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T. V. Fossum

Matrix-theoretical proofs of orthogonality relations for the
coefficients of representations of Frobenius algebras have been
extensively developed in the literature. This paper has grown
out of a desire to prove some of these orthogonality relations
in a matrix-free, module-theoretic manner, Most of the atten-
tion is focused on characters, even though some of the results
diverge from this restriction.

Sections 1 and 2 set the stage for the development of the principal
theorems in § 3. There we derive the orthogonality relations and de-
monstrate a relation between characters and certain homogeneous
modules over Frobenius algebras. In §4 we apply these results to
obtain some information about the character of the left regular module.

All rings are assumed to have an identity, and all modules are
assumed to be unital. The Jacobson radical of a ring A will be
written J(A), or simply .J.

Let A be a ring, M a simple left A-module, and let A, = {a e
A:aM = 0}. Then A, is a two-sided ideal of A, the annthilator of
M. If L is a left A-module, Soc,(L) will denote the M-socle of L,
i.e., the sum of all submodules of L isomorphic to M. We say L is
M-homogeneous if Soc,(L) = L. In particular if A is left artinian,
then A, is a maximal two-sided ideal of A4, and L is M-homogeneous
if and only if AyL =0. We let S,, denote the M-socle Soc,(A4) of
A. A block of A is an indecomposable ring direct summand of A [2,
§55]. We say M belongs to the block B of A4 if M is a composition
factor of B regarded as a left A-module.

Let K be a field. If V is a vector space over K, let (V:K)
denote the K-dimension of V. Now assume A is a finite dimensional
K-algebra. Then A* = Hom, (4, K) is an (A4, A)-bimodule, where for
ac A and xe A* we define

[(@)(@) = Maa)

l(ha)(2) = Maz) (we A)

If e A*, we say A is a class function if Mab) = \(ba) for all a, bc A.
Let ef (A) denote the set of class functions in A*. Observe that \ e
cf (4) if and only if ax = ha for all ac A. We say yc A* is an A-
character if y is the character of a (finite dimensional) left A-module.
Clearly all A-characters belong to c¢f (4). The A-character y is said
to be irreducible if it is the character of a simple left A-module.
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DErFINITION. Let A be a finite-dimensional K-algebra, K a field,
and let M be a simple left A-module. We say an element Ae A*
belongs to M if M(Ay) = 0. One checks that if \ belongs to A, then
ax and ra belong to M for any ac A. If y is the character of M,
then y clearly belongs to M.

All other notation may be found in [2] or [3].

1. Socles of QF rings. A ring A is said to be a QF (quasi-
Frobenius) ring if A is (left and right) artinian and ,A4 is injective
[2, (58.6)].

LEMMA 1.1. Let Abe a QF ring, M a simple left A-module, and
Sy = Socy (A). Then S, is a nonzero simple two-sided ideal of A.

Proof. By [2, (568.13)], M is isomorphic to a minimal left ideal I
in A, so S,y # 0. Moreover S, = D {f(I): fe Hom, (I, A)} since I = M.
By assumption ,A4 is injective and from the “injective test lemma”
[2, (67.14)] it follows that each fe Hom, (I, A) is right multiplication
by some ae A; that is, f(I) = Ia & IA. Therefore S, & IA. But
plainly IA = S,,, and the lemma follows.

LEMMA 1.2. Let A be a QF ring, M a simple left A-module,

“and Sy = Socy (A). Then the following are equivalent.

(@) Sy ts a simple block of A to which M belongs
(b) Sy=+0
(¢) M 1is projective.

Proof. That (a) implies (b) is obvious. For (b) implies (c), suppose
M is not projective. By [2, (68.12)] M is isomorphic to the “bottom”
constituent I of a principal indecomposable left ideal U, and as such,
I < JU where J is the raidcal of A. Hence I & .J, and since I & Sy,
Sy <J. But S, is M-homogeneous and J = A,, so therefore

S;I - AMSM =0.

To show that (¢) implies (a), notice that if M is projective, then M
is injective [2, (58.14)] and therefore M is a direct summand of every
module with M as a composition factor. Therefore every principal
indecomposable module linked to M is isomorphic to M, so S, is a
block of A [2, §55]. From (1.1) it follows that S, is simple, com-
pleting the proof.

2. Frobenius algebras and class functions. Let A be a finite-
dimensional K-algebra, K a field. We say that A is a Frobenius
algebra if A = A* = Homg (4, K) as left A-modules. To make this
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connection more explicit, we say that the pair (4, @) is a Frobenius
algebra if @: A — A* is a left A-isomorphism (see [4] and [2, (61.1)].)
By [2, (61.1), (61.2)] a Frobenius algebra is necessarily a QF ring;
hence the results of §1 apply.

Let (4, ®) be a Frobenius algebra. If (a;), (b;) is an ordered pair
of bases for A such that @(b,)(a;) = 8;; for all 7,7, we say the bases
(a;), (b;) are o-dual. If (a;) is any basis for (A, ), there exists a
second basis (b;) such that (a;), (b;) are @-dual. (In most cases we
are given an explicit isomorphism @ and certain @-dual bases, although
for an arbitrary Frobenius algebra A there may be many different
choices for @ or @-dual bases.)

LEmmaA 2.1. Let (a.,), (b;) be @-dual bases for the Frobenius algebra
(4, ®), and assume ne A*. Then @7'(\) = 3, Ma;)b;.

Proof. The proof is left to the reader.

LEMMA 2.2. Let (A, ®) be a Frobenius algebra. Ther the mapp-
g T =Ty, A— A given by t(a) = P (1)) is a K-algebra automor-
phism of A.

Proof. Observe that @(z(a)) = (1)a for each aec A. Because @
is a left A-homomorphism and A* is an (A4, A)-bimodule, it follows
easily that

(2.3) P(xt(a)) = P@)a , (x,aecA).
If x = '(\) for e A%, taking @ on both sides of (2.3) gives
(2.4) P (NT(@) = P (ha) , (ac ).

Now for a,be A, @(z{ad)) = ¢(1)ab = #(r(a))b = @{t(a)z(d)) by (2.3),
and therefore since ¢ is one-to-one, z(ab) = z(a)z(b). If z(a) = 0, then
0 = p{z(a)) = P(L)a, so @(b)a = b(p(l)a) = 0 for all be A. But then
0 = (p(b)a)(1) = @()(a) for all be A, and it follows that a = 0 since
@(A) = A*. Therefore t is one-to-one. Verification of the remaining
properties of 7z is left to the reader.

The reader may observe that ¢ = 7, is the inverse of “Nakayama’s
automorphism” [5, Th. 1].

DEFINITION. Let (A, #) be a Frobenius algebra with automorphism
T =7, as in (2.2). Define Z (A4) = {a e A: ba = at(b) for all be A},

LEMMA 2.5, Let (A, ®) be a Frobenius algebra with automor-
phism T =T, as in (2.2). Then @~ '(cf (4)) = Z.(4).
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Proof. 1If aeZ.(A), then ba = az(b) for all be A. Then by (2.3),
bp(a) = pba) = p(at(d)) = P(a)b for all be B, so @(a)cecf(4). The
converse is similar.

COROLLARY 2.6. Let (A, @), T be as in (2.5). If necf(A) and
A= @ Y\), then AN* = N*A.

Proof. By (2.6), v*e Z.(4). Since 7 is an automorphism of A,
AN = N*7(A) = N*A.

3. Orthogonality relations, socles and characters. Throughout
this section let (A, @) be a Frobenius algebra. Recall that if M is a
simple left A-module, then A, = {ae A:aM = 0}, and for xec A%, \
belongs to M if A (4,) = 0.

LEMMA 3.1. Let M be a simple left A-module, and assume \ be-
longsto M, xe A*. Set \* = @7'(\). Then Ayn* = 0. In particular
if N is any left A-module, then AN*N is M-homogeneous.

Proof. If bec Ay, then by = 0 because (bA)(A) = MAd) S N (A4,) = 0.
Therefore b1 * = @~ *(bX) = 0, be 4,, and so AA* = 0. For N a left
A-module, A, (AN*N) = A,N*N = 0, so ANV*N is M-homogeneous.

THEOREM 3.2. (Orthogonality relations). Let M and N be stmple
left A-modules, and assume N, p belong to M, N, respectively, where
N, pre A*. Set M = @' (\).  If AN = 0, then M = N. In particular
of p(Z*) = 0, then M = N.

Proof. Suppose M*N # 0. Since N is simple, AN*N = N. By
(3.1), N must then be M-homogeneous, i.e., M = N. In particular
if p(Av*) == 0, then plainly A*N == 0, so by above M = N.

COROLLARY 3.3. Let M, N, \, tt be as in (3.2), and set
A= @7 (N, o = @7 .
If N*pe* =0, then M = N.
Proof. Assume M*p* == 0. Then M p 5= 0, and therefore for some

ac A, 0= O p)(a) = plan*) = (pa)y(Z*). But pa belongs to N, so by
(3.2), M= N.

COROLLARY 3.4. (Orthogonality relations for characters). Let
M, N be simple left A-modules with characters y and C, respectively.
Set x* = o7(). If L(x*) # 0, then M = N and y = {. In particular if
(a;), (b;) are p-dual bases for A, and if >, x(a:)l(b;) # 0, then M= N
and y = C.
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Proof. The first part follows directly from (3.2) since the charac-
ter of a simple module belongs to that module. Moreover modules
uniquely determine their characters. For the second part we need
only apply this and (2.1).

THEOREM 3.5. Let y be the character of the simple left A-module
M, and assume Y + 0. Set x* = @7'(y). Then Ay* = Socy (A) = Sy.
In particular either (Ax*)* =0, or Ay* is a simple block of A.

Proof. Since x e cf (A), (2.6) implies that Ay* = y*4 = Ax*A. By
(3.1), Ax*is M-homogeneous, so 0 = Ay* = S,. Since S, is a simple
two-sided ideal (1.1), Ayx* = S,. The second assertion follows from
this and (1.2).

COROLLARY 3.6. Let x* be as in (3.5). If (x*)* =0, then S; =
0. If (x*)?*+ 0, then x* is a unit in the stmple block Ayx* = S,.

Proof. By (3.5), Ax* = Sy. If (x*)* =0, then by (2.6),
Sz = Ay*Ay* = Ay} =0.

On the other hand if (3*)* %= 0, then S = 0, so by (1.2) S, = Ay* is
a simple block of A in which %* is clearly a unit.

COROLLARY 3.7. Let y, x* be as in (3.5). If x(x*) # 0, then x*
is a unit in the block Ayx* = S,.

Proof. If x(x*) = 0, then x*x = 0 (in A*), so by applying ¢
we have (%) = y*o~'(x) = o' (x*y) # 0. By (3.6), ¥* is a unit in
SM.

ReEMARK. The converse to (3.7) is false. For example let F' be
a field of characteristic p = 0, and let F, be the complete ring of
p-by-p matrices over F. Then F, is a Frobenius algebra with
isomorphism @ given by @(X)(Y) = trace (YX), X, Ye F,. One checks
that if y is the character of the unique simple left F,-module M,
then y* = ¢7(y) = I, where I, is the p-by-p identity matrix. Then
x(x*) = p = 0 since F has characteristic p, but x* is clearly a unit
in F,.

The procedure for finding the socle of the left regular module
<A of a Frobenius algebra (3.5) may also be applied to arbitrary left
A-modules and in particular to principal indecomposable modules [2,
(54.3)].
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ProrosiTiON 3.8. Let M, x* be as in (3.5), and assume N is any
left A-module. If (x*)* # 0, then y*N = Soc, (N). If (x*) =0, then
1*N S Socy (JN) where J is the radical of A.

Proof. Assume (3*)? = 0. Then S, = x*A is the simple block of
A to which M belongs (3.6), and S, + A4, = A. If L is any M-
homogeneous left A-module, then L = AL = S,L = y*L. By (3.1),
Ay*N = y*N is M-homogeneous, so ¥*N < Soc, (N). But by above
Socy(N) = x*Soc, (N) € x*N. Therefore y*N = Soc, (N). Now if
(x*)) =0, then y*edJ = J(A) (since x* €S, and S; =0 by (3.6)) so
that y*N € JN. But y*N is M-homogeneous by (3.1), and therefore
1*N < Soc,, (JN).

ExampLE. Equality does not necessarily occur in the relation
2*N & Socy, (JN) when (y*)? =0. For example let G be an abelian
group of order a prime p > 2, and let F be a field of characteristic
p. Then the group-algebra FG 1s a commutative local ring which is
clearly a Frobenius algebra [2, Remark 2, p. 440] with isomorphism
@, say. Moreover if J denotes the radical of FG, then J? =0 and
J? = Soc (FG).

Let M be a simple left FG-module with character ¥. Then all
simple left F'G-modules are isomorphic to M, and in particular

J? = Soc, (FG) = M.

If x* = ¢7'(%), then x* e Soc, (FG) = J**, and (x*)* =0. Let N =,
viewed as a left FG-module. Then y*N S J?>'J =J? =0, so ¥y*N =
0. But Soc, (JN) = Socy, (J?) = J** % 0. Hence yx*N = Soc, (JN).

THEOREM 3.9. Let f be a primitive idempotent in A, and let M
be a simple left A-module with character ¥ + 0. Set y* = @7'(}).
Then Y*f 0 of and only tf y*Af = Soc (Af) = M.

Proof. By [2, (58.12)], Soc (Af) is simple. If x*f =0, then
0+ Ay*Af = y*Af S Socy (Af) & Soc (Af) by (2.6) and (3.1), so

L*ASf = Soc (Af) = M.

Conversely if x*Af = Soc (Af), then Ay*f = y*Af=+ 0 by (2.6), and
therefore y*f == 0.

4. Applications. In this section (4, P) is a Frobenius algebra,
and p 1s the character of the left regular module A.

LEMMA 4.1. Let (a;), (b;) be @-dual bases for (A, ). Then
PH0) = Z;; ab; .
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Proof. This proof is identical to that of [3, (3.3)].

Let M, -+, M, be a complete set of (nonisomorphic) simple left
A-modules with characters y,, -+, X., respectively. Let m; denote the
multiplicity of M; as a composition factor of ,A. It follows that
o=, my;. If weseto*=p(0)and y} =97'(y;) for 1 <1 <s, then

(4.2) o* = Z mF .

Now assume Y, is any irreducible A-character, 1 <k <s. For
any ce A, ¢y, belongs to M,, and by (4.2),

4.3) 1407 = (1)) = 3 milex) (D) -

But by (3.2), (ex.)(x¥) = 0 unless M; = M,, i.e., unless ¢ = k. There-
fore (4.3) implies that y.(0*¢) = mu(cx)(F) = m)(xic). Together
with (2.1) and (4.1) this gives the following (compare [3, (3.12)]).

THEOREM 4.4. Let o be the character of the left regular module
A, and let M be a simple left A-module with character x. Set y* =
P~ (x). Assume M appears as a composition factor of ,A with multi-
plicity m. Then for any cc A,

x(0*c) = my(y*e) .

In particular f (a;), (b;) are @-dual bases for (A, @), then for any
ce A,

1S abe) = m 3 y(@re) -

COROLLARY 4.5. Let G be a finite group of order |G|, and let
K be a field of characteristic p such that p does not divide |G|.
Assume that K 1s a splitting field for KG. Then for any trreducible
KG-character y and for any heG,

Gl = 2(1) X x(@)x(g™h) -

Proof. (Compare [2, (31.6)].) Let M be the simple left KG-module
with character . Since KG is semi-simple (Maschke) and K-split, M
appears exactly (M: K) times as a composition factor of KG, and
x(1) = (M: K) in K. Finally KG is a Frobenius algebra with respect
to the particular isomorphism @ for which (9), (97') are ®-dual bases.
By (4.4), [Gx(h) = X(Xsee 997'h) = x(Q) Dyee X(9)%(97'h) as desired.

Assume that B is a simple, finite-dimensional K-algebra, K a
field, and let M be a simple left B-module. Set D = Hom, (M, M).
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Then D is a division ring, finite-dimensional over K, and B is isomor-
phic to D,,, the full ring of m-by-m matrices over D, for some posi-
tive integer m. It follows that M appears m times as a composition
factor of B, and that (M: K)m = (D: K)m*. Therefore (M:K) =
(D: K)m. We combine these remarks with (4.4) to obtain the follow-
ing.

COROLLARY 4.6. Assume (A, ) ts a Frobenius algebra over a
field K of characteristic zero, and let M be a simple projective left
A-module with character y. Set x* = @7'()x), 0* = P7H0), and D =
Hom, (M, M). Then for some ce A, y(o*c) # 0, and

(D: K) = y(o*e)" 2 (Dx(x"e) -

In particular if (a;), (b;) are P-dual bases for (A, ), then for some
ce A, xS abie) =0 and for any such c,

(D: K) = x(; aibic>~1x(1) S 1@y bie) -

Proof. Because M is projective and A is a QF ring, the M-socle
Sy of A is a simple block of A to which M belongs by (1.2). More-
over y(1) = (M: K) in K, and since K has characteristic zero, y = 0.
By (8.6), S, = yx*4 and A = S, + Ay, s0 0% x(4) = x(Sy) = x(x*4).
Therefore for some ce A, x(x*c) # 0. But (4.4) shows that x(o*c) =
my(x*c) where m is the multiplicity of M as a composition factor of
4A, and therefore y(o*c) = 0. The remarks above the statement of
this corollary show that (M: K) = (D: K)m. Combining these results,
we have that

(D: K) = y(e*e) " x(Mx(x*c) -

The last statement follows from this, (2.1) and (4.1).

REMARK. The hypothesis that M be projective is essential in the
above corollary, for if M is not projective (equivalently, if (x*)* = 0)
one can show from (1.2) and (3.6) that y(x*c) = 0 for all ce A.

COROLLARY 4.7. Huypotheses as in (4.6). Lf (a.), (b;) are ¢-dual
bases for A such that >,; a;b; = (A: K), then

(D: K) = (A: K)™ 3 x(a)x(b)

Proof. Certainly y(0*) = %(3l: a:b;) = (A: K)x(1) # 0. Therefore
we may take ¢ =1 in the proof of (4.6), and the conclusion follows.
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REMARKS. One might be surprised to observe that the hypotheses
of (4.7) forces (A, #) to be a semi-simple symmetric algebra [3]. For
we know that peef(4), so by (2.5) and (4.1), (A: K) = >}, a:b; =
o Y(0)e Z.(A). But then 1e¢Z.(A) and therefore for any bec A4, b =
b-1=1-7(b) =7(b). We conclude that ¢ is the identity automomor-
phism which forces » to be an (4, A)-bimodule isomorphism (2.3).
Therefore (4, ) is a symmetric algebra. Semi-simplicity follows from
[3, 1.7)].

If G is a finite group, K a field of characteristic zero which is
a splitting field for KG (e.g., K algebraically closed), then the se-
quence (2.1), (3.1), (3.2), (3.4), (4.1), (4.4) and (4.5) gives an elementary
matrix-free proof of the orthogonally relations for irreducible charac-
ters of G.

The references below include a partial bibliography of papers
relating to orthogonality relations for Frobenius algebras.
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