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The development of the P"-integral of R, D, James and
W.H. Gage is based on certain properties of n-convex functions.
In order to develop this integral systematically a more detailed
study of n-convex functions is needed, In the second section
of this paper various derivatives are defined and some of their
properties given; in the third and last sections properties of
n-convex functions are developed.

2. Definitions and some simple properties of generalized de-
rivatives. Suppose F is a real-valued function defined on the bounded
closed interval [a, b] then if it is true that for z,¢ Ja, b]

(1) Fla,+ h) + F(x, — h) 2 8.,

5 (2k)' + o(h*), as h—0

where B,, 8B, +++, B, depend on x, only, and not on k, then B, 0=
k < r, is called the de la Vallée Poussin derivative of order 2k of F
at x,, and we write B, = D, F(x,).

If F possesses derivatives D, F(x,),0 <k < r — 1, write

k. F(w, + h) + Flw,— h) "<t h*
(2) Gy 0 1) = LD 3y D@

and define
D,.F(x,) = lim sup 0,,(F; ., h) ,
3 k0
(3) D, .F(x,) = liminf 6,.(F; x,, k) .
h—0

F will be said to satisfy Condition C,. in [a, b] if and only if

(@) F is continuous in ]a, b,

(b) D,F exists, is finite, and has no simple
(4) discontinuities in la, 8] 0 £k < »r — 1,

(¢ lhll'f)l ho,(F; %, h) = 0, x €la, b[ ~ E, where

E is countable.

In particular C, requires F' to be continuous in ]a, b] and smooth in
la, b ~ E.

In a similar way the de la Vallée Poussin derivatives of odd order
can be defined by replacing (1) by

’ F, +h) —F®,—h) _ < R 241
1 - 2, | * b
(1) - 5, B s+ o)
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as h— 0, with similar changes in (2), (3) and (4).
If it is true that
r k
(5) n%+m—nm:;%%Twmmasheo
where «,, ---, @, depend on x, only, and not on k, then «,, 1=k =<7,
is called the Peanmo derivative of order k of F at x,, and we write
a, = Fy(x). If F possesses derivatives F(z,),1 <k < » — 1, write

» r—1 k
(6) L (Fim ) = Flog+ 1) — Flw) — & 2 Fio(w),

then proceeding as in (8) we define F, (x) and F,(x,). Further by
restricting & to be positive, or negative, in (5), or (6) we can define
one-sided Peano derivatives, written F, (), Fu,—(2o), Fu, . (x,), ete.
It is easily seen, [3], that if F(x,),1 <k < », exists then

1 7

hrg%c_nk(Z)ﬁm:+(r—-mhy

(7) F,(v,) = lim
k—0

It is shown in [7] that the condition C,,n = 2r or 2» + 1, holds
automatically for the Peano derivatives. If we say Fy, 1<k =<,
exists in an (a, b) we will mean that F, exists in ]a, b and that the
appropriate one sided derivates exists at those of the points a and b
that are in (a, b).

Let @y, «++, 2, be (r + 1) distinct points from [a, b] then the rth
divided difference of F at these (r + 1) points is defined by

(8) VAF) = V(F;2,) = VAF; (o)) = V(F; 00, 2+ -, ;)
_ 5 F(x)
=0 w'(xk) !
where
(9) w(@) = w,(x) = w.(v; x,), ete.
=11 (o — @) -

This rth divided difference has the following properties, which we
collect for reference in

LEMMA 1. (@) V. (F;x.) = 0 for all choices of points xy, ««+, &, if
and only if F is a polynomial of degree at most r — 1.
(b) If F is a polynomial of degree r then for all xy, ---,x,,
VA(F; z) = coefficient of x".
(¢) V.F;x, «++,x,) ts independent of the order of the points

Los *y Lpe
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(d) There is a simple relation between successive divided differ-
ences given by

(.’L‘O - xr) V'r(F; Loy ** %, (L',)

(10)
= Vr—l(F; Loy 2y xr-—1) - V'r—-l(F; Lyy oy 30,.) .
(e) For any F we have the Newton Interpolation Formula,
1D F) = F@) + 3 Vi(F; @y, + -+, Bus)w (05 2)

+ V’I‘(F, Ly Lyy 2y x'r)wr—-l(x; xk) .

This last formula can be written differently as follows. Given the
(r + 1) points P, 0 < k < r, with coordinates (z,, F(z.), 0k =,
respectively, there is a unique polynomial of degree at most » passing
through these points given by

7. (F; z; P) = w(x; P) = T, (%} %oy Xoy =+, X,), ete.
= 3% F) H 2y

(k""x) )

(12)

This formula (12) is known as the Lagrange Interpolation Formula.
It is easily seen that for all (» + 1) distinet v, - -+, 9,

(13) Vi@ y) = VA(F2) .
Then (11) can be written
(14) Fx) = . (F; 25 2) + V,(F; 2, @, o0, )W, (25 2) -

Using the divided difference we now define another derivative.
Suppose all of z, x,, -+, 2, are in [a, b] and

T=2+h,0=k<r, with

15) 0= |h <-er <|byl,

then the rth Riemann derivative of F at x is defined by
(16) D'F(x) = lim -+ - lim r! V.(F; x,)

B0 hg—0
if this iterated limit exists independently of the manner in which the
h, tend to zero, subject only to (15). In a similar manner we define
the upper and lower derivatives; and if the %, all have the same sign
the one-sided derivatives; these will be written D"F(x), D, F (x), etc. If
we say D"F exists in (a, b)) we make the same gloss as for F,,.

Since we can let %, - -+, h, very first and then ki, ---, h, the above
definition and (10) imply that if D"F(z) exists then so does D*F(x),
1 <k <r; or more generally if D, F(x) is finite then D! F(x) is finite,
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1<k =<r. Remark however that even if D7 F(x) and D~ F(x) exist,
are finite and equal, this does not imply that D"F(x) exists, [15, p. 26].
If instead of (15) and (16) we have

15y =@ -2k, 0k r,
(16)’ D:F(zx) = lim»! V,.(F; 2 ,

(with obvious modifications for the upper and lower derivatives), this
is called the ' symmetric Riemann derivative. In particular the
cases 7 = 1,2 coincide with definitions of D.F, D,F respectively. In
general if D;F < co in ]a, b[ then F|,, exists and equals D:F almost
everywhere, [12].

The usual »th order derivative of F at z, x € (a, b), will be written
F(x).

THEOREM 2. If z¢[a, b] then D.F(x) = F,., (), provided one side
exists.

Proof. Suppose first that F,,, ,(x) exists; then taking the »th di-
vided difference of F(x + h), (considered as a function of h) at the
points A, by +ee, b, 0 < hy < o ¢+ < h,, using (5) and Lemma 1 (a), (b)
we see that

rl V.(Fs 2 + hy) = Fo, (@) + V.(0o(h"); he) .

Letting 4, ---, 2, tend to 0 successively we get that D7 F(x) exists
and equals F,, ().

If now we suppose that D’ F(x) exists then the rest of the theorem
follows using Lemma 1(e).

A similar result obviously holds for lefthanded and two-sided de-
rivatives; the latter is due to Denjoy [6] and Corominas [4], who
give different proofs.

COROLLARY 8. (@) If zea,b] and Fgu, (x) exists 1 <k <r —1
then F, . (x) = D.F(x), and F,, () = D.F(x).

(by Ifxzela, b and D*F(x) exists L=<k < r — 1 and D, F(x), D" F(x)
exist and are equal then D"F(x) exists, and s equal to this common
rule.

Proof. (a) is proved by a simple adaption of the proof of Theorem
2. (b) holds since the similar result holds for Peano derivatives.

The following results due to Burkill [3], Corominas [4], and Olivier
[14] should be noted.
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THEOREM 4. (a) If F\_, exists, in |[a, b] and if
inf [E(r),—H E(r),—] > A > — oo,

then F_,, is conltinuous.
(b)y If F, is continuous in [a, b] then F'” exists, and F" = F,.
(¢) If F,, exists at all points of |a,b] then F,,, possesses both
the Darboux property and the mean-value property.

The definitions of the terms used in (c) can be found in [14].

3. m-convex functions. A real-valued function F defined on the
closed bounded interval [a, b] is said to be n-convex on [a,d] if and
only if for all choices of (n + 1) distinct points, z, ---, z,, in [a, b],
V,(F; %) =0, [4,7,15]. If —F is n-convex then F is said to be n-
concave. The only functions that are both n-convex and n-concave
are polynomials of degree at most » — 1, (Lemma 1).

If =1 this is just the class of monotonic increasing functions
and n = 2 is the class of convex functions; (the class #n = 0 is just
the class of nonnegative functions, but we will usually only be in-
terested in n = 1).

THEOREM 5. Let
Po=@,y)hl=k=nn=2,a=2 <+ <z,=b,

be any n distinct points on the graph of the function F. Then F is
n-convex if and only if for all such sets of n distinct points, the
graph lies alternately above and below the curve y = mw,_(F; x; Py,
lying below iof ©, ., < x = x,. Further w,_(x; P,) < F(x),z, <2< b;
and w,_(x; P) < F@)(ZF(@) if a <2 <z, n being even (odd).

Proof. Let x,#+ 2,1 =k < m,2, <a, <z, and suppose in fact
x; < @y < Ty 1 F is m-convex then V,(F;x, ---,2,) = 0; i.e.,

» F(x,) ~ F(xy)
I; wi, () = w, (%))

’

or Fu,) = — >, Fle)[wh.(x)/w,(x)] = T,oi(2, P), if (n — j) is even,
but F(x,) < 7,_(x, P,) if (» — j) is odd. This proves the necessity;
the sufficiently is immediate by reversing the argument. The last
remark follows in a similar way by considering z, < 2, < b, and a <
Xy < %y

This theorem generalizes the property that a convex function always
lies below its chord.
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THEOREM 6. If F is an m-convex fumction on [a,b] and
CLgx1<”' <xn§b7a§zl< e <zn§byzk§xk71§k§’n5

then V,_(F;2) = V,..(F; ;).

Proof. The following particular case suffices to prove this result.
=2,k #7+1,0; <20 < iy
Then, as in Theorem 5,
sign [F(z;) — T,(Zi0 )] = (=1)"7 .

Hence, with this =,_,,

Vn~1(F; zk) - I/rn——n(n'n—l; zlc) - F(zj+1,3 — Tcn—dl(zj%ﬂ; xk) é 0 .
kll (40 — @)
k%;-ll-l

That is

Vird(F52) £ Vos(Tos; 22)
Vuo(F; 2.), by (13).

l

THEOREM 7. If F is m-convex in [a, b] then
(@) F exists and is continuous in [a, b}, 1 < r <n — 2,
(b) both F_,_, F_,,. are monotonic increasing and if

asu, <<, e =y <o <Y, =b
then

(18) m—=—D!'V, (F;2) = Fipyy,_(2)
S Fon, (@ <@ —D)V,_(F; v,

© Foue=EF"")) Foy, = F"),
(d) F™? exists at all evcept a countable set of points.

Proof. Using Theorem 2, it is an immediate consequence of The-
orem 6 that F,, , exists in [a, b[, F,, _ exists in Ja,d], 1 <r<n —1
and that (b) holds.

From (b) we get that both F_, ., F,_,,_ are continuous except
on a countable set. Then, again from (b), we have that F,_, . =
F,_, _ except on a countable set.

Then if we prove (a) and (c), (d) is immediate.

Suppose a <, < +-+ <z, < b then repeated application of (10)
gives
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Vn—).(F; Ly oo ey xn)
K(F; Ty, xz) — V:(F; Loy xs)

T — X3

- VZ(F; X3y T3y Ty)

oooooooooooooooooo

Now let z, — x,, then by Theorem 6 the left-hand side of this ex-
pression tends to a finite limit, K, say: i.e.,

D'F(x,) — V(F; , x,)
(@, — )
Kl(xZ? ey Q?,,,) = (xz - x4)

...............

— Vu(F; x5 5y @)

If now z;— 2, we get a finite limit on l.h.s. of this last expression:
hence D F(x,) = D,F(x,); that is DF(x,) exists. A similar argument
shows DF is continuous in ]a, b[.

In a similar way, expressing V,_, in terms of V,, V,, --- we show
that D2 F(x,) = D> F(x;) and so by Corollary 3(b), D*F(x,) exists then
as above D*F exists and is continuous in ]a, b].

In this way we show D'F exists and is continuous in Ja, d[,1 <
r <n — 2. Hence, by Theorem 2, F,, exists and is continuous in
Ja,b[,1 < r <m — 2 and so finally, by Theorem 4(b), the same is true
of F“. This proves (a).

For the proof of (¢) let z, < --+ < «,,_; then repeated application
of (10) gives

n—2
kzo (@) = Tprns) Vars(F} @y, Tons)
= Vaeo(F %o,..., ®g) — Voo T, Tans)

Let v, — 2, 1<k<n—2,2,—%,_,,n < k < 2n — 3 then by Theorem
6 the limit on the left hand side exists, and the value limit on the
right hand side follows from (a). Thus we get an expression of the
form

1

(n — D@, — pe) K(@oy %)) = w2

{Fey” — FE20h -

(Tp—1)

Now dividing and letting z,_, — 2, we get

(m— 1! lim K, 2,_,) = (F*) () ;

Tp—17%0

a simple application of (11) shows that the left hand side of this last
expression is equal to F_, .(x,). This completes the proof of the first
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part of (c), the rest follows using a similar argument.
Formula (18) is due to James [7, Lemma 10.4], who however
assumes the existence of F,_,, in ]a, b[.

COROLLARY 8. (a) F s m-convex on [a, b] if and only if F differs
by a polynomial of degree at most (n — 1) from Sw(x — t)*'u(dt), for
some Lebesgue-Stieltjes measure p. In particular if and only if F
1s the (n — 1)st integral of a monotonic function.

(b) If F is m-convexr in [a,b], |F| <k, then |F,(x)| < AK sup
{1/ — )", 1/(x — a)*},0 <k < n — 1 where A is a constant independ-
ent of k, F' and x, and where if k =mn — 1 the derivative is to be
interpreted as sup (| Fi,_,,+(2) |, | Fiop,—(2))).

(¢) If F is n-convexr on [a,bl,a <z =y=bazsx+h=y, and
r=y+ kb then

YV F5050) £ Fpy,(y) and  Fy(x) = 7 (F 95 k)«

Proof. (a) This is immediate from Theorem 7 (b).
(b) From (18) we have that

1 S F(y) ' 1 S Fyy)
=D 2w = sup {Fpy,+(®), Frup, ()} = m— D & W)

from which (b) in the case ¥ =n — 1 is easily deduced. The rest
follows by integration, using, (a).

(¢) Immediate using (18), (11), (6) Theorems 2 and 4.

The definition, (12), of m.(x; P,) can be extended to cover the case
when not all of the P, are distinct. Thus if only s of these points
are distinct then besides giving the values at the s points, a total of
r + 1 — s derivatives must also be given—either » + 1 — s derivatives
all at one point, or » + 1 — s first derivatives at » + 1 — s distinet
points, (when r + 1 — s < s), etc. Theorem 5 can be extended, using
Theorems 6, 7 and taking limits; thus as an example of many possible
extensions we state

THEOREM 9. Let P, = @, Y), LSk r,asa, <-+-- <2,=b, be
r distinct potnts on the graph of the function F. Suppose that F, . (x,)
evists, L £s<n —r. Then Theoren 5 holds if w,_(x; P,) 1is taken
to have w,_(x; P)=Fa),l=s=r 7 0x;P) =F, (v),l=s=
n —r, and if P, is considered as n — v + 1 points at and to the right
of P, but to the left of P,

THEOREM 10. (a) If F is n-convexr on |a,b] and P, = (24 Y,
1=k =n are n distinct points on the graph of F,a < z, < b, let
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T =@, + &h, 0 < g < 000 < ¢,; then as h— 04, w,_,(x; P,) converges
uniformly to the right tangent polynomial at x,,

o e — — S (il? _ wl)k (k)
T w5 2) = 7.(2) = Fz) + 3 T—F (x,)
(19) ’
+ MFW—U @), e, =c<b.
(n — 1)! ’ -
Further on the right of x, 7, < F.

(b) A similar result holds for the left tangent polynomial at
T, T_(X; %), S0 = x,a <% =b. However tn this case +f n is even
(0odd) then on the left of x, 7 < F(=F).

() At all but a countable set of points x,, a similar result holds
for the tangent polynomial at x,, t(x,;x),a <x <b,a <x, <b. How-
ever if n 18 even the graph of T lies below that of F, whereas vf n 1s
odd the graphs cross, T being above on the left of x,, and below on the

right of x,.

Proof. It suffices to consider (a). But (a) is a simple consequence
of Theorems 5,7, (11), and (14).

COROLLARY 11. (a) If F is m-convex in |a, b] then
inf {F, ., E(n),—} =0.

(b) If F is m-convex in |a,b] and F_, evists in |a, b] then it
18 COntInUoOuUs.

(¢) If F is m-convex in |a,b] then F_, . is upper-semi conti-
nuous (u.s.c.), F,_, _ is lower semi-continuous (l.s.c.).

Proof. (a) Suppose in Theorem 10, for simplicity, that =, = 0.
Then F lies above the right tangent polynomial at z = 0, i.e.,

F(x) —7.(x) >0,
=

in some interval |0, #]. Hence F',, .(0) = 0: in a similar way F,, _(0) =0.
(b) Immediate from (a), Theorem 4(a), Theorem 7(a).
(a) This is just Theorem 3.2 [3], adapted to one sided derivatives.
The following theorem generalizes a result well known when
% =1, [13, Corollary 32.3] and n» = 2 [7, Th. 4].

THEOREM 12, If F is m-convex on [a,d], a <a < B <b E, =
{Z;a =2 < B and F,(x) = k} then

(20) km*(E,) < 20{F_,,,_(B) — F_y, ()}
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(where m* denotes the outer Lebesgue measure).

Proof. For simplicity we will ignore the countable set where
F,_, may not exist and suppose that &£ > 0. Further let E} be as
E, but with F,, , instead of F, and suppose m*E;j > 0; with a
similar definition for Ej.

If then ¢ > 0, x ¢ E}f there is an & > 0 such that

VulF508) = Fip (@) —e=k —¢.

So, by [20], there is a finite family of nonoverlapping intervals
[, ; + k], 2 =1, ---, p such that z, + h, < G5,

’Yn(F;xiyhi)zk—S,?:zl,...,p’

and
Sihiz mB — e
Thus
S\ b u(F; @iy b) 2 (6 — O(m*Bf — o) ;
but since
(21) WY (F5 2, h) = n{Y,_(F: 2, h) — F_y(2)}

we have that

k —
n

€ m*EF —¢) .

; {Yod(F @5, i) — Fppy ()} =
However by Corollary 8(c)

p—1
Z{ {Fon (@) — Vod(F5 w5, )} = 0,

Foy@:) — Fn_y(a) =0,
F('n,—l)(B) - ’Yn—-l(F; xp’ hp) g 0 .

Adding the last four inequalities we get that

FuslB) = Fosl@) =2 L= mB; — o).
This together with a similar inequality for Ej, implies (20).

A function that is the difference of two n-convex functions will
be called 6-n-conver; as in the cases n =1 and n = 2, [16], such
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functions can be characterized by their variational properties.
If F is defined on [a, b] as well as F,,, 1 <k <n — 1, let us write

0, (F; a,b) = w.(a, b)
=max{sup [(z — )7, (F;a;x — a)l,
a<e<b

sup (b — 2)7.(F;a;b — @)} ;
a<z<b
this quantity was introduced by Sargent [19].

THEOREM 13. A function F defined on [a, b] is d-n-convexr if and
only if either of the following conditions is satisfied.

@ Dt o.(F; a,b) <K for all finite sets of mnonoverlapping
intervals, [a, b, 1 <k < m.

(b) o 1@ — Tpsn) VoI5 @iy + o+, @) | < K for all finite sets of
distinect Points Lo, oo vy Loine

Proof. The discussion of (b) is similar to the case n = 2 in [16]
but using Corollary 8(a).

If (a) is satisfied then F',_, is of bounded-variation [19, Lemma
1], and so by Corollary 8(a) F' is -n-convex.

If F is n-convex then by (21) and Corollary 8(c),

@ —a)7(F;a;0 —a) = n{¥,_(Fya;2 —a) — F,_y(@)} =0
and so by Corollary 8(c)
(22) @, (F; a,b) = n{F,_,(b) — F,_,(a)} .

From this it easily follows that if F is d-n-convex then (a) holds.

4. Sufficient conditions for #n-convexity. In this section we
obtain some sufficient conditions for a funection to be n-convex. First
we prove the following generalization of a well-known property of
convex functions.

THEOREM 14. (a) If F 1is m-convexr in [a,b] then F'"® has no
proper maximum in la, bf.

(b) A function F with continuous derivative of order (n — 2) 1s
n-convex if and only if no function of the form F(x) + D4 ax* has
its derivative of order (n — 2) attaining o maximum in la, bl.

Proof. (a) Suppose F'™® has a proper maximum at =z, then
consider G(x) = F(x) — w,_.(x; P,), where the polynomial x,_, is deter-
mined uniquely by the conditions
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Gy = G'(®p) = ++o = G (x) = 0.

Now consider =, ,(x; Q) where Q, = (¥, G®y), 0=k <n — 2,
Xy < +++ <%, Then by Theorem III [4], (13), and Lemma 1(b), the
coefficient of 2™ * in m,_,(x; Q) is G("*)(x, + 9), %, + 6 being some point
in Jx, ®,_.[. Hence, using Theorem 7(a), since x, is a proper maximum
of G and G"?(x,) =0, if x, ¢+, 2,_, are close enough together
this coefficient is not positive.

Let ¢, — 2,1 <k <n — 3 then 7,_,(x; @, becomes a polynomial
of degree n — 2 with its value and that of its first (n — 3) derivatives
at x, being zero; it’s (» — 2)nd derivative is nonpositive. Hence, by
Theorem 9, G < 0 in [x,, %,_).

In a similar way G = 0(=<0) in some interval to the left of x,
when » is odd (even). Further in every such interval around =z, there
are points where these inequalities are strict.

Now consider the (x + 1) points z,, ---, 2z, Where

zo<zl... <an/2]:xo< cee 2,

Then

Vo(F: 2) = V(G 2) = 5(2)) + P+ %@) > 9.

If then 2z, -+ 2,_, tend to %, then K — 0 and we get
G(z) . G(z)

(zO - mo)nﬁl(zo - zn) (zn - mo)”—l(zn - zo)

1\
o

But whether » is even, or odd both terms on the lLh.s. of this ex-
pression can be chosen to be negative-which contradiction completes the
proof of (a).

(b) The necessity is evident. Suppose then that F' is not n-convex.
Then by Theorem 5 there exists a polynomial 7,_,(x; P,) such that the
two curves ¥y = F(x), y = 7,_.(x; P,) do not intertwine correctly.

Consider G(x) = F(x) — m, ,(x; Py); then G@) = .-+ =G(,) =0
and G changes sign at most (# — 2) times. Hence G™® has three
zeros and so has a local maximum. This completes the proof.

COROLLARY 15. (a) If F is n-convex then F'" is (n — r)-convex,
1r<n—2.
(b) If F is m-convex then F'™ exist a.e.

Proof. (a) The case » = n — 2 is just Theorem 14(b). In gen-
eral F'"*, 1 <k <n — 3, has a continuous derivative of order n — k — 2
satisfying the hypotheses of Theorem 14(b), and hence F'*® is (n — k)-
convex.
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(b) Since F™? is convex this follows immediately from well
known properties of convex functions.

Note that the case » = n — 1 of Corollary 15(a) is just the last
part of Theorem 7(b).

We now wish to prove a converse of Corollary 11(a). Because of
applications to symmetric Perron integral, [7], this converse will be
obtained in terms of de la Vallée Poussin derivatives and the results
in terms of Peano derivatives will be simple corollaries. A direct
proof could be constructed from the proof of the more general results.

THEOREM 16. If F satisfies Cymym = 1, in Ja, b] and

@ D,,F(x)=0,xcla,b]~E,|E|=0,

() D, F(x) > —co,xcla, b ~8, S a scattered set,

(¢) limsup,_, hb,,(F; x; h) = 0 = lim inf,_, h0,,(F; x; h), x € S then
F 1s 2m-convex. (A set is said to be scattered if it contains no sub-
sets that are dense in themselves.)

Proof. If E =8 then by Theorem 6.1, [9], (a), (b), (c) imply
D,,F =0 in ]a, b] and so the result follows from Theorem 4.2, [8].

Given ¢ >0, T,|T|=0,TeG,, T+ @ let y., =y be a function
on [a, b] such that

(i) yx is absolutely continuous,

(ii) yx is differentiable,

(iii) ¥'(x) = ,ze T,

(iv) 0=Zy'(x) < o, T,

(v) x@) =0,0=<%®) <¢/(b— a)'. That such a function exists
is well known, [21]. Then define

— — 1 ‘ _ 4\em—2
@) V@) = V@) = ot | — e,

the (2m — 1)st integral of . Then ¥*"~V(z) = y(x) and, using (2),
we have on integrating by parts that

@) i) = ol [ = 0 e + 1) — 2 — 0

1
> 1 ey,
= Sem it @

S0
D, ¥ (x) = my'(x) 2 0.

If now E c T then we easily see that (i) ¥ is C,,, and 2m-convex, (ii)
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D, ¥(x) =0, (ili) D,,¥(x) = o, xc E, (iv) 0¥ <.

Hence if we write ¥, =¥, with e = 1/n, and put G, = F + ¥,
then G, satisfies the conditions of the theorem with F = S, and so
by the above is 2m-convex. Letting n— « we then get that F is
2m-convex.

The case of m =1, E = ¢, S countable is a classic result about
convex functions, [22].

COROLLARY 17. If F,G are defined in [a,d] and (@) F — G 1is
Cony (0) Dou(F — G)(2) = 0 = D,,(F — G)(2) for wela, b~ E, |E| =0,
©) Do(F — G) (&) < o0, Dy(F — G) (&) > — o, x € Ja, b] ~ S, S scattered,
(d) limsup,, ., b, (F — G; x; h) = 0 = liminf,_, h0,,(F — G;x; h) for xS
then for all sets x,, <+, %, of 2m distinct points in [a, b], of P, =
(@, F(2), Q. = (21, G(xp), L <k < 2m

(25) F(@) — Tons(@; P) = G@) — Tana(w; Q)

Proof. If F,, G,, denote the lLh.s., r.h.s., of (25) respectively then
F, — G, is both 2m-convex and 2m-concave, by Theorem 16. So being
a polynomial of degree at most 2m — 1 and vanishing at z,, 1 < k < 2m,
is identically zero.

This result is well known in the case m = 1 when it implies that
if FF— G is continuous, D,(F — G) = 0 then F,G differ by a linear
function, [10]. Kassimatis [11] pointed out that the requirement F' — G
continuous is not sufficient in the general case; the condition required
is that of Corollary 17.

COROLLARY 18. (@) Ifn =2 (i) F,(x) =0,z¢e]a, b ~ E, |E| =
0, (ii) F,,(x) > —co,xec]a,b] ~ S, S a scattered set, then F is n-convex.

b)) If n=2 () F-—@u,x)=0=F — @uk,xzcle, b ~ E,
B =0, () (F-=GQu@<c,FF—-ubr)>—x,zcle,bl~S S
scattered, then (25) holds.

Proof. This is an immediate corollary of Theorem 16, Corollary
17, the analogous results for the odd-ordered derivatives and the re-
mark made earlier that C, is satisfied.

This result generalizes the classic case, when n = 1, see for in-
stance, [17, p. 203]. But this can be still further extended as follows.

THEOREM 19. If n=2, and (i) F,_, exists in [a, b], (ii) F . (x) =0,
vela, b] ~E, |E| =0, (i) F, () > —c,zcla,b] ~C,C countable,
then F 1s n-convex.



A CRITERION FOR %n-CONVEXITY 95

Proof. As in the proof of Theorem 16 we can assume that £ =C
and so suppose F,, .(x) = 0 except when a = x,, @, ---. We may as-
sume that for all ke N, x, = b.

Adopting a procedure due to Bosanquet [1] and Sargent [18] we
exhibit for each ke N a monotonic n-convex function Z, with the
following properties

(i) Za) =0,Z00) < [0 —a)* " Y(n —r—1DI2-Fe, 0 < r <
n—1,

(i) T F 2.+ (@) = 0,

(iii) V.(Z:; y.,) < K2~%+V¢, for all (n + 1) distinct points 4y, +++, Y-

Then if we define G(x) = F(x) + Diey Ze(®), Gy, +(®) = 0 everywhere
and so is n-convex, by usual arguments; but

and so V,(F, vy, = —Ke, which implies F' is n-convex.

It remains to define the funection Z,. Since C, is satisfied, we
have, by (4) and (6), lim,_, A7, (F; 2 h) = 0 so we can find a sequence
Yus Yoy +++ in [a,, B[ such that 0 < y,., — & = hory < 3. — ) = ho/2,
and A7 (F; x; h,) > —e - 2%, Now define the function z, in such
a way as to be continuous and

zZx) =00 <2 <2,
= 2-e, Yy < =b
= 2_(k+3)5v rT= 1Yy S = 11 2? c0cy
= linear in [y, ¥.],s =1,2, +++
Then z, is continuous, increasing on [a, b], z,(a) = 0, 2,(b) = 27"V,

z(®y) = 0, z,(x)/x — x, decreases in Jx,, b[. It is then easily checked
that

hy — £y far = 2R 2k
L, = itae i = 2 - BT
Define then,

Zi(x) = —(Z%—ZT Sa (x — )"z ()dt ,

the (n — 1)st integral of z,. Then Z* " = z, and using Theorem 7,
and Corollary 8, Z, clearly has all properties wanted except possibly
(ii). This we now check. First note that by (21)

hsvn(Zk; xk) h's) = n’yn—l(Zk; xkv hs) .
So as in the proof of (23),
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. — (n - 1) ke n—2 —(k+8)
hs'yn(Zk! Ly hs) - n_h/:—— (hs - t) zk(xk + t)dt z 2 g .
s 0
Hence,
h/s,Yw(Zk + F; Lr» hs) g 0

which completes the proof.

A theorem of a slightly different form can be obtained using the
symmetric Riemann derivatives.

Let us say a real valued function F on [a, d] is of type D, if for
all sets of (» + 1) distinet points x, +--, 2, in [a, b]

(26) inf D;F(z) < r!V.(F;z) < sup D/F(z) .
a<z<b a<lz<b
The following simple lemmas will be useful.
LEMMA 20. If F'"? exists and is continuous in |a, b] then for
sets of (r + 1) distinct points x, -+-, %, in [a, b]

inf DIF"~*(z) < rlV,(F;w) < sup DiF"(x) .

a<z<b a<z<b
In particular if F'” exists in [a, b] then F 1is of type D,.
Proof. Let G(x) = F(x) — w,_,(F; %oy + -+, %,_;) — MP(x) where P is
a polynomial of degree », » a constant determined by requiring that
Gx) =0,0=k<r and V.(F; %)=\
Then since G has at least (r + 1) zeros G ® has at least 3 zeros

and so has a nonnegative maximum; that is for some y V,(G"2; y,,
¥, ¥,) = 0 for all y,, ¥, near enough to y; that is

2. Vz(G(T_Z); Y Y, yz) = 2V2(FM_2); Yis Yy Yo ) —rlix = 0.

The proof now follows that in" [6].

LEmMmA 21. If F s of type D, then
inf D*F(x) = inf D*F(x), sup D!F(x) = sup D'F(z) .
a<z<b a<z<b

a<lz<b a<le<b

Proof. The case n = 2 and more is proved in [6, p. 9]. The proof
of the general case is the same.

THEOREM 22. If F is of type D, and (a) D'F(x) = 0, ¢ la, b] ~ E,
|E| =0, (b) D!F > —co, then F is m-conve.

Proof. Since the 2m-convex function ¥ of Theorem 16 is, using
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Lemma 20, of type D,, we can, as in Theorem 16, assume E = .
The result is then a trivial consequence of (26).

COROLLARY 23. If F,G are such that (a) FF — G s of type D,,
(b) DHF - G)(x) 20= D(F — G)(z), z€la, b ~ E, |[E| =0, (c) DNF — &)
> —oo, DI(F — Q) < oo, then (24) holds.

It would be of interest to produce some reasonable conditions on
F that ensure it is of type D,. It is known, [15], that if F' is con-
tinuous then F is of type D,, but Kassimatis, [10], has pointed out
that if » > 2 this is false. One would expect the existence and con-
tinuity of F"~? to imply F' is of type D, but this has not been proved.
Let us say F is of type d, when
inf D:F(x) < r! VAF;z) < sup D:F(x) .
a<e<h a<a<h
If in Theorem 22 and Corollary 23 we weaken our hypothesis to
F being of type d,, obvious modifications of the other conditions will
produce analogous theorems. It has been proved in [2] that if F"—®
exists and is continuous, » = 2, 3, 4, then F' is d,; unfortunately the
method fails if » > 4.
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