LACUNARY SERIES AND PROBABILITY

ROBERT P. KAUFMAN
In this note we continue some investigations connecting a lacunary series A of real numbers

$$A: 1 \leq \lambda_1 < \cdots < \lambda_k < \cdots, q \lambda_k \leq \lambda_{k+1} \quad (1 < q)$$

and a probability measure μ on $(-\infty, \infty)$ satisfying

$$(1) \quad \mu([a, a + h]) \ll h^\beta$$

for all intervals $[a, a + h]$ of length $h < 1$, and a fixed exponent $0 < \beta < 1$. (The notation $X \ll Y$ is a substitute for $X = O(Y)$.) Measures μ occur in the theory of sets of fractional Hausdorff dimension.

In the following statements S is a subset of $(-\infty, \infty)$ of Lebesgue measure 0, depending only on μ and A.

Theorem 1. For $r = 2, 4, 6, \cdots$ and $t \in S$, there is a constant $B_r(t)$ so that

$$\int_{-\infty}^{\infty} | \sum a_k \cos (\lambda_k t x + b_k) | r \mu(dx) \leq B_r(t) (\sum |a_k|^2)^{r/2}.$$

Here $B_r(t)$ is independent of the sequences (a_j) and (b_k).

Theorem 2. For $t \in S$ the normalized sums

$$\langle \sum \cos (\lambda_k t x + b_k) \rangle^{1/2}$$

tend in law (with respect to the probability μ) to the normal law. Here the convergence is uniform for all sequences (b_k).

Theorem 1 is a random form of a fact apparently known from the advent of the study of lacunary series; Theorem 2 bears the same relation to the work of Salem and Zygmund [4]. Probability enters critically in the theorems because $\beta < 1$: for any increasing sequence A there is a measure μ fulfilling (1) for every $\beta < 1$ and such that the t-set defined in Theorem 1 is of first category.

1. In this section and later we use the notations

$$e(y) = e^{iy}, \quad \mu(y) = \int_{-\infty}^{\infty} e(yx) \mu(dx),$$

$-\infty < y < \infty$. In the following estimation $|y| > 1$.

$$I = \int_{1}^{2} |\hat{\mu}(ty)|^2 dt = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e(tyx_1 - tyx_2) dt \cdot \mu(dx_1) \mu(dx_2)$$

$$\leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \inf (1, 2|yx_1 - yx_2|^{-1}) \mu(dx_1) \mu(dx_2).$$
Let \(r > 0 \) be the integer defined by \(2^{-r} < |y|^{-1} \leq 2^{1-r} \); we sum the integrand over the sets
\[
(|x_1 - x_2| > 1), (1 > |x_1 - x_2| \geq \frac{1}{2}), \ldots, (2^{1-r} > |x_1 - x_2| > 2^{-r})
\]
and finally over the set \((2^{-r} > |x_1 - x_2|)\). In each case the product measure can be estimated by (1) and Fubini's Theorem; summing up we obtain \(I \ll |y|^{-\beta} \). A more convenient form is valid for all real \(y \):
\[
(2) \quad \int_1^2 |\hat{\mu}(ty)| dt \ll (1 + |y|)^{-1/2\beta}.
\]

2. To prove Theorem 1 we require an elementary lemma.

Lemma. Let \((v_k)_{k=1}^\infty\) be a sequence of real numbers and \(r \) a positive integer. Let \(T \) be the sum of the moduli of all Fourier-Stieltjes coefficients
\[
\hat{\mu}(d_1 v_{k_1} + d_2 v_{k_2} + \cdots)
\]
where \(1 \leq k_1 < k_2 < \cdots, d_1, d_2, \cdots \) are integers \(\neq 0 \), and
\[
|d_1| + |d_2| + \cdots \leq 2r;
\]
the number of integers \(d_1, d_2, \cdots \) varies between 1 and 2\(r \). Then
\[
\int |\sum a_k e(v_k x)|^r \mu(dx) \leq (1 + T)(r!)(\sum |a_k|^2)^r.
\]

Proof. We first expand \((\sum a_k e(v_k x))^r\) by the multinomial formula, obtaining a sum of terms
\[
r!(e_1 e_2 \cdots e_r)^{1-r} a_{k_1}^r \cdots a_{k_r}^r e(e_1 v_{k_1} x + \cdots + e_r v_{k_r} x).
\]
Of course \(1 \leq k_1 < \cdots < k_r \), and the \(r \)-tuple \((e_1, \cdots, e_r)\) is variable, subject to the equality \(e_1 + \cdots + e_r = r \). Next to this expansion we place that of the conjugate, using exponents \(f_1, \cdots, f_r \). Multiplying these expansions and integrating with respect to \(\mu \), we collect the integrals in two steps.

First we consider terms in the product in which \((e_1, \cdots, e_r) = (f_1, \cdots, f_r)\). Making a term-by-term comparison with \((\sum |a_k|^2)^r\), we find a sum \(\leq r!(\sum |a_k|^2)^r\).

For the remaining terms we note the factor \(\hat{\mu}(e_i v_{k_i} - f_i v'_{k_i} + \cdots) \) attached to the number \(|a_{k_1}^{e_1+f_1} \cdots|\), and note that the former number is counted in \(T \). Thus the sum here is \(\leq (r!)^2 \max |a_k|^{2r} \), and the proof is complete.
To prove Theorem 1 it will be enough to give a proof for sequences A with a gap $q \geq 2r$, for in any case A is a union of $1 + \lceil \log q / \log 2r \rceil$ sequences with gaps of this size. According to the lemma, it is sufficient to show that for almost all t, the sum T is finite, where T is calculated for the sequence $v_k = t\lambda_k$. Thus T is a sum of numbers

$$|\hat{\mu}(td_1\lambda_{k_1} + \cdots + td_s\lambda_{k_s})|,$$

where $d_i \neq 0$, \cdots, $d_s \neq 0$, $|d_1| + \cdots + |d_s| \leq 2r$. Because $q \geq r$ and $|d_1| + \cdots + |d_{s-1}| \leq 2r - 1$,

$$|d_1\lambda_{k_1} + \cdots + d_s\lambda_{k_s}| \geq \frac{1}{r}\lambda_{k_s},$$

whence

$$\int_1^2 |\hat{\mu}(td_1\lambda_{k_1} + \cdots + td_s\lambda_{k_s})| dt \ll k_{k_s}^{-1/2}. $$

But the number of forms $d_1\lambda_{k_1} + \cdots + d_s\lambda_{k_s}$ having a certain $k = k_s$ is $\ll k^r$. Thus $\int_1^2 T dt < \infty$ because $\sum_{k=1}^{\infty} k^r \lambda_k^{-1/2j} < \infty$. This proves Theorem 1 for the interval $1 < t < 2$ and the same argument is plainly valid for $(-\infty, \infty)$.

3. In the proof of Theorem 2 it is again necessary to estimate sums like T, but it is no longer possible to make such sums converge. Instead, we must estimate their rate of increase.

Lemma. Let $d_1 \neq 0$, \cdots, $d_s \neq 0$ be integers and

$$p = |d_1| + \cdots + |d_s|.$$

The number of s-tuples $1 \leq k_1 < \cdots < k_s \leq N$ for which

(3)

$$|d_1\lambda_{k_1} + \cdots + d_s\lambda_{k_s} - \lambda| \leq 2^j \quad (j = 1, 2, 3, \cdots)$$

is bounded as follows for all real λ and $N \geq 1$:

(a)

$$\leq B(p, q)j^p \quad \text{if } p = 1 \text{ or } p = 2.$$

(b)

$$\leq B(p, q)j^pN^{1/2(p-1)} \quad \text{if } p > 2.$$

Proof. The argument for $s = 1$ is very simple and is contained implicitly in that now given for $s = 2$, $p \geq 2$. Here we distinguish two cases, according as $|d_1\lambda_{k_1}| \leq q^{-1}|d_2\lambda_{k_2}|$, or not. In the first case we can write

$$d_1\lambda_{k_1} + d_2\lambda_{k_2} = (1 + \theta)d_2\lambda_{k_2}, \quad |\theta| \leq q^{-1} < 1.$$

Let $k < k^*$ be two values of k_2 occurring in this case. Then

$$|\lambda_k(1 + \theta) - \lambda_{k^*}(1 + \theta^*)| \leq 2^{j+1}$$
\[\lambda_{k^*} \leq (\lambda_k + 2^{j+1})(1 - q^{-1})^{-2}. \]

From this it follows that \(k^* - k \ll j \), so that \(k_2 \) is restricted to \(\ll j \) values. Once \(k_2 \) is chosen, \(k_1 \) is similarly confined, and so the first case distinguished before gives a contribution \(\ll j^2 \). Moreover this case always obtains when \(|d_1| \leq |d_2| \), and in particular when \(s = 2, p = 2 \); thus (a) is proved. Again, if \(|d_1\lambda_{k_1}| > q^{-1}d_2\lambda_{k_2} \) then

\[k_1 < k_2 \leq k_1 + \log |d_1|/\log q \]

and \((k_1, k_2)\) is restricted to \(\ll N \) values. Because \(p > 2 \), this is consistent with (b).

When \(s \geq 3 \) we choose an integer \(A = A_{q,s} \) so that \(2A^{-p}p \leq 1 \) and first estimate the number of solutions of (3) wherein \(k_{s-1} + A < k_s \). Then

\[d_1\lambda_{k_1} + \cdots + d_s\lambda_{k_s} = (1 + \theta)d_s\lambda_{k_s}, \quad |\theta| \leq \frac{1}{2}. \]

We find as above that \(k_s \) can assume \(\ll j \) different values, and once \(k_s \) is fixed we find by induction (on \(p \) or on \(s \)) that the remaining choices are \(\ll j^{p-1}N^{1/2(p-2)} \) in number. Finally, if \(k_{s-1} < k_s \leq k_{s-1} + A \), then \((k_1, k_s)\) has at most \(AN \) values, and for each one of these the number of choices is \(\ll j^{p-2}N^{1/2(p-3)} \). This proves the lemma.

Much more precise estimates are given by Erdős and Gál, but these don’t seem to be applicable \([1]\).

4. In the proof of Theorem 2 we use the multinomial expansion of \((\sum_{k \leq N} \cos (t\lambda_k x + b_k))^r \) into a finite combination of sums (with coefficients to be considered later)

\[\sum_{1 \leq k_1 < \cdots < k_s \leq N} \cos^{e_1}(t\lambda_{k_1} x + b_{k_1}) \cdots \cos^{e_s}(t\lambda_{k_s} x + b_{k_s}). \]

Here \(e_1 \geq 1, \cdots, e_s \geq 1, \) and \(e_1 + \cdots + e_s = r \). This sum is \(\leq N^s \) in modulus, and so it can be neglected if \(s < \frac{1}{2}r \). When \(r \) is even, say \(r = 2v \), there occurs a dominant contribution determined by the choice \(s = v, e = \cdots = e_v = 2 \). This requires closer argument and we exclude it for the moment; in every \(s \)-tuple \((e_1, \cdots, e_s)\) remaining at least one component must be odd.

To exploit the last remark we expand

\[\cos^{e_1}(t\lambda_{k_1} x + b_{k_1}) \cdots \cos^{e_s}(t\lambda_{k_s} x + b_{k_s}) \]

into a linear combination of exponentials \(e((tx)(d_1\lambda_{k_1} + \cdots + d_r\lambda_{k_r})) \), wherein \(1 \leq |d_1| + \cdots + |d_s| \leq r \).

We can handle the dominant term in almost the same way, using the identity \(2\cos^2u = 1 + \cos 2u \). In the multinomial formula there
occurs the factor \(r! 2^{-v}(v = \frac{1}{2}r) \). Hence the dominant term contains
the constant 1 with a coefficient
\[
2^{-v} \cdot r! 2^{-v} \cdot \binom{v}{r} = 2^{-v} r! (v!)^{-1} N^v + O(N^{v-1})
\]
Now the \(r \)th moment
\[
m_r = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u^r e^{-u^2/2} du = 2^{-v} r! (v!)^{-1}
\]
Thus the constant term is \(2^{-v} N^v m_r + O(N^{v-1}) \), and this is correct because the ‘norming’ constant is \((\frac{1}{2}N)^{-1/2} \).

In the dominant term there occur other exponentials, but each of them is of the type considered above. It remains now to be proved that the random error, say \(R_N \), encountered in the moment of
\[
\sum_{k \leq N} \cos(t \lambda_k x + b_k)
\]
is almost surely \(o(N^v) \) as \(N \to +\infty \). But in fact these errors are Fourier-Stieltjes coefficients
\[
|\hat{\mu}(td_1 \lambda_{k_1} + \cdots + td_s \lambda_{k_s})|
\]
where \(1 \leq k_1 < \cdots < k_s \leq N \) and \(1 \leq |d_1| + \cdots + |d_s| \leq r \). From the previous lemma and from the estimation (2), we find that
\[
\int_1^2 R_N dt \ll N^{v-1/2}
\]
and therefore, by Chebyshev’s inequality, \(R_{N^2} = o(N^{3v}) \) almost surely. Because \((N + 1)^3 = N^3 + o(N^3) \) this completes the proof.

It is not difficult to formulate and prove a similar theorem for the union of sequences \(tA \cup sA \), where \((t, s)\) is a point in the plane. When \(\mu \) is absolutely continuous, however, we can suppress one of the variables and obtain a central-limit theorem for sums
\[
\sum_{k \leq N} \cos(\lambda_k x + b_k) + \sum_{k \leq N} \cos(\lambda_k tx + b'_k)
\]
The central-limit phenomenon here is false for certain sequences \(A \) and certain values of \(t \): \(\lambda_k = 2^k \) and \(t = 2 \). The existence of even one \(t > 1 \) rendering the central-limit theorem false is presumably a strong restriction on a lacunary sequence.

5. We conclude by stating a theorem and a conjecture related to it. As before \(S \) is a set of measure 0 in \((-\infty, \infty)\) depending only on \(A \) and \(\mu \).

Theorem 3. For each \(t \in S \), each closed set \(E \), and each \(s > 0 \),
there is an integer \(N = N(t, \varepsilon, E) \) such that

\[
\left| \sum_{k \in N} a_k e(\lambda_k tx) \right|^2 \mu(dx) - \mu(E) \sum_{k \in N} |a_k|^2 \leq \varepsilon \sum_{k \in N} |a_k|^2.
\]

The proof is very similar to that of Theorem 1, and to some extent depends upon Theorem 1; however, it is necessary here to use the estimate (a) of the lemma in § 3.

Corollary. If \(\sum |a_k|^2 = +\infty \), then \(\sum_{1}^{\infty} a_k e(\lambda_k tx) \) diverges almost everywhere with respect to \(\mu \).

It is natural to conjecture that \(\sum_{1}^{\infty} a_k e(\lambda_k tx) \) converges almost everywhere, provided \(\sum |a_k|^2 < \infty \).

Added in proof. This follows from theorems on orthogonal series.

References

Received February 21, 1969.

University of Illinois
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norman Larrabee Alling, Analytic and harmonic obstruction on nonorientable Klein surfaces</td>
<td>1</td>
</tr>
<tr>
<td>Shimshon A. Amitsur, Embeddings in matrix rings</td>
<td>21</td>
</tr>
<tr>
<td>William Louis Armacost, The Frobenius reciprocity theorem and essentially bounded induced representations</td>
<td>31</td>
</tr>
<tr>
<td>Kenneth Paul Baclawski and Kenneth Kapp, Topisms and induced non-associative systems</td>
<td>45</td>
</tr>
<tr>
<td>George M. Bergman, The index of a group in a semigroup</td>
<td>55</td>
</tr>
<tr>
<td>Simeon M. Berman, Excursions above high levels for stationary Gaussian processes</td>
<td>63</td>
</tr>
<tr>
<td>Peter Southcott Bullen, A criterion for n-convexity</td>
<td>81</td>
</tr>
<tr>
<td>W. Homer Carlisle, III, Residual finiteness of finitely generated commutative semigroups</td>
<td>99</td>
</tr>
<tr>
<td>Roger Clement Crocker, On the sum of a prime and of two powers of two</td>
<td>103</td>
</tr>
<tr>
<td>David Eisenbud and Phillip Alan Griffith, The structure of serial rings</td>
<td>109</td>
</tr>
<tr>
<td>Timothy V. Fossum, Characters and orthogonality in Frobenius algebras</td>
<td>123</td>
</tr>
<tr>
<td>Hugh Gordon, Rings of functions determined by zero-sets</td>
<td>133</td>
</tr>
<tr>
<td>William Ray Hare, Jr. and John Willis Kenelly, Characterizations of Radon partitions</td>
<td>159</td>
</tr>
<tr>
<td>Philip Hartman, On third order, nonlinear, singular boundary value problems</td>
<td>165</td>
</tr>
<tr>
<td>David Michael Henry, Conditions for countable bases in spaces of countable and point-countable type</td>
<td>181</td>
</tr>
<tr>
<td>James R. Holub, Hilbertian operators and reflexive tensor products</td>
<td>185</td>
</tr>
<tr>
<td>Robert P. Kaufman, Lacunary series and probability</td>
<td>195</td>
</tr>
<tr>
<td>Erwin Kreyszig, On Bergman operators for partial differential equations in two variables</td>
<td>201</td>
</tr>
<tr>
<td>Chin-pi Lu, Local rings with noetherian filtrations</td>
<td>209</td>
</tr>
<tr>
<td>Louis Edward Narens, A nonstandard proof of the Jordan curve theorem</td>
<td>219</td>
</tr>
<tr>
<td>S. P. Philipp, Victor Lenard Shapiro and William Hall Sills, The Abel summability of conjugate multiple Fourier-Stieltjes integrals</td>
<td>231</td>
</tr>
<tr>
<td>Joseph Earl Valentine and Stanley G. Wayment, Wilson angles in linear normed spaces</td>
<td>239</td>
</tr>
<tr>
<td>Hoyt D. Warner, Finite primes in simple algebras</td>
<td>245</td>
</tr>
<tr>
<td>Horst Günter Zimmer, An elementary proof of the Riemann hypothesis for an elliptic curve over a finite field</td>
<td>267</td>
</tr>
</tbody>
</table>