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Pseudocompactness and realcompactness can be defined in
a more natural and more general setting than the usual one,
One part of what is done here is simply to point out that
much of the theory of rings of continuous functions applies
without essential change in more general circumstances. The
discussion includes, for example, analogues of 58X, vX, z-ultra-
filters, C(X) and C*(X), but all for a zero-set space, instead
of for a topological space.

There is another respect, besides greater generality, in
which the theory of zero-set spaces differs from that of topo-
logical spaces, Using the definitions of subspace and prod-
uct space which are obvious and natural for zero-set spaces,
this paper obtains, for such spaces, a number of results which
are known to fail for topological spaces, Most notably, a
product of any number of pseudocompact zero-set spaces is
pseudocompact, even though the product of just two pseudeo-
compact topological spaces may fail to be pseudocompact,
Also a countable union of realcompact subspaces of a zero-set
space is realcompact; again the corresponding statement does
not hold even for two topological subspaces.

One approach to generalizing the concepts of pseudocompactness
and realcompactness has been made by Lorch [5]. What we do here
ig, relying heavily on the work of Lorch, to go well beyond that
work by emphasizing particularly a special case, which is general
enough to include the important applications in analysis.

Let us set forth the matters of the preceding paragraph in
greater detail. Lorch starts with a uniformly closed ring of bounded
functions on a set X; here as elsewhere, we understand “function”
to mean “real-valued function.” Given such a ring <&, we may
consider the collection 2 of all zero-sets of functions in .Z#; i.e.,
the collection of all sets of the form {xe X |f(z) = 0} for all fe. 2.
Note that there can be a number of different rings .&# having the
same collection %~ of zero-sets. But whether X is pseudocompact,
with respect to some <2, in Loreh’s theory turns out to depend only
on 7%, not on .#; the same holds for realcompact. Among the rings
& corresponding to any 2° there is a largest one—and we depart
from the work of Lorch by fixing our attention on this largest one.
This largest ring consists of all bounded functions f such that f~'Fe 2
for every closed set F' of real numbers, as will become clear in §2
below. Note that rings of continuous functions are the largest rings
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for their collections of zero-sets. But rings of Baire functions and
rings of measurable functions also have this property. In this paper
we begin with some 2 and study especially the largest ring 2
which corresponds.

In the theory of Lorch, the ring &% is a generalization of the
ring C*(X) of bounded continuous functions. But many theorems
about rings of continuous functions have reference to the ring C(X)
of all continuous functions. It is natural then to seek a generalization
for C(X) corresponding to <% for C*(X). While serious difficulties
arise in the general case, we shall have no trouble in the case where
. has the maximality property of the preceding paragraph. Theorem
3.7 shows that three obvious definitions for the analogue of C(X)
coincide. This analogue appears in many of the theorems below;
for example, X is pseudocompact if and only if the analogues of
C(X) and C*(X) coincide.

We shall begin the development of our theory by giving the
definition of a zero-set structure. By a zero-set structure on a set
X we shall mean a collection :2° of subsets of X satisfying certain
set-theoretic axioms. These axioms are equivalent to the assertion
that 2 is the collection of zero-sets of a uniformly closed ring of
bounded functions. Recalling that proximity structures are in a
natural sense intermediate between topologies and uniform structures,
one is led to ask where zero-set structures fit in. The answer, which
becomes apparent in §3 and §4 below, is that zero-set structures fall
between topologies and proximity structures; additional details about
this point will be found in the body of the paper.

1. Notation and terminology.

1.1. We shall use the word “function” only in reference to a
real-valued function. Given a set X, the totality of functions on X
forms a ring with the operations specified by:

(f + 9)@) = fl) + 9(x)
(f9)(x) = f(x)g(x)
and a lattice with the operations specified by:
(f V 9)(x) = max (f(z), 9(x))
(f A 9)(@) = min (f(2), 9(v)) .

Whenever we speak of a ring or a lattice of functions on X, we
mean always a subring or a sublattice of the ring or lattice of all
functions just mentioned. The constant function whose value at each
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point is a will also be denoted by «. It is well-known that if a
uniformly closed ring of bounded functions on a set X contains the
constants, then it is a lattice of functions, in the sense just specified.
Thus in particular, if it contains some f, it also contains f*, f~ and
| f| defined by

[r=rVvo, fm=(5)"
and |f| =/*"+ /"

1.2. f~! refers always to the inverse image; the symbol 1/f is
used for the function defined by

1)) = 1/f(@) .

If f: X — R, where of course R is the real numbers, then Zf denotes
JS7(0) and is called the zero-set of f.

1.3. All topologies which appear below are completely regular,
and we understand completely regular to imply Hausdorff.

Whenever we refer to a topology, proximity structure or uniform
structure on R, without further specification, we mean of course the
standard structure of the kind mentioned.

2. Definition of a zero-set space. We begin by giving the
abstract definition of a zero-set structure. Theorems 2.3 and 3.5 will
subsequently serve to explain the relationship to rings of functions
and to justify the use of the word “zero-set” in the definition.

DEFINITION 2.1. Let X be a set and 2 be a collection of sub-
sets of X. Suppose:

(1) For each pair of distinct points of X, there is a Ze 2
which contains just one of the points.

(2) 2 is closed under finite union; in particular, ¢e 2.

(3) % is closed under countable intersection; in particular,
Xe %

(4) Whenever A and Bec 2 and AN B = ¢, then there are C
and De & with A ¢ X\C, B X\D and (X\C) N (X\D) = ¢.

(5) Whenever Ze 2, there are Z,, Z,, --- ¢ % such that:

x\Z=UZ,.

Then we call 2~ a zero-set structure on X and call (X, 2") a zero-set
space. We usually abbreviate by writing X for (X, 27).

2.2. The totality of closed sets of a T, topological space satisfies
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(1), (2) and (3) above. If the space is normal, (4) is also satisfied,
but (5) need not be. On the other hand, the closed sets of the space
I’ of [2, Exercise 3K] satisfy (5) but not (4).

THEOREM 2.3. Let X be a set and _ be a uniformly closed
ring of bounded functions on X. Suppose _# separates points and
contains the constants. Then

Z ={Zf|fe 7}
18 a zero-set structure on X.

Proof. Certainly (1) of 2.1 is satisfied. Since ¢c 2" and Z(fg) =
Zf U Zyg, (2) is satisfied. Since Xe 2 and

Z3,(£ A2 = N 2,
(3) is satisfied. If A = Zf and B = Zg are disjoint, then the sets
C = Z(g| —|F)* and D = Z(f] — |g)*
serve to verify (4). To verify (5) for Z = Zf, define
Z, = Z[f] = A/n)]~ .

2.4. The following two lemmas will be needed later.

LEMMA. Let <7 be a collection of subsets of X closed under
finite union and countable intersection. Let _#7 be the set of all
Sunctions f with the property that f~'Fe <% for each closed set F'
of R. Then _# s a uniformly closed ring.

Proof. Let & = {X\A|Ae £Z}; then & is closed under finite
intersection and countable union. Also _# is the set of functions f
such that fUe & for every U open in R. Let f, and f,e¢ _# be
given. Define g: X— R X R by

g(ﬂ?) = (fl(x)7 fz(x)) .

Each open set of R X R is the union of countably many sets of the
form V, x V, where V, and V, are open in R. Since for each choice
of V., x V, we have

gV, x V) = VinfitV,es ,

g has the property that g='Ve & for each open V of R x R. Since
the mappings 6: R x R— R and m: R x R— R defined by d(a, 8) =
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a — B and 7w(a, B) = aB are continuous, dog and wog have the pro-
perty that the inverse image of an open set lies in <. In other
words, f, — f; =009 and f.f, = wog belong to _#~. In short _# is
a ring.

It remains to show that _# is uniformly closed. Let f,, fo +-- € #
and let f, — f uniformly. It is enough to show f~!(a, B) e % when-
ever < B. For each positive integer %k, choose n, such that

| fa (@) — f@)| < 1/k
for all xe X. Let
Ue = fajla+ 1k, 8 — 1/k) .

Note U,e % and U, C f~«, B) for all k. But each xze f~'(«, B) be-
longs to U, for some k. Thus

e, 8) = UU,ez .

LeEMMA 2.5. Let 2, be a collection of subsets of X such that
for each pair of points of X there is a Zec Z, containing just one
of them. Let Z be the collection of all countable intersections of
finite unions of sets in Z,. Suppose for each Zc Z, there is an f
such that both Zf = Z and f~'Fe 2 for every F closed in R. Then
2 18 a zero-set structure on X.

Proof. Note first that given any function f on X with the pro-
perty that f~Fe 2 for all F closed in R, then the function |[f| A 1
also has this property and

Zf = Z(|fIN D) -

Thus, letting .2 be the totality of bounded functions on X with
the property and letting 2’ be {Zf|fe .}, we have %, C Z'. By
Lemma 2.4, _# is a uniformly closed ring. Since we understand the
definition of 2~ to imply ¢ and Xe %, _# contains the constants.
Also _# separates points. Thus %’ is a zero-set structure on X.
We complete the proof by showing 2 — 2'; but, since 2 c 2~
obviously, we need only show 2" < 2”. To this end, since 2’ is
closed under countable intersection and finite union, it suffices to
recall =, c &

DEFINITION 2.6. Let (X, 2°) be a zero-set space. We call the
sets in 2~ zero-sets and we call their complements, with respect to
X, cozero-sets.
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2.7. That the following definition actually describes a completely
regular topology will be apparent after Theorem 3.5 is proved.

DEFINITION. Given a zero-set space X, we endow X with a
topology by taking the cozero-sets as a base (for the open sets). In
other words, the zero-sets are a base for the closed sets.

2.8. Starting with a completely regular topological space, we
can of course define a zero-set space by using the zero-sets of the
continuous functions as the zero-sets of the structure. The topology
defined, in turn, by this zero-set structure is the original topology.
But, on the other hand, the same topology can arise from more than
one zero-set structure. For example, the Baire sets on a metric space
form a zero-set structure, which has for topology the discrete topology.

There are examples, however, of topological spaces which admit
unique zero-set structures. A topological space with a countable base
has this property. In fact, if the topology determined by a zero-set
structure has a countable base, every open set is a cozero-set, for
the given zero-set structure. To see this, we note that the cozero-
sets form a base for the topology and hence a countable subcollection
of them is also a base for the topology; thus every open set is a
countable union of cozero-sets, and hence is a cozero-set. Other ex-
amples of topological spaces which admit a unique zero-set structure
are those topological spaces which admit unique uniform structures;
this statement will become apparent in §4.

3. Zero-set functions.

3.1. If X and Y are zero-set spaces, we call a mapping ¢: X — Y
a zero-set mapping if ¢~'Z is a zero-set of X for each zero-set Z of
Y. Equivalently, @ is a zero-set mapping exactly when the inverse
image of every cozero-set is a cozero-set. That the composition of
two zero-set mappings is a zero-set mapping is almost too trivial to
mention.

In case Y = R, the cozero-sets of Y are precisely the open sets
of Y—since we obviously take this statement as a definition of the
standard zero-set structure of R. Each of these open sets is a
countable union of open intervals. Thus f: X— R is a zero-set
mapping exactly when the inverse image of each open interval is a
cozero-set.

3.2. We now endow each zero-set space X with a proximity
structure. By a proximity structure we mean a symmetric relation
on the set of all subsets of X satisfying the axioms stated below;
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Cech [1] calls such a structure a uniformizable proximity structure.
Rather than describing those pairs of subsets which are to be prox-
imal, we describe those which are to not be proximal, in other words,
are to be distal. We define two subsets of X to be distal if they
are contained in disjoint zero-sets. We list and check the axioms for
a proximity structure:

(1) A and BUC are proximal if and only if either A and B
are proximal or A and C are proximal.

If A and BU C are distal, then A and B are obviously distal,
as are A and C. Conversely if Ac Z,Ac Z,BC Z, and C C Z,
with ZNZ,=Z,NZ,=¢, then AcZ nNZ,BuCc Z UZ, and
Zlnzzm(Z3UZ4 = g.

(2) {2} and {y} are proximal if and only if z = y.

“If” is obvious. If z = y, we may use (1) of 2.1 to find a zero-
set Z containing just one of # and y. Say z¢Z and y¢Z. X\Z is
a union of zero-sets by (5) of 2.1; thus for some zero-set Z' < X\Z
we have ye Z'.

(3) No subset of X is proximal to ¢.

Obvious.

(4) If A and B are distal, then there are C and D such that
X =CuUD, A and C are distal and B and D are distal.

Take disjoint zero-sets Z, and Z, containing A and B respectively.
By (4) of 2.1 there are zero-sets C and D such that Z, < X\C, Z, < X\D
and (X\C)N(X\D) =¢. This C and D are as required.

3.3. The following lemma will be used in proving the theorem
which follows it and also in §4. We recall that a proximity mapping
is a mapping f, from one proximity space to another, with the pro-
perty that f(A) and f(B) are proximal whenever 4 and B are. An
equivalent property is that f—(C) and f~(D) be distal whenever C
and D are.

LEMMA. Let f: X — R. Then f 1s a zero-set mapping if and
only if f is a proximity mapping.

Proof. Suppose first that f is a zero-set mapping. ILet A, BC X
be such that fA and fB are distal in R. Then cl,fA and cl,fB are
disjoint zero-sets of R and hence their inverse images under f are
disjoint zero-sets of X containing A and B respectively. Thus A and
B are distal.

Conversely suppose f is a proximity mapping. Let a < A8 be real
numbers. For each integer =, [ + n', 8 — n7'] and R\(a, B) are
distal in R and hence their inverse images under f are distal in X.
Thus for each n there are disjoint zero-sets Z, and Z, of X with
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fHla+nYB8—nCZ,

and
f(B\(e, B)) € Z, .
We have
fflla+nB—-—ntcZ,c X\Z, C f(a,B) .
It follows:

U &x\2) = f(@ 8) -

Then f~'(a, 8) is a countable union of cozero-sets and hence is a
cozero-set.

3.4. Whenever (X, ) is a zero-set space, S(X, %) will denote
the set of all zero-set mappings of X into R, in other words, the
set of zero-set functions on X. S(X, .2") will be abbreviated by S(X)
or S where convenient. S*(X, %7), S*(X) and S* will denote the
bounded functions in S.

3.5. The following theorem completes the justification of our
use of the terms “zero-set space” and “zero-set” with reference to
the abstract structure (X, 27).

THEOREM. Let (X, 2°) be a zero-set space. Then S(X, %) is a
uniformly closed ring of functions; it is also a lattice. The totality
of zero-sets of functions in S(X, Z) is precisely Z; i.e.,

2 ={Zf|fe S8(X, &)} .
Corresponding statements hold for S*.

Proof. That S is a uniformly closed ring is a special case of
Lemma 2.4; that S* is such a ring is an immediate consequence.
We show S and S* are lattices by the usual argument based on the
fact that fe S implies |f|e S, which follows from the definition of
zero-set function in 3.1. For each fe S, Zf is the inverse image of
the zero-set {0} of R and hence is in 2. Finally we choose Z¢ %
and find feS* with Zf = Z as follows. By (5) of 2.1, there are
Zyy Zyy +++ €% whose union is X\Z. Recall that whenever two sets
are distal in a proximity space, there is a proximity mapping into
[0, 1] which is 0 on one of them and 1 on the other [1, Th. 25C5].
Applying this theorem to Z and Z,, we find for each n a bounded
proximity function f, with f,(Z) < {0} and f,(Z,) < {1}. By the pre-
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ceding lemma, f,eS* for all n. We have Z c Zf, c X\Z, and
Z = N(X\Z,). Hence Z = N Zf,, which is the zero-set of some fe S*,
since {Zg|ge S*} is closed under countable intersection (Theorem 2.3).

3.6. If fe S(X) and f(x) # 0 for all xe¢ X, then 1/fe S(X). This
statement is verified by checking that the inverse image under 1/f
of each open set is the inverse image under f of some open set.

3.7. How to describe S* in terms of S is clear; the following
theorem describes S in terms of S*.

THEOREM. Let X be a zero-set space and f: X—R. Then the
Sollowing conditions are equivalent:

(a) feS.

(b) AV (—a)eS* for all a > 0.

(¢) There are cozzro-sets U, U,y ++- and f,, fy, +++ € S* such that:

F1U, = ful U,

for all n, where | denotes restriction, and

Qm:x

Proof. (a)=(b) is trivial since S is a lattice. (b)=(c) is proved
by letting U, = f~'(—n,n) and f, = (f A n) V (—n). (¢)=(a) is clear
noting that for every open interval (8,7) we have:

£ = O LU N8 )]
which clearly is a cozero-set.

3.8. Before proceeding to the next topic, we digress for a moment
to discuss the relationship between zero-set structures and proximity
structures. As we have seen, each zero-set structure gives rise to
a proximity structure. If we take the totality of zero-sets of the
proximity functions for this latter structure, we recover the former
one. However, not every proximity structure arises from a zero-set
structure. For example, the topological space R of real numbers
admits only one zero-set structure. In more general terms, a prox-
imity structure arising from a zero-set structure has the property
that its proximity functions form a ring, but an arbitrary proximity
structure need not have this property. In fact, we have here es-
sentially the same situation which was discussed in the introduction.
It can be shown easily that the proximity structures on a set X are
in a natural one-to-one correspondence with those uniformly closed
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rings of bounded functions on X which contain the constants and
separate points. The zero-sets of the functions in any such ring give
us a zero-set structure, but the same zero-set structure can arise
from more than one ring. If, starting with a zero-set sturcture, we
take the largest ring having the given zero-sets, the proximity
structure corresponding to this largest ring is the one defined above.

4. Zero-set and uniform structures.

4.1. Let X be a zero-set space. For each fe S(X), we define as
usual a pseudometric on X by

v, y) = | flx) — fy)] .

The uniform structure defined by {p,|fe S} will be denoted by U(X)
or simply U, while that defined by {p,|fe S*} will be denoted by
U*(X) or U*.

THEOREM 4.2. The proximity structure on X defined in 3.2. is
the one induced on X by U* and also the one induced by U.

Proof. Recall that that A and B are distal for the proximity
structure determined by a uniform structure means that for some
symmetric entourage V no element of A is a neighbor of order V of
any element of B, in symbols V(4) N B = 4.

Suppose A and B are distal for the structure defined in 3.2. As
before, [1, Th. 25C5] implies there is a bounded proximity function
f such that f(A) < {0} and f(B) < {1}. We know fe S* (Lemma 3.3).
Thus

V=A@ v o 9y) <1},

which is an entourage for both U and U*, serves to show A and B
are distal for both the proximity structure determined by U and that
determined by U*.

Conversely suppose A and B are distal for either the proximity
structure determined by U or that determined by U*. Then for
some entourage V of U or U*, xc 4 and yc B imply (z,y)¢ V. In
either case, there are f,, .-+, f, ¢S and ¢, -+-, &, > 0 such that:

Vo i@y llfi®) — fily)| = & for all i} .
Let g; = (1/¢;)f; for each 7. Then whenever xc¢ A and y¢ B,
19:(®) — g:(w)| = 1

for some 7. Consider g: X — R" defined by
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g(@) = (9.(); «++5 9, () .

Note d(gA, gB) =1, where d is of course the distance function on
R". Define ¢: R*— R by

®(t) = min {d(t, ¢B), 1}

and note @ is continuous. We show @og¢ is a zero-set function on X.
If U is open in R, ' U is open in R, and hence is a countable union
of sets of the form V, x..-x V, with each V; open. For each such
set,

gV, XX V) =97 ViN--NGgV,

is a zero-set of X, hence @og is indeed a zero-set function. But
(®Po9)(x) = 0if xc B while (pog)(x) =1 if xe¢ 4. Thus A and B are
contained in the disjoint zero-sets (@ o ¢)~*(0) and (@ 9)~*(1) respectively.
Thus A and B are distal for the uniform structure defined in 3.2.

4.3. In connection with the following theorem, we note that it
will be apparent later that every function on X uniformly continuous
for U* is bounded. We emphasize that we are using the standard
structures of R in the theorem.

THEOREM. Let f be a real-valued function on X. The following
statements are equivalent:
(a) f is a zero-set mapping.
(b) fis a proximity mapping.
(c¢) fis uniformly continuous for U.
For bounded f, each of the preceding conditions is equivalent to:
(c*) f is untformly continuous for U*.

Proof. Both (c)=(b) and (c*)=(b) since a uniformly continuous
mapping is always a proximity mapping for the proximity structures
determined by the uniform structures on the two spaces involved.
(b)=(a) is part of Lemma 3.3. (a)=(c) is obvious from the definition
of U. Similarly, if f is bounded and satisfies (a), it satisfies (c¢*) by
the definition of U*.

4.4. At the risk of undue repetition, we point out that the
preceding theorem is not a special case of the following one. While
it is true that we may take Y = R as a zero-set space, neither U(R)
nor U*(R) is the standard uniform structure of R.

THEOREM. Let X and Y be zero-set spaces and ¢: X—Y. Then
the following statements are equivalent:
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(a) @ is a zero-set mapping.

(b) @ is a proximity mapping.

(¢) @ is uniformly continuous for U(X) and U(Y).
(c*) @ is uniformly continuous for UX(X) and U*(Y).

Proof. (c)=(b) and (c*)=(b) are a general property of uniform
spaces as in the preceding theorem. (2)=(c*) is proved as follows:
U*(Y) is defined by pseudometrics of the form p, with ge S*(Y).
Since @ is a zero-set mapping, gop e S*(X). Thus

(215 ) = D (P(), P(52)) = Dyoo(®1s @)

is one of the pseudometrics which defines U*(X). (a)=(c) is proved
similarly. Finally we prove (b)=(a): Let Z be a zero-set of Y. Then
Z = Zg for some ge S(Y). The preceding theorem implies first that
¢ is a proximity mapping and then, since it follows go® is also one,
that gope S(X). Thus ¢'Z = Z(gop) is a zero-set of X.

5. Compactification of zero-set spaces.

5.1. Some definitions are necessary before we can begin con-
structing compactifications. Let X be a zero-set space and 4 < X.
Consider the collection %, of all sets of the form Z N A where Z is
a zero-set of X. Clearly this collection is closed under countable
intersection and finite union. Let _# be the set of restrictions to
A of zero-set functions on X. Then every set in 27, is the zero-set
of a function in _#. On the other hand, the inverse image of each
closed set of R under a function in .# is in 275. Thus by Lemma
2.5, %, is a zero-set structure on A. We call this structure the
relative zero-set structure induced on 4 by X and refer to A with
this structure as a zero-set subspace of X.

5.2. We call a zero-set space (X, 2°) compact if the associated
topological space is compact. Note that this definition is equivalent
to defining X to be compact if every covering of X by cozero-sets has
a finite sub-covering. Given a compact zero-set space X, S(X) is a
uniformly closed ring of continuous functions which separates points
and contains the constants. Thus S is exactly the set of all con-
tinuous functions on X by the Stone-Weierstrass Theorem. In short,
S is determined by the topology. Since % consists of all zero-sets
of functions in S, we conclude that a compact topological space admits
a unique zero-set structure.

5.3. By a compactification of a zero-set space X we mean, of
course, a compact space Y—whether we describe Y as a zero-set
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space or a topological space is immaterial in view of the preceding
paragraph—which has X as a dense zero-set subspace. After a few
more definitions, we will explain how it is known that every zero-set
space has a compactification.

5.4. Let (X, 2°) be a zero-set space. We call .o~ a z-filter on
X if &7 is a nonempty subset of 2" such that:

(1) @ev.

(2) If Ae &, Be % and B D A, then Be ..

(8) If A and Be &7, then AN Be ..
A z-filter which is not contained in any other z-filter is called a
z-ultrafilter. A z-ultrafilter is called real if it is closed under count-
able intersection. A z-ultrafilter is called hyperreal if it contains a
countable collection of sets whose intersection is empty. Certainly,
no z-ultrafilter ean be both real and hyperreal; we check that each
one is either real or hyperreal. Let .o~ be a z-ultrafilter which is
not hyperreal. Let .%’ be the totality of countable intersections of
sets chosen from .%. Then it is easy to verify that .o/’ is a z-filter
and .’ D .%. Hence . = .’ and & is real.

5.5. Let us return for a moment to a situation described earlier.
Let X be a set and <2 be a ring of bounded functions on X. We
suppose .&Z is uniformly closed, contains the constants and separates
points. There are several well-known ways to construct a compact
Hausdorff topological space X having the following properties:

(1) The set X is dense in X.

(2) Each function in <Z has a continuous extension to X.

(3) The restriction to X of each continuous function on X is
in 2.

These properties serve to uniquely determine X. Among the
methods of constructing X, the ones most relevant to the discussion
below are those of Lorch [5, §3] and of the author [3, §2].

5.6. Continuing with X and <2, we make X into a zero-set
space by defining the zero-sets to be the zero-sets of the functions
in <2 (Theorem 2.3). (The special case where S*(X) = .2 will be
discussed in the next section.) The same zero-set structure on X is
obtained by putting on X the unique zero-set structure admitted by
its topology and regarding X as a subspace of X. Thus X is a
compactification of X as a zero-set space. Furthermore every com-
pactification Y of a zero-set space X may be obtained in this way
by letting .<# be the set of all restrictions to X of continuous funec-
tions on Y.
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5.7. Starting with X and .2Z again, we define X and recall [3,
Th. 3.2]:

THEOREM. FEach z-ultrafilter on X converges, as a filter base on
X, to some pe X. Each pe X is the limit of some z-ultrafilter.

(We warn the reader that in the general situation under con-
sideration here it is possible for pc X to be the limit of more than
one z-ultrafilter.)

5.8. Lorch [5, §3] has distinguished two classes of points of X.
These classes reflect the notion of real and hyperreal z-ultrafilter as
introduced in 5.4. Specifically, we have the following theorem, taken
from [3, Ths. 4.7 and 4.8].

THEOREM. Let pe X and 7 be a z-ultrafilter converging to p.
If there exists an fe & such that the continuous extension of f to
X vanishes at p but S@) =0 for all xe X, then &7 1is hyperreal.
If mo such f exists, then .7 s real.

6. BX and vX for a zero-set space X.

6.1. A special case of the discussion of the preceding section
arises when we start with a zero-set space X and set .&# = S*(X).
In this case we denote X by SX. As the notation suggests, 8X is
a natural generalization of the Stone-Cech compactification of a com-
pletely regular space. In particular, as we have seen, SX is a com-
pactification of X as a zero-set space and every zero-set function on
X has a continuous (i.e., by 5.2, zero-set) extension to SX. Additional
properties of the Stone-Cech compactification which apply to our BX
will become apparent as we proceed. We note at once that every
point of B8X is the limit of a unique z-ultrafilter on X by [3, Th. 3.3].

6.2. We denote by vX the zero-set subspace of BSX consisting
of those points which are limits of real z-ultrafilters on X. Towards
verifying that X c X, let .&7* be the z-ultrafilter converging to
some xe X. We show that .o* consists of those zero-sets of X
which contain 2 and hence is real. Since these zero-sets form a
z-filter, it suffices to show .&7* contains no other sets. But this is
evident since f(.7%) converges to f(x) for every fe S*(X) and hence
Zfe 7° implies f(x) = 0, i.e., xe Zf. Thus it is clear that X is a
dense zero-set subspace of vX. That vX is a natural generalization
of the Hewitt real compactification of a completely regular space will
be developed in detail below.
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THEOREM 6.3. Ewery fe S(X) has an extension in S0X). How-
ever if pe BX\vX, there is an fe S(X) which has no extension to
X U {p} which is even continuous.

Proof. Let fe S(X). Let g, =1/(f*+ 1),9.=1/(f~ + 1). Then
9, 9.€ S*(X) by 3.5 and 8.6. Thus g,, g, have zero-set extensions to
BX; let h,h, be the restrictions to vX of these extensions. By
Theorem 5.8, since g, and ¢, are never zero on X, they are never
zero on vX. Thus 1/h, — 1/h, is defined; clearly it is the required
extension of f.

Now suppose pe BX\vX. Then there is a ge S*(X) such that
the continuous extension of g to SX vanishes at p but g(z) = 0 for
all e X. Let f=1/g and note fe S(X). But, the z-ultrafilter .&7”
which converges to » is such that g(.57?) converges to 0 and hence
f(577) cannot converge. Thus f has no continuous extension to

X U {p}.

6.4. We now show that X and vX are the completions of X
for U*(X) and U(X) respectively. Of course, the compact space 8X is
the completion of X for some uniform structure; we omit the routine
checking of definitions which verifies that this structure is indeed
U*(X).

THEOREM. (X, U(X)) is the completion of (X, U(X)).

Proof. Again it is necessary to check definitions in a manner
too tedious to record here. We need to know that U(pX) and U*(8X)
induce on X the relative uniform structures U(X) and U*(X) re-
spectively. We also use the identity of the relative topology induced
on vX by BX with the topology defined by U@®wX). We conclude
then that X is dense in vX. Thus we need only show that every
Cauchy filter for U(X) has a limit in vX. Let % be such a Cauchy
filter. Then, since U*(X) is coarser than U(X), & has a limit p in
the compact space 8X. Suppose p¢vX. Then there is a continuous
function f on BX such that f(p) = 0 but f(x) == 0 for all xe X. Let
g be the reciprocal of the restriction of f to X and note ge S(X).
Since g is uniformly continuous on (X, U(X)) by the definition of
U(X), g() is a Cauchy filter base on RB. But since f(.# ) converges
to f(p) =0, 9(# ) can not converge. This contradiction establishes
peuvX and completes the proof.

COROLLARY 6.5. Let X and Y be zero-set spaces and @: X —Y
be a zero-set mapping. Then @ has extensions @° and P° which are
zero-set mappings with ¢”: vX —-vY and ¢?: BX — BY.
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Proof. By Theorem 4.4, ¢ is uniformly continuous for U(X)
and U(Y); hence it has a uniformly continuous extension ¢’ mapping
the completion of (X, U(X)) into that of (Y, U(Y)). But by the
preceding theorem and 4.4 again, ¢’ is as required. The part about
®f is similar.

7. Pseudocompact and realcompact spaces.

7.1. Pseudocompactness and realcompactness are defined in the
obvious way. Explicitly, a zero-set space X is called realcompact if
every real z-ultrafilter on X converges to a point of X, i.e., if vX=X.
X is called pseudocompact if it has no hyperreal z-ultrafilter, i.e., if
vX = BX.

7.2. In other theories, many conditions are known to be equiva-
lent to pseudocompactness. For reasons which will become apparent
as we proceed, these conditions carry over essentially unchanged to
the present context. We merely refer the reader to Gillman and
Jerison [2] and Lorch [5]. We do record here two corollaries for
future use. Both are due to Lorch [5; Ths. 11 and 9], who states
them in quite different language; both are special cases of Theorem
5.8 above.

COROLLARY 7.3. Let X be a zero-set space and Y be any com-
pactification of X. Then X 1s pseudocompact if and only if every
nonempty zero-set of Y meets X. In other words, if and only if
each continuous function on Y which vanishes nowhere on X vanishes
nowhere on Y.

COROLLARY 7.4. Let X be a zero-set space and Y be any com-
pactification of X. Then X 1is realcompact 1f and only if each
pe Y\X is contained in a zero-set of Y which does mot meet X. In
other words, if and only if for each pc Y there is a continuous f
on Y with f(p) =0 but f(x) = 0 for all ze X.

7.5. We place here, for the record, a few significant facts, which
are trivial consequences of what we have already proved. That
B(BX) = BX and v(8X) = BX requires no explanation. BWX) = BX—
equal in the sense of isomorphic—since both are compactifications of
X having essentially the same ring of continuous functions. Next
we apply Corollary 7.4 to B(wX) = BX as a compactification of vX.
Noting that f(x) = 0 for all x e X implies f(q) == 0 for all gcv X, we
see that vX is realcompact. In other words v(vX) = vX.
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It is well-known that a topological space X is compact if and
only if every multiplication linear functional on C*(X) is of the form
f— f(x) for some ze X; here, as throughout the paper, we exclude
the zero functional from the multiplicative linear functionals. As a
result, the same statement holds for a zero-set space X and S*(X).
We prove the corresponding statement for realcompactness and S(X)
next. Clearly if X is not realcompact, we need merely choose
pevX\X and consider f— f’(p), where f’ denotes the continuous
extension of f to vX, to find a multiplicative linear functional on
S(X) which does not arise from a point of X. Suppose conversely
X is realcompact. Let P: S(X)— R be a multiplicative linear func-
tional. The restriction of P to S*(X) is such a functional on S*(X),
and hence there is a pe BX with Pf = f?(p) for all fe S*(X), where
f? denotes the continuous extension of fto 8X. If p were in SX\vX =
BX\X, there would be an fe S*(X) such that Pf= f?(p) =0 which
vanished nowhere on X, and thus, by 8.6, with 1//e S(X). It follows
pe X. In short, X is realcompact if and only if every multiplicative
linear functional on S(X) is of the form f— f(x) for some xe X.

THEOREM 7.6. A zero-set space X 1is pseudocompact if and only
if each zero-set function on X is bounded.

Proof. Since, as noted above (3.6), the reciprocal of a zero-set
function is also one, the existence of an unbounded zero-set function
is equivalent to the existence of a bounded zero-set function f with
f(®) > 0 for all xe X but inf{f(z)|ze X} = 0. Such functions f may
be described as zero-set functions whose continuous extensions to 8X
vanish somewhere on X but nowhere on X. By Corollary 7.3, the
result is now clear.

7.7. The following theorem is to be contrasted with the topolo-
gical space case, where the union of two realcompact subspaces may
fail to be realcompact [2, Exercise 8H6].

THEOREM. Let A, 4,, ---C X all be realcompact. Then A= UA,
s realcompact.

Proof. Consider the compactification B = cl;; A of A4, and let
pe B\A. For each n with p¢cl;yA,, we can use complete regularity
to find a continuous f,: 83X — R such that f,(p) = 0 but f,(x) = 0 for
all xe A,. But for each n with peecl;;4,, we can use Corollary 7.4
to find a continuous g¢,:¢cl;v 4, — R with g,(p) =0 but g,(x) = 0 for
each xz ¢ A,; then extending g, from the compact space cl;;A, to all
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of BX, we again find a continuous f,: 53X — R such that f,(p) =0
but f,(x) == 0 for all x¢ 4,. Let:

F=327(AIAD .

Then f(z) = 0 for all ze A, but f(p) = 0. Restricting f to cl;xA and
using Corollary 7.4, we have the desired result.

7.8. The following theorem also holds for topological spaces |2,
Th. 8.9]:

THEOREM. Let (A.)..; be a family of realcompact subspaces of X.
Then NA, is realcompact.

Proof. Consider the compactification B =cl;; N A, of N4, and
let pe B\NA,. Then for some ¢,pg A,. But pecl;x4A, and hence
there is a continuous f:cl;x A, — R with f(p) = 0 but f(x) = 0 for all
xe A,. Restricting f to B, we conclude N A4, is realcompact.

THEOREM 7.9. Let Y be a realcompact zero-set space and X C Y.
Then there s an X' <Y which is vX in the sense that it s
1somorphic as a zero-set space to vX under an isomorphism leaving
X pointwise fixed.

Proof. Let 4: X— Y be the inclusion mapping. By Corollary
6.5, 7 has a zero-set extension 7:0X — Y. we show that ¢" is in-
jective. Let p, and p, be distinct points of vX. Then p, and p, are
the respective limits of distinct real z-ultrafilters .o, and .o, on X.
Since 1.7 = &7, .7 converges to v'p;e Y(j =1,2). But by [3, Th.
4.7], the distinct real z-ultrafilters .97 and .94 have distinct limits
in the compactification e¢l;; X of X. In short, 4p, ## ©"p, and " is
indeed injective.

It remains only to set X’ = "(vX) and to show that °Z is a
zero-set of X’ for an arbitrary zero-set Z of vX., Since ZN X is a
zero-set of X, a subspace of X', ZNX =2"Nn X for some zero-set
Z' of X'. Choosing fe S(X') such that Zf = Z’, we note that

VE(foi’) = Zf = Z'

is a zero-set of X’; thus we need only show that Z(f-4) = Z. To
this end, it suffices to show that whenever Z, and Z, are zero-sets
of vX having the same intersection with X, then Z, = Z,. Suppose
on the contrary we have such Z, and Z, and pe Z, but p¢ Z,. Then
there is a ge S*(vX) with g(p) =1,Zg = Z, and g < 1. Also there
isanhe S*wWX) with h = 0 and Zh = Z,. Then 1 — ¢ + k can vanish
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only at those ¢ where 4(g) = 0 and g(¢) = 1, and hence ¢qe Z, while
q¢Z,. Thus 1 — g + h never vanishes on X. But it does vanish at
p, which is impossible by Theorem 5.8 applied to the compactification
B@X) = BX of X. This contradiction completes the proof.

COROLLARY 7.10. A closed subspace of a realcompact zero-set
space 18 realcompact.

COROLLARY 7.11. Let X be a subspace of a zero-set space Y.
Suppose each real z-ultrafilter of X has a limit in Y and each point
of Y s the limit of such a z-ultrafilter. Ther Y 1is (isomorphic
to) vX.

Proof. We have X C Y cvY, and thus, identifying the X' of
the theorem with vX, X c vX c vY. By definition of vX, the points
of vX are exactly the limits of the real z-ultrafilters of X. But by
hypothesis then, v X = Y.

COROLLARY 7.12. Let X be a subspace of a realcompact zero-set
space Y. If each point of Y is the limit of a real z-ultrafilter of
X, then Y 1s (tsomorphic to) vX.

Proof. We repeat the preceding proof noting that Y =0vY.

THEOREM 7.13. Let X be a subspace of a realcompact zero-set
space Y. In order that Y be (isomorphic to) vX it is mecessary and
suffictent that each monempty zero-set of Y meet X.

Proof. Necessity. We must show that each nonempty zero-set
Z of vX meets X. Choosing fe S*(vX) with Zf = Z and applying
Theorem 5.8 to the compactification S(vX) = BX, we have the desired
conclusion.

Sufficiency. We have X ¢ Y < BY as zero-set spaces. We show
first that X is dense in BY. If not, we may use the complete
regularity of BY to find a continuous, hence zero-set, function f on
BY with X < Zf but f(p) =1 for some pec BY. Let

Z' = {qe BX|f(q) = 1/2}

and note, since Y is dense in BY,Z = Z'NY is nonempty. But then
the nonempty zero-set Z of Y does not meet X, contrary to hy-
pothesis. Thus X is indeed dense in BY.

It follows by Theorem 5.7 that each point of Y, in fact each
point of BY, is the limit of some z-ultrafilter of X. Suppose some
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p € Y is the limit of a hyperreal z-ultrafilter of X. Then by Theorem 5.8
there is a zero-set Z of BY which contains p but does not meet X.
But then Z NY is a nonempty zero-set of ¥ which does not meet X,
contrary to hypothesis. Thus every pe Y is the limit of a real z-ultra-
filter of X. The theorem now follows from the preceding corollary.

7.14. The “if” part of the following theorem holds also for
topological spaces, but the “only if” part fails.

THEOREM. A zero-set space X is pseudocompact if and only if it
has only one compactification. (In other words, if and only if any
two compactifications are homeomorphic wunder a homeomorphism
lzaving X pointwise fixed.)

Proof. If: Suppose X is not pseudocompact. By essentially the
same argument used in [2, Exercise 9D2], SX contains at least 2¢
(where C = 2%) points which are each the limit of a hyperreal z-
ultrafilter. Let p, and p, be two such points. Let .27 consist of
those functions fe S*(X) whose continuous extension f* to Y have
the property that f*(p) = f*(p,). Now construct X for X and <7 as
described in 5.5. Since the restriction to X of each continuous % on
BX with A(p) # h(p,) admits no continuous extension to X, X and
BX are certainly distinet (in the sense specified in the statement of
the theorem). It only remains to show that Xisa compactification
of X as a zero-set space; i.e., since X is compact and X is dense in
X, that X with its initial zero-set structure is a zero-set subspace
of X. In other words, that

(25| fe 22} = {Zf| fe S*(X)} .

Since .# < S*(X), we complete the proof by showing that for each
ge S*(X) there is an fe.&Z with Zf = Zg. But since p, and p, are
limits of hyperreal z-ultrafilters, there are g, and g,e S*(X) whose
continuous extensions to AX vanish at p, and p, respectively, but
which never vanish on X. Then clearly ¢,9.9 ¢ .22, while Z(g.9.9) = Zg;
which completes the proof of “if”.

Only if: Suppose X is pseudocompact and let Y be any com-
pactification of X. By Theorem 7.9, there is an X’ isomorphic to
vX with X c X’ c Y. Since vX = BX, X' is compact and hence closed
in Y. Hence X’ = Y; in other words, vX is the only compactification
of X.

7.15. In order to prove theorems about products, we must first
define the product of a family (X))..,; of zero-set spaces. The zero-sets
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of X = IIX, will be the obvious ones, namely all sets which are count-
able intersections of finite unions of sets of the form pr;'Z, where Z,
is a zero-set of some X, and pr, is the projection of X on X,. But
we must verify that these sets indeed form a zero-set structure on
X. To this end, let 2, be the collection of all sets of the form
pr;'Z, as above; let 2 be the collection of all countable intersections
of finite unions of such sets. By Lemma 2.5, it suffices to show
that for each Z,¢ %;, there is a function f on X such that Zf = Z,
and f'Fe 2% for each F closed in R. But if Z,e 2, Z, = pr;'Z
where Z = Zg for some zero-set function ¢ on X,. It suffices then
to let f = gopr, to complete the proof that 2 is a zero-set structure
on X. It is obvious that the topology induced cn X by the zero-set
structure 2" is the product of the topologies induced on the X, by
their zero-set structures.

7.16. The following theorem holds also for topological spaces
[2, Th. 8.11].

THEOREM. Let (X)..; be a family of realcompact zero-set spaces.
Then X = II1X, is realcompact.

Proof. We use Corollary 7.4 applied to Y = /I8X, as a com-
- pactification of X. Let pe Y\X. Then for some ¢, p, = pr.peX,.
By the corollary applied to X, and BX,, there is a continuous f on
BX, which vanishes nowhere on X, such that f(p) = 0. Since fopr,
vanishes nowhere on X but does vanish at p, the theorem is proved.

7.17. The following theorem and corollary are to be contrasted
with [2, Exercise 91 and 9.15], where counterexamples to the cor-
responding statements for topological spaces are to be found; these
counterexamples involve products of just two factors.

THEOREM. Let (X)..; be a family of zero-set spaces, let X = 11X,
and let Y = lIvX,, Then Y = vX.

Proof. By the preceding theorem, Y is realcompact. By Theorem
7.13 then, we need only show that every nonempty zero-set of Y
meets X. Let Z be such a zero-set; Z is a countable intersection of
finite unions of sets of the form pr‘Z, with Z, a zero-set of vX..
Fixing pe Z, we replace each of these finite unions by one of the
sets whose union is taken, choosing this one to contain p. In this
way, we find Z' < Z such that Z’' is nonempty and is a countable
intersection of sets of the form pr;*Z.. Thus we may write:
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7 = ﬁlpr;‘Z,n
where Z, is a zero-set of vX, and, without loss of generality, suppose
that ¢, ¢,, --- are distinct. Since each nonempty zero-set of v.X, meets
X, (Theorem 7.3), we may choose, for each 7, an w,€Z, N X,
Choosing any xe¢ X such that pr, o =% for all », we have
xeZ'NXcZnX. Hence ZNX # @, which completes the proof.

COROLLARY 7.18. If (X).., is a family of pseudocompact zero-
set spaces, X = II1X, is pseudocompact.

Proof. We have vX = [IvX, = [IBX, is compact; hence v X = BX.
8. Baire sets and Baire functions.

8.1. In this section, as an application of the preceding material,
we discuss Baire sets and Baire functions. Given a zero-set space
(X, %), one may naturally inquire about the collection B, 2" of all
countable unions of zero-sets. Also the smallest collection B2 of
subsets of X which contains 2” and is closed under complementation,
countable union and countable intersection suggests itself for study.
The easiest way to see that B,2" and B%Z" are zero-set structures is
to refer to Hahn [4], as explained in a moment. In the case of B=Z",
the second easiest way is to check the axioms.

8.2. Starting again with (X, 27), we can proceed in an apparently
different direction by defining B,S(X, 2") to be the ring of functions
which are pointwise limits of functions in S(X, £°). Likewise we
define BS(X, Z°) to be the smallest ring of functions which contains
S(X, %) and is closed under pointwise convergence. According to
[4, 31.4.8] a function belongs to B,S(X, 2°) if and only if the inverse
image of every closed set of R belongs to B,%2"; in short, B,% is
a zero-set structure and S(X, 6,.2) = B.S(X, 2°). (That BSX, 2°)
is uniformly closed is [4, 31.4.1].) Similarly according to [4, 34.3.41],
a function belongs to BS(X, Z°) if and only if the inverse image of
every closed set of R belongs to B2"; in short, B2 is a zero-set
structure and S(X, BZ) = BS(X, 27). We call the sets in B2 the
Baire sets of (X, 2°) and the functions in BS(X, 2") the Baire func-
tions of (X, %°); those sets and functions in B,.2" and B,S(X, Z") are
specified by the phrase “of the first class.”

8.3. We recall for use below that every Baire set is a union
of zero-sets; i.e., each set in B2 is a union of sets in 2. This
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remark is verified by letting .97 be the set of all those Ae B2 such
that both 4 and X\A are unions of setsin 2°. Then .7 D 2 andis
closed under countable union, countable intersection and complementa-
tion; hence .&v = BZ".

8.4. The sufficiency part of the following theorem was proved
for a compact space X by Lorch [5, Th. 15].

THEOREM. In order that (X, BZ") be realcompact it is necessary
and sufficient that (X, 2°) be realcompact.

Proof. Sufficiency. Let P be a multiplicative linear functional
on BS(X, 2°) = S(X,B=Z). The restriction @ of P to S(X, 27) is a
multiplicative linear functional, and hence, since X is realcompact,
there is a g X with Qf = f(¢) for all fe S(X, 2°). To show Pf =
f(g) for all feS(X,B2), we assume the contrary. Then the linear
functionals P and f - f(q) are distinct, and hence there is an
foeS(X,B2°) for which Pf, =0 but fq) # 0. Consider the set
A={xeX|flx) = fo(@}e B2 . This set contains a set Ze 2" with
ge Z. Choosea ge S(X, 2°) with Zg = Z and set & = f2 + ¢>. Note
that % vanishes nowhere on X, hence % is a unit of S(X, 8.2"), but

Ph = (Pf)* + (Q9)* =0+ [9("= 0.

This contradiction establishes Pf = f(g) for all fe S(X,B%), and
thus completes the proof that (X, B2") is realcompact.

Necessity. Suppose (X, 2°) is not realcompact; we show that
(X, B%") is not realcompact. We know there is a pev(X, 2)\X. »
is the limit of a real z-ultrafilter .97 with respect to Z". For each
feSX, 2), f(.r?) converges to f°(p), where f° is the continuous
extension of f to v(X, 27). Since p¢ X, for each xe€ X there is an
feS(X, ) such that f(.or?) does not converge to f(x). We show
next that f(.577) is a convergent filter base on R for each feBS(X,
2y =8(X,82°). Let._~ be the set of f e BS(X, %) for which f(.o7?)
is convergent; since S(X, 2°)c ., it is enough to show that _~
is closed under pointwise convergence. Let f,— f pointwise with
fo€ # for all n. Let 6 > 0 be given. If we show f(.%77) contains
a set of diameter < 6, we shall know f(.7*) converges and hence
fe_z. For each n, choose A,c.o7” such that diam f,(4,) < 6/2.
Let

A=NA.;

1

i)

since o7 is real, Ae . »?. Let x and ye A. Choosing » such that
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[fal@) — f(@)| < d/4 and |f.(y) — f(y)| < ¢/4 and noting x and
ye AcC A,, we have |f(x) — f(y)| <. Thus diam A < o; which
completes the proof that f(.97?) converges for all fe S(X, B=).
S —lim f(.%7?) is a multiplicative linear functional on S(X, B2") and,
as we have already noted, there is no x € X with lim f(.%7?) = f(z) for
all feS(X, 2)c S(X,8%). Thus (X, BZ") is not realcompact.

COROLLARY 8.5. In order that (X, B, Z) be realcompact it 1is
necessary and sufficient that (X, Z7) be realcompact.

Proof. Apply the theorem twice noting B(B,2") = B2,

THEOREM 8.6. (X, B, 2") ts never pseudocompact, unless X con-
tains only finitely many points.

Proof. We first show that for each infinite subset B of X, we
can find a Ze 2 such that BNZ is infinite and BN (X\Z) is non-
empty. Given such a B, we begin by choosing * and ye B and
feSX, %) with f(x) =1 and f(y) = —1. Then xe BNZf~ and
ye BNZf*+. Since Zf*UZf~ = X, one of the sets Zf+ and Zf~ has
an infinite intersection with B; let Z be this one, which is as required.

Now we construct a sequence Z,, Z,, Z,, --- of sets in 2~ be setting
Z, = X and then defining the other sets in turn. For each n =1, we
use the preceding paragraph to choose Z, such that

ZN - NZ,  NZ,
is infinite and
ZN -+ NZ, ,N(X\Z,)
is nonempty. Setting
A, =2Z,N -+ NZ,,N(X\Z,)
for all » =1 and
Ay =7,0NZN «--,

we note that the sets A, are pairwise disjoint and exhaust X.
Whenever Ze 27, it follows from the definition of %,2" that both
Ze¢B,%2 and X\Ze B, 2. Thus since 4, and each Z;¢ 27, X\A4,€B,.%
for all n» = 0. Thus defining f: X— R to be n on 4,, we have found
an unbounded f ¢ S(X, B,2"). The result now follows by Theorem 7.6.

COROLLARY 8.7. (X, B.2") is mever pseudocompact, unless X 18
finite.
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Proof. BZ = B(BZ).
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