpha_k, 1 \leq k \leq r$, is called the Peano derivative of order k of F at x_0, and we write $\alpha_k = F_{(k)}(x_0)$. If F possesses derivatives $F_{(k)}(x_0), 1 \leq k \leq r - 1$, write

\[\frac{h^r}{r!} \gamma_r(F; x_0, h) = F(x_0 + h) - F(x_0) - \sum_{k=1}^{r-1} \frac{h^k}{k!} F_{(k)}(x_0), \]

then proceeding as in (3) we define $F_{(r)}(x_0)$ and $F_{(r)}(x_0)$. Further by restricting h to be positive, or negative, in (5), or (6) we can define one-sided Peano derivatives, written $F_{(k),+}(x_0), F_{(k),-}(x_0), F_{(k),+}(x_0), etc.\, It\, is\, easily\, seen, \,[3],\, that\, if\, F_{(k)}(x_0), 1 \leq k \leq r, \, exists\, then

\[F_{(r)}(x_0) = \lim_{h \to 0} \frac{1}{h^r} \sum_{k=0}^{r} (-1)^k \binom{r}{k} F(x + (r - k)h). \]

It is shown in [7] that the condition $C_n, n = 2r$ or $2r + 1$, holds automatically for the Peano derivatives. If we say $F_{(k)}(x_0), 1 \leq k \leq r$, exists in an (a, b) we will mean that $F_{(k)}$ exists in $[a, b]$ and that the appropriate one sided derivatives exist at those of the points a and b that are in (a, b).

Let x_0, \ldots, x_r be $(r + 1)$ distinct points from $[a, b]$ then the rth divided difference of F at these $(r + 1)$ points is defined by

\[V_r(F) = V_r(F; x_0, \ldots, x_r) = \frac{F(x_0)}{w(x_0)} \]

where

\[w(x) = w_r(x) = w_r(x; x_k), \quad \text{etc.} \]

\[= \prod_{k=0}^{r} (x - x_k). \]

This rth divided difference has the following properties, which we collect for reference in

Lemma 1. (a) $V_r(F; x_k) = 0$ for all choices of points x_0, \ldots, x_r if and only if F is a polynomial of degree at most $r - 1$.

(b) If F is a polynomial of degree r then for all $x_0, \ldots, x_r, V_r(F; x_k) = \text{coefficient of } x^r$.

(c) $V_r(F; x_0, \ldots, x_r)$ is independent of the order of the points x_0, \ldots, x_r.

(d) There is a simple relation between successive divided differences given by

\[(x_0 - x_r) V_r(F; x_0, \ldots, x_r) = V_{r-1}(F; x_0, \ldots, x_{r-1}) - V_{r-1}(F; x_1, \ldots, x_r).\]

(e) For any \(F\) we have the Newton Interpolation Formula,

\[F(x) = F(x_0) + \sum_{k=1}^{r-1} V_k(F; x_1, \ldots, x_{k+1}) w_{k-1}(x; x) + V_r(F; x, x_1, \ldots, x_r) w_{r-1}(x; x_k).\]

This last formula can be written differently as follows. Given the \((r + 1)\) points \(P_k, 0 \leq k \leq r,\) with coordinates \((x_k, F(x_k)), 0 \leq k \leq r,\) respectively, there is a unique polynomial of degree at most \(r\) passing through these points given by

\[\pi_r(F; x; P_k) = \pi_r(x; P_k) = \tau_r(\alpha; a, \ldots, \alpha), \text{ etc.}\]

This formula (12) is known as the Lagrange Interpolation Formula. It is easily seen that for all \((r + 1)\) distinct \(y_0, \ldots, y_r\)

\[V_r(\pi_r; y_k) = V_r(F; x_k).\]

Then (11) can be written

\[F(x) = \pi_{r-1}(F; x; x_k) + V_r(F; x, x_1, \ldots, x_r) w_{r-1}(x; x_k).\]

Using the divided difference we now define another derivative. Suppose all of \(x, x_0, \ldots, x_r\) are in \([a, b]\) and

\[x_k = x + h_k, 0 \leq k \leq r, \text{ with} \]

\[0 \leq |h_0| < \cdots < |h_r|,\]

then the \(r\)th Riemann derivative of \(F\) at \(x\) is defined by

\[D^r F(x) = \lim_{h_k \to 0} \cdots \lim_{h_{r-1} \to 0} r! V_r(F; x_k)\]

if this iterated limit exists independently of the manner in which the \(h_k\) tend to zero, subject only to (15). In a similar manner we define the upper and lower derivatives; and if the \(h_k\) all have the same sign the one-sided derivatives; these will be written \(\bar{D}^r F(x), \tilde{D}^r F(x),\) etc. If we say \(D^r F\) exists in \((a, b)\) we make the same gloss as for \(F_{(r)}\).

Since we can let \(h_0, \ldots, h_1\) very first and then \(h_{r+1}, \ldots, h_r\) the above definition and (10) imply that if \(D^r F(x)\) exists then so does \(D^k F(x), 1 \leq k \leq r;\) or more generally if \(\bar{D}^r F(x)\) is finite then \(\tilde{D}^k F(x)\) is finite.
1 \leq k \leq r$. Remark however that even if $D_r^k F(x)$ and $D_{-r}^k F(x)$ exist, are finite and equal, this does not imply that $D^r F(x)$ exists, [15, p. 26].

If instead of (15) and (16) we have

\begin{align*}
(15)' & \quad h_k = (r - 2k)h, \ 0 \leq k \leq r, \\
(16)' & \quad D_r^k F(x) = \lim r! V_r(F; x_k),
\end{align*}

(with obvious modifications for the upper and lower derivatives), this is called the r^{th} symmetric Riemann derivative. In particular the cases $r = 1, 2$ coincide with definitions of D_1F, D_2F respectively. In general if $\bar{D}_r F < \infty$ in $]a, b[$ then $F_{(r)}$ exists and equals $\bar{D}_r F$ almost everywhere, [12].

The usual rth order derivative of F at $x, x \in (a, b)$, will be written $F^{(r)}(x)$.

Theorem 2. If $x \in [a, b]$ then $D_+^r F(x) = F_{(r),+}(x)$, provided one side exists.

Proof. Suppose first that $F_{(r),+}(x)$ exists; then taking the rth divided difference of $F(x + h)$, (considered as a function of h) at the points $h_0, h_1, \cdots, h_r, 0 \leq h_0 < \cdots < h_r$, using (5) and Lemma 1 (a), (b) we see that

$$r! V_r(F; x + h_k) = F_{(r),+}(x) + V_r(o(h^r); h_k).$$

Letting h_0, \cdots, h_r tend to 0 successively we get that $D^r_+ F(x)$ exists and equals $F_{(r),+}(x)$.

If now we suppose that $D^r_+ F(x)$ exists then the rest of the theorem follows using Lemma 1(e).

A similar result obviously holds for lefthanded and two-sided derivatives; the latter is due to Denjoy [6] and Corominas [4], who give different proofs.

Corollary 3. (a) If $x \in [a, b]$ and $F_{(k),+}(x)$ exists $1 \leq k \leq r - 1$ then $\bar{F}_{(r),+}(x) = \bar{D}_r F(x)$, and $\bar{F}_{(r),+}(x) = D_{-r} F(x)$.

(b) If $x \in]a, b[$ and $D^k F(x)$ exists $1 \leq k \leq r - 1$ and $D_+^r F(x)$, $D_-^r F(x)$ exist and are equal then $D^r F(x)$ exists, and is equal to this common rule.

Proof. (a) is proved by a simple adaption of the proof of Theorem 2. (b) holds since the similar result holds for Peano derivatives.

The following results due to Burkill [3], Corominas [4], and Olivier [14] should be noted.
THEOREM 4. (a) If $F_{(r-1)}$ exists, in $[a,b]$ and if
\[
\inf [F_{(r)}^+, F_{(r)}^-] > A > -\infty,
\]
then $F_{(r-1)}$ is continuous.

(b) If $F_{(r)}$ is continuous in $[a,b]$ then $F_{(r)}^{(r)} = F_{(r)}$.

(c) If $F_{(r)}$ exists at all points of $[a,b]$ then $F_{(r)}$, possesses both the Darboux property and the mean-value property.

The definitions of the terms used in (c) can be found in [14].

3. n-convex functions. A real-valued function F defined on the closed bounded interval $[a, b]$ is said to be n-convex on $[a, b]$ if and only if for all choices of $(n + 1)$ distinct points, x_0, \ldots, x_n in $[a, b]$, $V_n(F; x) \geq 0$, [4, 7, 15]. If $-F$ is n-convex then F is said to be n-concave. The only functions that are both n-convex and n-concave are polynomials of degree at most $n - 1$, (Lemma 1).

If $n = 1$ this is just the class of monotonic increasing functions and $n = 2$ is the class of convex functions; (the class $n = 0$ is just the class of nonnegative functions, but we will usually only be interested in $n \geq 1$).

THEOREM 5. Let
\[
P_k = (x_k, y_k), 1 \leq k \leq n, n \geq 2, a \leq x_1 < \cdots < x_n \leq b,
\]
be any n distinct points on the graph of the function F. Then F is n-convex if and only if for all such sets of n distinct points, the graph lies alternately above and below the curve $y = \pi_n(F; x; P_k)$, lying below if $x_{n-j} \leq x \leq x_n$. Further $\pi_{n-1}(x; P_k) \leq F(x), x_n \leq x \leq b$; and $\pi_{n-1}(x; P_k) \leq F(x)(\geq F(x))$ if $a \leq x < x_1$, n being even (odd).

Proof. Let $x_0 \neq x_k, 1 \leq k \leq n, x_1 < x_0 < x_n$ and suppose in fact $x_j < x_0 < x_{j+1}$. If F is n-convex then $V_n(F; x_0, \cdots, x_n) \geq 0$; i.e.,
\[
\sum_{k=1}^{n} \frac{F(x_k)}{w_n(x_k)} \geq -\frac{F(x_0)}{w_n(x_0)},
\]
or $F(x_0) \geq -\sum_{k=1}^{n} F(x_k)[w_n(x_k)/w_n(x_k)] = \pi_{n-1}(x_0, P_k)$, if $(n - j)$ is even, but $F(x_0) \leq \pi_{n-1}(x_0, P_k)$ if $(n - j)$ is odd. This proves the necessity; the sufficiently is immediate by reversing the argument. The last remark follows in a similar way by considering $x_n < x_0 < b$, and $a \leq x_0 < x_1$.

This theorem generalizes the property that a convex function always lies below its chord.
THEOREM 6. If F is an n-convex function on $[a, b]$ and
\[a \leq x_1 < \cdots < x_n \leq b, a \leq z_1 < \cdots < z_n \leq b, z_k \leq x_k, 1 \leq k \leq n, \]
then $V_{n-1}(F; z_k) \leq V_{n-1}(F; x_k)$.

Proof. The following particular case suffices to prove this result.
\[x_k = z_k, k \neq j + 1, x_j < z_{j+1} < x_{j+1}. \]
Then, as in Theorem 5,
\[\text{sign} [F(z_{j+1}) - \pi_{n-1}(z_{j+1}; x_k)] = (-1)^{n-j}. \]
Hence, with this $\pi_{n-1},$
\[V_{n-1}(F; z_k) - V_{n-1}(\pi_{n-1}; z_k) = \frac{F(z_{j+1}) - \pi_{n-1}(z_{j+1}; x_k)}{\prod_{k \neq j+1} (z_{j+1} - x_k)} \leq 0. \]
That is
\[V_{n-1}(F; z_k) \leq V_{n-1}(\pi_{n-1}; z_k) = V_{n-1}(F; x_k), \text{ by (13).} \]

THEOREM 7. If F is n-convex in $[a, b]$ then
(a) $F^{(r)}$ exists and is continuous in $[a, b], 1 \leq r \leq n - 2,$
(b) both $F^{(n-1), -}, F^{(n-1), +}$ are monotonic increasing and if
\[a \leq x_1 < \cdots < x_n \leq x \leq y_1 < \cdots < y_n \leq b \]
then
\[(n - 1)! \quad V_{n-1}(F; x_k) \leq F^{(n-1), -}(x) \leq F^{(n-1), +}(x) \leq (n - 1)! \quad V_{n-1}(F; y_k), \]
(c) $F^{(n-1), +} = (F^{(n-2)})^{+}, F^{(n-1), -} = (F^{(n-2)})^{-},$
(d) $F^{(n-1)}$ exists at all except a countable set of points.

Proof. Using Theorem 2, it is an immediate consequence of Theorem 6 that $F^{(r), +}$ exists in $[a, b], F^{(r), -}$ exists in $[a, b], 1 \leq r \leq n - 1$ and that (b) holds.
From (b) we get that both $F^{(n-1), +}, F^{(n-1), -}$ are continuous except on a countable set. Then, again from (b), we have that $F^{(n-1), +} = F^{(n-1), -}$ except on a countable set.
Then if we prove (a) and (c), (d) is immediate.
Suppose $a \leq x_1 < \cdots < x_n \leq b$ then repeated application of (10) gives
Now let $x \to x_2$, then by Theorem 6 the left-hand side of this expression tends to a finite limit, K_1, say: i.e.,

$$K_1(x_2, \cdots, x_n) = \frac{D^iF(x_2) - V_1(F; x_2, x_3) - V_2(F; x_2, x_3, x_4)}{(x_2 - x_3)} \cdots \frac{(x_2 - x_n)}{(x_2 - x_n)}.$$

If now $x_3 \to x_2$ we get a finite limit on l.h.s. of this last expression: hence $D^i_F(x_2) = D^i_F(x_2)$; that is $DF(x_2)$ exists. A similar argument shows DF is continuous in $]a, b[$.

In a similar way, expressing V_{n-1} in terms of V_2, V_3, \cdots we show that $D^r_F(x_0) = D^r_F(x_3)$ and so by Corollary 3(b), $D^r_F(x_3)$ exists then as above D^nF exists and is continuous in $]a, b[$.

In this way we show D^rF exists and is continuous in $]a, b[, 1 \leq r \leq n - 2$. Hence, by Theorem 2, F'_r exists and is continuous in $]a, b[, 1 \leq r \leq n - 2$ and so finally, by Theorem 4(b), the same is true of $F^{(n)}$. This proves (a).

For the proof of (c) let $x_0 < \cdots < x_{2n-3}$ then repeated application of (10) gives

$$\sum_{k=0}^{n-2} (x_k - x_{k+n-1}) V_{n-1}(F; x_k, \cdots, x_{k+n-1}) = V_{n-2}(F; x_0, \cdots, x_{n-2}) - V_{n-2}(F; x_{n-2}, \cdots, x_{2n-3}).$$

Let $x_k \to x_0$, $1 \leq k \leq n - 2$, $x_k \to x_{n-1}$, $n \leq k \leq 2n - 3$ then by Theorem 6 the limit on the left hand side exists, and the value limit on the right hand side follows from (a). Thus we get an expression of the form

$$(n - 1)(x_0 - x_{n-1}) K(x_0, x_{n-1}) = \frac{1}{(n - 2)!} \{F_{(x_0)}^{(n-2)} - F_{(x_{n-1})}^{(n-2)}\}.$$

Now dividing and letting $x_{n-1} \to x_0$ we get

$$(n - 1)! \lim_{x_{n-1} \to x_0^+} K(x_0, x_{n-1}) = (F^{(n-2)})'_+(x_0);$$

a simple application of (11) shows that the left hand side of this last expression is equal to $F_{(n-1),+}(x_0)$. This completes the proof of the first
part of (c), the rest follows using a similar argument.

Formula (18) is due to James [7, Lemma 10.4], who however assumes the existence of $F_{(n-1)}$ in $[a, b]$.

COROLLARY 8.

(a) F is n-convex on $[a, b]$ if and only if F differs by a polynomial of degree at most $(n - 1)$ from $\int_a^x (x-t)^{n-1} \mu(dt)$, for some Lebesgue-Stieltjes measure μ. In particular if and only if F is the $(n - 1)$st integral of a monotonic function.

(b) If F is n-convex in $[a, b]$, $|F| \leq k$, then $|F_{(k)}(x)| \leq AK \sup \{1/(b-x)^k, 1/(x-a)^k\}$, $0 \leq k \leq n - 1$ where A is a constant independent of k, F and x, and where if $k = n - 1$ the derivative is to be interpreted as $\sup \{|F_{(n-1),+}(x)|, |F_{(n-1),-}(x)|\}$.

(c) If F is n-convex on $[a, b]$, $a \leq x \leq y \leq b$, $a \leq x + h \leq y$, and $x \leq y + k \leq b$ then

$$\gamma_{n-1}(F; x; h) \leq F_{(n-1),-}(y) \quad \text{and} \quad F_{(n-1),+}(x) \leq \gamma_{n-1}(F; y; k).$$

Proof. (a) This is immediate from Theorem 7 (b).

(b) From (18) we have that

$$\frac{1}{(n-1)!} \sum_{s=0}^{n-1} \frac{F(x_k)}{w'(x_k)} \leq \sup \{F_{(n-1),+}(x), F_{(n-1),-}(x)\} \leq \frac{1}{(n-1)!} \sum_{s=0}^{n-1} \frac{F(y_s)}{w'(y_s)}$$

from which (b) in the case $k = n - 1$ is easily deduced. The rest follows by integration, using, (a).

(c) Immediate using (18), (11), (6) Theorems 2 and 4.

The definition, (12), of $\pi_r(x; P_k)$ can be extended to cover the case when not all of the P_k are distinct. Thus if only s of these points are distinct then besides giving the values at the s points, a total of $r + 1 - s$ derivatives must also be given—either $r + 1 - s$ derivatives all at one point, or $r + 1 - s$ first derivatives at $r + 1 - s$ distinct points, (when $r + 1 - s \leq s$), etc. Theorem 5 can be extended, using Theorems 6, 7 and taking limits; thus as an example of many possible extensions we state

THEOREM 9. Let $P_k = (x_k, y_k), 1 \leq k \leq r, a \leq x_1 < \cdots < x_r \leq b$, be r distinct points on the graph of the function F. Suppose that $F_{(s)}(x_k)$ exists, $1 \leq s \leq n - r$. Then Theorem 5 holds if $\pi_{s-n}(x; P_k)$ is taken to have $\pi_{s-n}(x; P_k) = F(x), 1 \leq s \leq r, \pi_{s-n}(x; P_k) = F_{(s)}(x), 1 \leq s \leq n - r$, and if P_1 is considered as $n - r + 1$ points at and to the right of P_1 but to the left of P_r.

THEOREM 10. (a) If F is n-convex on $[a, b]$ and $P_k = (x_k, y_k), 1 \leq k \leq n$ are n distinct points on the graph of $F, a \leq x_1 < b$, let
As $h \to 0^+$, $\pi_{n+1}(x; P_k)$ converges uniformly to the right tangent polynomial at x,

$$
\tau_{n+1}(F; x; x_i) = \tau_+(x) = F(x_i) + \sum_{k=1}^{n-2} \frac{(x - x_i)^k}{k!} F^{(k)}(x_i)
+ \frac{(x - x_i)^{n-1}}{(n-1)!} F^{(n-1)}_+(x_i), \quad x_i \leq x \leq b.
$$

Further on the right of x, $\tau_+ \leq F$.

(b) A similar result holds for the left tangent polynomial at x_i, $\tau_-(x; x_i), a \leq x \leq x_i, a < x_i \leq b$. However in this case if n is even (odd) then on the left of x_i, $\tau_- \geq F(\geq F)$.

(c) At all but a countable set of points x_i, a similar result holds for the tangent polynomial at x_i, $\tau(x; x), a < x < b, a < x_i < b$. However if n is even the graph of τ lies below that of F, whereas if n is odd the graphs cross, τ being above on the left of x_i, and below on the right of x_i.

Proof. It suffices to consider (a). But (a) is a simple consequence of Theorems 5, 7, (11), and (14).

Corollary 11. (a) If F is n-convex in $[a, b]$ then

$$
\inf \{F^{(n)}_+, F^{(n)}_\tau\} \geq 0.
$$

(b) If F is n-convex in $[a, b]$ and $F^{(n-1)}_+$ exists in $[a, b]$ then it is continuous.

(c) If F is n-convex in $[a, b]$ then $F^{(n-1)}_+$ is upper-semi continuous (u.s.c.), $F^{(n-1)}_-\tau$ is lower semi-continuous (l.s.c.).

Proof. (a) Suppose in Theorem 10, for simplicity, that $x_i = 0$. Then F' lies above the right tangent polynomial at $x = 0$, i.e.,

$$
\frac{F(x) - \tau_+(x)}{x} \geq 0,
$$

in some interval $[0, h]$. Hence $F^{(n)}_+(0) \geq 0$: in a similar way $F^{(n)}_-\tau(0) \geq 0$.

(b) Immediate from (a), Theorem 4(a), Theorem 7(a).

(a) This is just Theorem 3.2 [3], adapted to one sided derivatives. The following theorem generalizes a result well known when $n = 1, [13, Corollary 32.3]$ and $n = 2 [7, Th. 4]$.

Theorem 12. If F is n-convex on $[a, b], a < \alpha < \beta < b, E_k = \{x; \alpha \leq x \leq \beta \text{ and } F^{(n)}_k(x) \geq k\}$ then

$$
k \cdot m^*(E_k) \leq 2n[F^{(n-1)}_\tau(\beta) - F^{(n-1)}_+(\alpha)].
$$

(where \(m^*\) denotes the outer Lebesgue measure).

Proof. For simplicity we will ignore the countable set where \(F_{(n+1)}\) may not exist and suppose that \(k > 0\). Further let \(E_k^+\) be as \(E_k\) but with \(F_{(n+1)}\) instead of \(F_{(n)}\) and suppose \(m^*E_k^+ > 0\); with a similar definition for \(E_k^-\).

If then \(\epsilon > 0, x \in E_k^+\) there is an \(h > 0\) such that
\[
g_n(F; x; h) \geq F_{(n+1)}(x) - \epsilon \geq k - \epsilon .
\]
So, by [20], there is a finite family of nonoverlapping intervals \([x_i, x_i + h_i], i = 1, \ldots, p\) such that \(x_p + h_p \leq \beta\),
\[
g_n(F; x_i, h_i) \geq k - \epsilon, i = 1, \ldots, p,
\]
and
\[
\sum_{i=1}^p h_i \leq m^*E_k^- - \epsilon .
\]
Thus
\[
\sum_{i=1}^p h_i g_n(F; x_i, h_i) \geq (k - \epsilon)(m^*E_k^- - \epsilon) ;
\]
but since
\[
h g_n(F; x, h) = n\{g_{n-1}(F; x, h) - F_{(n+1)}(x)\}
\]
we have that
\[
\sum_{i=1}^p \{g_{n-1}(F; x_i, h_i) - F_{(n+1)}(x_i)\} \geq \frac{k - \epsilon}{n}(m^*E_k^- - \epsilon) .
\]
However by Corollary 8(c)
\[
\sum_{i=1}^{p-1} \{F_{(n+1)}(x_{i+1}) - g_{n-1}(F; x_i, h_i)\} \geq 0 ,
\]
\[
F_{(n-1)}(x_i) - F_{(n-1)}(\alpha) \geq 0 ,
\]
\[
F_{(n-1)}(\beta) - g_{n-1}(F; x_p, h_p) \geq 0 .
\]
Adding the last four inequalities we get that
\[
F_{(n-1)}(\beta) - F_{(n-1)}(\alpha) \geq \frac{k - \epsilon}{n}(m^*E_k^- - \epsilon) .
\]
This together with a similar inequality for \(E_k^-\), implies (20).

A function that is the difference of two \(n\)-convex functions will be called \(\delta\)-\(n\)-convex; as in the cases \(n = 1\) and \(n = 2\), [16], such
functions can be characterized by their variational properties.

If \(F \) is defined on \([a, b]\) as well as \(F_{(k)}, 1 \leq k \leq n - 1 \), let us write
\[
\omega_n(F; a, b) = \omega_n(a, b) = \max \left\{ \sup_{a < x < b} |(x - a)\gamma_n(F; a; x - a)|, \right. \\
\left. \sup_{a < x < b} |(b - x)\gamma_n(F; a; b - x)| \right\}.
\]
this quantity was introduced by Sargent [19].

Theorem 13. A function \(F \) defined on \([a, b]\) is \(\delta \)-\(n \)-convex if and only if either of the following conditions is satisfied.

(a) \(\sum_{k=1}^{m} \omega_n(F; a_k, b_k) < K \) for all finite sets of nonoverlapping intervals, \([a_k, b_k], 1 \leq k \leq m\).

(b) \(\sum_{k=0}^{n} |(x_k - x_{k+n}) V_n(F; x_k, \cdots, x_{k+n})| < K \) for all finite sets of distinct points \(x_0, \cdots, x_{m+n} \).

Proof. The discussion of (b) is similar to the case \(n = 2 \) in [16] but using Corollary 8(a).

If (a) is satisfied then \(F_{(n-1)} \) is of bounded-variation [19, Lemma 1], and so by Corollary 8(a) \(F \) is \(\delta \)-\(n \)-convex.

If \(F \) is \(n \)-convex then by (21) and Corollary 8(c),
\[
(x - a)\gamma_n(F; a; x - a) = n(\gamma_{n-1}(F; a; x - a) - F_{(n-2)}(a)) \geq 0
\]
and so by Corollary 8(c)
\[
\omega_n(F; a, b) \leq n(F_{n-1}(b) - F_{(n-1)}(a)).
\]

From this it easily follows that if \(F \) is \(\delta \)-\(n \)-convex then (a) holds.

4. Sufficient conditions for \(n \)-convexity. In this section we obtain some sufficient conditions for a function to be \(n \)-convex. First we prove the following generalization of a well-known property of convex functions.

Theorem 14. (a) If \(F \) is \(n \)-convex in \([a, b]\) then \(F^{(n-2)} \) has no proper maximum in \([a, b]\).

(b) A function \(F \) with continuous derivative of order \((n - 2)\) is \(n \)-convex if and only if no function of the form \(F(x) + \sum_{k=0}^{n-2} a_k x^k \) has its derivative of order \((n - 2)\) attaining a maximum in \([a, b]\).

Proof. (a) Suppose \(F^{(n-2)} \) has a proper maximum at \(x_0 \), then consider \(G(x) = F(x) - \pi_{n-2}(x; P_0) \), where the polynomial \(\pi_{n-2} \) is determined uniquely by the conditions
\[G(x_0) = G'(x_0) = \cdots = G^{(n-2)}(x_0) = 0. \]

Now consider \(\pi_{n-2}(x; Q_k) \) where \(Q_k = (x_k, G(x_k)), 0 \leq k \leq n - 2, \) \(x_0 < \cdots < x_{n-2}. \) Then by Theorem III [4], (13), and Lemma 1(b), the coefficient of \(x^{n-2} \) in \(\pi_{n-2}(x; Q_k) \) is \(G^{(n-2)}(x_0 + \delta), x_0 + \delta \) being some point in \([x_0, x_{n-1}] \). Hence, using Theorem 7(a), since \(x_0 \) is a proper maximum of \(G^{(n-2)} \) and \(G^{(n-2)}(x_0) = 0, \) if \(x_0, \cdots, x_{n-2} \) are close enough together this coefficient is not positive.

Let \(x_k \to x_0, \) \(1 \leq k \leq n - 3 \) then \(\pi_{n-2}(x; Q_k) \) becomes a polynomial of degree \(n - 2 \) with its value and that of its first \((n-3) \) derivatives at \(x_0 \) being zero; it’s \((n-2) \)nd derivative is nonpositive. Hence, by Theorem 9, \(G \leq 0 \) in \([x_0, x_{n-2}] \).

In a similar way \(G \geq 0(\leq 0) \) in some interval to the left of \(x_0 \) when \(n \) is odd (even). Further in every such interval around \(x_0 \) there are points where these inequalities are strict.

Now consider the \((n+1) \) points \(z_0, \cdots, z_n \) where

\[z_0 < z_1 < \cdots < z_{\lfloor n/2 \rfloor} = x_0 < \cdots < z_n. \]

Then

\[V_n(F; z_k) = V_n(G; z_k) = \frac{G(z)}{w'_n(z)} + F + \frac{G(z)}{w'_n(z)} \geq 0. \]

If then \(z_1, \cdots, z_{n-1} \) tend to \(x_0 \) then \(K \to 0 \) and we get

\[\frac{G(z_0)}{(z_0 - x_0)^{n-1}(z_0 - z_n)} + \frac{G(z_n)}{(z_n - x_0)^{n-1}(z_n - z_0)} \geq 0. \]

But whether \(n \) is even, or odd both terms on the l.h.s. of this expression can be chosen to be negative-which contradiction completes the proof of (a).

(b) The necessity is evident. Suppose then that \(F \) is not \(n \)-convex. Then by Theorem 5 there exists a polynomial \(\pi_{n-1}(x; P_k) \) such that the two curves \(y = F(x), y = \pi_{n-1}(x; P_k) \) do not intertwine correctly.

Consider \(G(x) = F(x) - \pi_{n-1}(x; P_k); \) then \(G(x_0) = \cdots = G(x_n) = 0 \) and \(G \) changes sign at most \((n - 2) \) times. Hence \(G^{(n-2)} \) has three zeros and so has a local maximum. This completes the proof.

Corollary 15. (a) If \(F \) is \(n \)-convex then \(F^{(r)} \) is \((n - r) \)-convex, \(1 \leq r \leq n - 2. \)

(b) If \(F \) is \(n \)-convex then \(F^{(n)} \) exist a.e.

Proof. (a) The case \(r = n - 2 \) is just Theorem 14(b). In general \(F^{(k)}, 1 \leq k \leq n - 3, \) has a continuous derivative of order \(n - k - 2 \) satisfying the hypotheses of Theorem 14(b), and hence \(F^{(k)} \) is \((n - k) \)-convex.
A CRITERION FOR n-CONVEXITY

(b) Since $F^{(n-2)}$ is convex this follows immediately from well-known properties of convex functions.

Note that the case $r = n - 1$ of Corollary 15(a) is just the last part of Theorem 7(b).

We now wish to prove a converse of Corollary 11(a). Because of applications to symmetric Perron integral, [7], this converse will be obtained in terms of de la Vallée Poussin derivatives and the results in terms of Peano derivatives will be simple corollaries. A direct proof could be constructed from the proof of the more general results.

Theorem 16. If F satisfies C_{2m}, $m \geq 1$, in $]a, b[$ and

(a) $D_{2m}F(x) \geq 0$, $x \in]a, b[\sim E$, $|E| = 0$,

(b) $D_{2m}F(x) > -\infty$, $x \in]a, b[\sim S$, S a scattered set,

(c) $\lim_{h \to 0} h \theta_{2m}(F; x; h) \geq 0 \geq \lim_{h \to 0} h \theta_{2m}(F; x; h)$, $x \in S$ then F is $2m$-convex. (A set is said to be scattered if it contains no subsets that are dense in themselves.)

Proof. If $E = S$ then by Theorem 6.1, [9], (a), (b), (c) imply $D_{2m}F \geq 0$ in $]a, b[$ and so the result follows from Theorem 4.2, [8].

Given $\varepsilon > 0$, T, $|T| = 0$, $T \in G$, $T \neq \emptyset$ let $\chi_{t, r} = \chi$ be a function on $]a, b[$ such that

(i) χ is absolutely continuous,

(ii) χ is differentiable,

(iii) $\chi'(x) = \infty$, $x \in T$,

(iv) $0 \leq \chi'(x) < \infty$, $x \in T$,

(v) $\chi(a) = 0$, $0 \leq \chi(b) \leq \varepsilon/(b - a)^{2m-1}$. That such a function exists is well known, [21]. Then define

$$\Psi_{t, r, 2m}(x) = \mathcal{V}(x) = \frac{1}{(2m - 2)!} \int_{a}^{x} (x - t)^{2m-2} \chi(t) dt,$$

the $(2m - 1)st$ integral of χ. Then $\mathcal{V}^{(2m-1)}(x) = \chi(x)$ and, using (2), we have on integrating by parts that

$$D_{2m}F(x) \geq m\chi'(x) \geq 0.$$

If now $E \subset T$ then we easily see that (i) \mathcal{V} is C_{2m}, and $2m$-convex, (ii)
If \(n \geq 2 \), and (i) \(F_{(n-1)} \) exists in \([a, b] \), (ii) \(F_{(n-1)}(x) \geq 0 \), \(x \in [a, b] \), \(x \sim E \), \(|E| = 0 \), (iii) \(F_{(n-1)}(x) \geq 0 \), \(x \in [a, b] \), \(x \sim E \), \(|E| = 0 \), (iv) \(F_{(n-1)}(x) \sim C \), \(C \) countable, then \(F \) is \(n \)-convex.
Proof. As in the proof of Theorem 16 we can assume that \(E = C \)
and so suppose \(\bar{F}(x) \geq 0 \) except when \(x = x_0, x_1, \ldots \). We may assume that for all \(k \in N, x_k \neq b \).

Adopting a procedure due to Bosanquet [1] and Sargent [18] we exhibit for each \(k \in N \) a monotonic \(n \)-convex function \(Z_k \) with the following properties

(i) \(Z_k(a) = 0, Z_k(b) \leq [(b - a)^{n-r+1}/(n - r - 1)!]2^{-(k+1)}\varepsilon, 0 \leq r \leq n - 1, \)

(ii) \((F + Z_k)_n(x) \geq 0, \)

(iii) \(V_n(Z_k; y_r) \leq K2^{-(k+1)}\varepsilon, \) for all \((n + 1) \) distinct points \(y_0, \ldots, y_n \).

Then if we define \(G(x) = F(x) + \sum_{k \in N} Z_k(x), G_n(x) \geq 0 \) everywhere and so is \(n \)-convex, by usual arguments; but

\[
V_n(G; y_r) = V_n(F; y_r) + \sum_{k \in N} V_n(Z_k; y_r)
\]

and so \(V_n(F; y_r) \geq -K\varepsilon \), which implies \(F \) is \(n \)-convex.

It remains to define the function \(Z_k \). Since \(C_n \) is satisfied, we have, by (4) and (6), \(\lim_{n \to \infty} h_n(x_k; x_k; h) = 0 \) so we can find a sequence \(y_1, y_2, \ldots \) in \([x_k, b] \) such that \(0 < y_{s+1} - x_k = h_{s+1} < \frac{1}{18}(y_s - x_k) = h_s/2, \) and \(h_s \gamma_n(F; x_k; h_s) > -\varepsilon \cdot 2^{-(k+s)} \). Now define the function \(z_k \) in such a way as to be continuous and

\[
z_k(x) = 0, a \leq x \leq x_k,
\]

\[
= 2^{-(k+1)}\varepsilon, y_1 < x \leq b,
\]

\[
= 2^{-(k+s)}\varepsilon, x = y_s, s = 1, 2, \ldots,
\]

\[
= \text{linear in } [y_{s+1}, y_s], s = 1, 2, \ldots.
\]

Then \(z_k \) is continuous, increasing on \([a, b] \), \(z_k(a) = 0, z_k(b) = 2^{-(k+1)}\varepsilon, z_k(x_k) = 0, z_k(x)/x - x_k \) decreases in \([x_k, b] \). It is then easily checked that

\[
\int_0^{h_s} (h_s - t)^{n-2}z_k(x_k + t)dt \geq \frac{z_k(y_s)h_s^{n-1}}{n(n - 1)} = \frac{2^{-(k+s)}h_s^{n-1}\varepsilon}{n(n - 1)}.
\]

Define then,

\[
Z_k(x) = \frac{1}{(n - 2)!} \int_a^x (x - t)^{n-2}z_k(t)dt,
\]

the \((n - 1)\)st integral of \(z_k \). Then \(Z_k^{(n-1)} = z_k \) and using Theorem 7, and Corollary 8, \(Z_k \) clearly has all properties wanted except possibly (ii). This we now check. First note that by (21)

\[
h_s \gamma_n(Z_k; x_k, h_s) = n\gamma_n(Z_k; x_k, h_s).
\]

So as in the proof of (23),
\[h_n^r(Z_k; x_k, h_s) = n \frac{(n - 1)}{h_n^{n-1}} \int_0^{h_s} (h_s - t)^{n-2} z_k(x_k + t) dt = 2^{-(k+1)} \varepsilon. \]

Hence,
\[h_n^r(Z_k + F; x_k, h_s) \geq 0 \]
which completes the proof.

A theorem of a slightly different form can be obtained using the symmetric Riemann derivatives.

Let us say a real valued function \(F \) on \([a, b]\) is of type \(D_r \) if for all sets of \((r + 1) \) distinct points \(x_0, \cdots, x_r \) in \([a, b]\)
\[(26) \inf_{a < x < b} \bar{D}_s F(x) \leq r! V_r(F; x_k) \leq \sup_{a < x < b} D_r F(x). \]

The following simple lemmas will be useful.

Lemma 20. If \(F^{(r-2)} \) exists and is continuous in \([a, b]\) then for sets of \((r + 1) \) distinct points \(x_0, \cdots, x_r \) in \([a, b]\)
\[\inf_{a < x < b} \bar{D}_s F^{(r-2)}(x) \leq r! V_r(F; x_k) \leq \sup_{a < x < b} D_r F^{(r-2)}(x). \]
In particular if \(F^{(r)} \) exists in \([a, b]\) then \(F \) is of type \(D_r \).

Proof. Let \(G(x) = F(x) - \pi_{r-1}(F; x_0, \cdots, x_{r-1}) - \lambda P(x) \) where \(P \) is a polynomial of degree \(r \), \(\lambda \) a constant determined by requiring that \(G(x_k) = 0 \), \(0 \leq k \leq r \) and \(V_r(F; x_k) = \lambda. \)

Then since \(G \) has at least \((r + 1) \) zeros \(G^{(r-2)} \) has at least 3 zeros and so has a nonnegative maximum; that is for some \(y \) \(V_r(G^{(r-2)}; y_1, y_2, y_3) \leq 0 \) for all \(y_1, y_2, y_3 \) near enough to \(y \); that is
\[2 \cdot V_2(G^{(r-2)}; y_1, y_2) = 2 V_2(F^{(r-2)}; y_1, y_2) > r! \lambda \leq 0. \]
The proof now follows that in [6].

Lemma 21. If \(F \) is of type \(D_n \) then
\[\inf_{a < x < b} \bar{D}_s F(x) = \inf_{a < x < b} D_r F(x), \sup_{a < x < b} \bar{D}_s F(x) = \sup_{a < x < b} D_r F(x). \]

Proof. The case \(n = 2 \) and more is proved in [6, p. 9]. The proof of the general case is the same.

Theorem 22. If \(F \) is of type \(D_n \) and (a) \(D_r F(x) \geq 0 \), \(x \in]a, b[\sim E, |E| = 0 \), (b) \(D_r F > -\infty \), then \(F \) is \(n \)-convex.

Proof. Since the \(2m \)-convex function \(\Psi \) of Theorem 16 is, using
Lemma 20, of type D_{2m} we can, as in Theorem 16, assume $E = \emptyset$. The result is then a trivial consequence of (26).

Corollary 23. If F, G are such that (a) $F - G$ is of type D_{n}, (b) $\bar{D}^*_r(F - G)(x) \geq 0 \geq F_r(F - G)(x)$, $x \in [a, b]$, $|E| = 0$, (c) $D_r(F - G) > -\infty$, $D_r(F - G) < \infty$, then (24) holds.

It would be of interest to produce some reasonable conditions on F that ensure it is of type D_r. It is known, [15], that if F is continuous then F is of type D_2, but Kassimatis, [10], has pointed out that if $r > 2$ this is false. One would expect the existence and continuity of $F^{(r-2)}$ to imply F is of type D_r but this has not been proved. Let us say F is of type d_r when

$$\inf_{a < x < b} D_r F(x) \leq r! V_r(F; x_b) \leq \sup_{a < x < b} \bar{D}_r F(x).$$

If in Theorem 22 and Corollary 23 we weaken our hypothesis to F being of type d_r, obvious modifications of the other conditions will produce analogous theorems. It has been proved in [2] that if $F^{(r-2)}$ exists and is continuous, $r = 2, 3, 4$, then F is d_r; unfortunately the method fails if $r > 4$.

Bibliography

Received January 19, 1970.

University of British Columbia
Pacific Journal of Mathematics
Vol. 36, No. 1 November, 1971

Norman Larrabee Alling, *Analytic and harmonic obstruction on nonorientable Klein surfaces* ... 1
Shimshon A. Amitsur, *Embeddings in matrix rings* .. 21
William Louis Armacost, *The Frobenius reciprocity theorem and essentially bounded induced representations* .. 31
Kenneth Paul Baclawski and Kenneth Kapp, *Topisms and induced non-associative systems* ... 45
George M. Bergman, *The index of a group in a semigroup* 55
Simeon M. Berman, *Excursions above high levels for stationary Gaussian processes* .. 63
Peter Southcott Bullen, *A criterion for n-convexity* ... 81
W. Homer Carlisle, III, *Residual finiteness of finitely generated commutative semigroups* ... 99
Roger Clement Crocker, *On the sum of a prime and of two powers of two* 103
David Eisenbud and Phillip Alan Griffith, *The structure of serial rings* 109
Timothy V. Fossum, *Characters and orthogonality in Frobenius algebras* 123
Hugh Gordon, *Rings of functions determined by zero-sets* 133
William Ray Hare, Jr. and John Willis Kenelly, *Characterizations of Radon partitions* ... 159
Philip Hartman, *On third order, nonlinear, singular boundary value problems* ... 165
David Michael Henry, *Conditions for countable bases in spaces of countable and point-countable type* .. 181
James R. Holub, *Hilbertian operators and reflexive tensor products* 185
Robert P. Kaufman, *Lacunary series and probability* .. 195
Erwin Kreyszig, *On Bergman operators for partial differential equations in two variables* .. 201
Chin-pi Lu, *Local rings with noetherian filtrations* ... 209
Louis Edward Narens, *A nonstandard proof of the Jordan curve theorem* 219
Joseph Earl Valentine and Stanley G. Wayment, *Wilson angles in linear normed spaces* .. 239
Hoyt D. Warner, *Finite primes in simple algebras* ... 245
Horst Günter Zimmer, *An elementary proof of the Riemann hypothesis for an elliptic curve over a finite field* ... 267