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In this paper a proof of the Jordan curve theorem will be
presented. Some familiarity with the basic notions of non-
standard analysis is assumed. The rest of the paper is self-
contained except for some standard theorems about polygons.

The theorem will be proved in what ought to be a natural
way: by approximation by polygons. This method is not usu-
ally found in the standard proofs since the approximating
sequence of polygons is often unwieldly. But by using non-
standard analysis, one can approximate a Jordan curve by a
single polygon that is infinitesimally close to the curve., This
allows types of reasoning which are extremely difficult and un-
natural on sequences of polygons.

Preliminaries. The basic concepts of nonstandard analysis and
some acquaintance with polygons are assumed. Some basic defini-
tions and theorems of point set topology are also assumed.

Throughout this paper the following notations and conventions
will be used:

(1) All discussion, unless otherwise stated, is assumed to be
about a nonstandard model of the Euclidean plane. “Otherwise
stated” will often mean that the notion or concept will be prefaced
by the word “standard”.

(2) A standard concept and its extension will be denoted by
the same symbol. If it is necessary to distinguish between them,

reference to the model in which they are to be interpreted will be
made.

(3) If Aand B are sets of points and x is a point, then |z, A|
will denote the distance from z to A and |B, 4| = inf,.; |z, 4].
(Thusif AN B @ then |4, B| =0.) |z, y| will denote the distance
from the point z to the point .

(4) f will denote a fixed continuous function on [0, 1] into the
Euclidean plane with the property that z < ¥ and f(z) = f(y) if and
only if x =0 and y = 1. C will denote the range of f.

(5) 2 = y will mean that the distance from z to ¥ is infinitesimal.
If z is near-standard then °z will denote the standard y such that
z=y.

-(6) If ©x and y are points then xy will denote the ordered,
closed line segment that begins at x and ends at y.

(7) If 2 and y are points then intv (x, y) is the set of all points

z of xy such that z + « and z = v.
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220 LOUIS NARENS

2. The approximation of C. In this section the Jordan curve
C will be approximated by a polygon P. Not all approximations of
C by polygons are suitable for our purposes. A particular sort of
approximation, called a good approximation, will be constructed. A
good approximation not only approximates the point set C, but also
has associated with it a function &, h: P— [0, 1], that approximates
f~! in the following sense: the point set C has the property that
if z,ye C then z = y if and only if f(z) = f'(y) or

|f7H @) — ) =1

h and P will have the property that if xz,ye P then z = y if and
only if A(x) = h(y) or |h(z) — h(y)| = 1.

DEFINITION 2.1. A good approximation for C is a simple closed
polygon P and a function h: P- [0, 1] which assumes only (nonstand-
ardly) finitely many values such that,

(1) if ze C then there is a ye P such that » = 4,

(2) if x¢ P then there is a y< C such that 2 = 4,

(3) if z,ye P and h(x) = h(y) then z = y,

(4) if z,ye P and z = y then h(x) = h(y) or |h(x) — h(y)| =1

(5) there are points K = {k, -+, k,} (where s is an infinite
natural number) such that P = (U, k:k:1.) U k.., and such that:

(a) if x = k, then h(x) = 0,
(b) if for ¢ <s, x € k;k;y, and & = k; then A(k,) < h(z) = h(k;,),
(¢) if ==k, and x ¢ k,k, then A(z) = 1.

DEFINITION 2.2. Part (5) of Definition 2.1 gives a natural method
of ordering P in terms of {k,, ---, %k,}. For z, ye P and x # y define
x <y if and only if (1) = = k,, or (2) xekk,, and yek;k;,, and
i <4, or ) xe K;K;,, and ye K,K, and y = K,, or (4) 2 and y belong
to the same ordered segment (k;k;., or k) and x comes before y
in the ordering of that segment. (Also note that if z,ye P and
h(z) < h(y) then z < y.)

THEOREM 2.1. A good approximation for C exists.

Proof. Let M be an infinite natural number and

fi= max [fi),fit')] and g, = ~max [fit), fit)l
and B = max {8, B,}. Since fis standard continuous, B is infinitesimal.
Divide [0, 1] into M equal intervals [¢;, ¢;.,] with ¢, =0 and ¢, = 1.
For 1 < M let a; = f(t,). Then |a;, a;1,| £ 8. The points k; will be
defined inductively. k&, = a,, k;;, = a, if and only if |a,, k;| < 8 and
for each j > p either |a;, k| > B or |f(a;) — f~'(k;)| = %, where
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S'(x) is the least ¢ such that f(f) = x. Since there are only “finitely”
many a;, there will be a last k; defined. This last element is de-
noted by k,. The points %; will have the following properties:

(A1) f(k) =1,

(A2) if ae C then there is an 7 < [ such that k; = a,

(A3) for each 7 <[ there is an ae C such that k; = a,

(A4) if f*(k;) is not in the monad of 1 and 7 >¢ + 1 then
Vo ki1 > 8y

(A5) if ¢+ 1 <1 then kik;y, N kivkir, = {kiri},

(A6) if 0 <p<1i—2and f~(k;) is not in the monad of 1 then
bk NREi = @,

(A7) if f'(k,) is not in the monad of 0, f'(k,) =1, and p <
q — 2, then k,k,., Nk, k, = @.

Proof of (Al). Let k, = a,. |a, a,| must be infinitesimal or
otherwise k,., would exist. This means that f(e,) =1 or f(a,) =
0. If f~'(a,) = 0 then k,., would exist. Therefore f(a,) = f~'(k;) = 1.

Proof of (A2). By the method in which the a; were defined,
there is an index p such that a, = a. Let j be the largest “natural
number” <1 such that f-'(k;) =< fa,). If f(a,) — f'(k;) were
not infinitesimal then f-'(k;.,) < f~(a,). Therefore f~(a,) — f~'(k;)
is infinitesimal and thus k; = a, = a.

Proof of (A3). Let a =k,.

Proof of (A4). Immediately follows from the definition of k...

Proof of (A5). Suppose not. Letbekk;,, Nk, k;., and b +# k;yy.
Then b, k;, k;.,, k;., are collinear. Since |k;, k.| > B, k1. € k;k;+, and
ki ¢k, k;.,. But this can only happen to collinear points k;, k; ., £isz
if and only if kikir N kivkiro = {kivide

Proof of (A6). Assume that k,k,., N k., = @. Then kk;, kikyrs
kpikiers ki, form the sides of a quadralateral. Without loss of
generality assume that the angle at &k, = 7/2 radians. Then in the
triangle with vertices at k;, k,, and k,.,, the angle at k, = x/2 radians.
This makes k;k;., the longest side. Therefore |k,, k;| < | ki) kit ] = B
This contradicts (A4).

Proof of (A7). Similar to (A6).

If i <l,zekk,.,, and x # k; define h(x) = f'(k;+.)-

P, = U.ukik;., and h almost form a good approximation for C.
Unfortunately P, is not a closed polygon and may intersect itself in
the monad of k,. To form a simple closed polygon from P, we let
k; be such that R(k,) is not in the monad of 0 or 1. Let

P,= U kiki,,and P, = U kk,...

iS5t Jsi<i

By (A5), (A6), and (A7) P, and P, are simple polygonal paths. P,
and P, can be ordered in such a way that P, starts at k, and ends
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at k; and P, starts at k; and ends at k,. Let E = kk,N P,. Since
kik, and P, are closed sets and k,e P, N kk, let ¢ be the smallest
member of F in the ordering induced by P,. Then

P,={xecPlk; <x<etUek,

is also a simple polygonal path. For xec ek, define h(x) = 1. P, can
be ordered in such a way that P, starts at k; and ends at k,. Since
k,e P,N P, let e, be the greatest member in the ordering of P, of
P,NP,. Then P={rxeP,le,<x=<kjUfxePlk;<x=<e} is a simple
closed polygon. Let 4,(e,) =0 and for x € P — {e,} let h,(x) = h(x). Then
P and h, will form a good approximation for C by (A2) and (A3) and
this construction.

Notation. Throughout the rest of this paper, we let the polygon
P and the function % be a fixed good approximation for C.

3. The inside and outside of C. The following theorem and
other easily established facts about polygons will be used without
proof in this paper. A proof of the following theorem can be found
in [1].

THEOREM 3.1. (The Jordan curve theorem for polygons.) A
simple closed polygon Q divides the Euclidean plane tnto three non-
empty disjornt sets, the polygon itself and two open components.
One of the components ts bounded and 1s called the tnside of Q, and
the other component is unbounded and called the outside of Q.

DEFINITION 3.1. The inside of C is the set of all standard points
x such that x is inside P and |P, x| is not infinitesimal.

DEFINITION 3.2. The outside of C is the set of all standard
points x such that x is outside P and |P, x| is not infinitesimal.

THEOREM 3.2. FHach standard point is either in the inside of
C, in the outside of C, or 1s on C.

Proof. Suppose that x is a standard point and 2 is not in the
inside of C and x is not in the outside of C. Then either x is inside
P and |P,x| =0, or x is outside P and |P, x| =0, or x ison P. In
any case, |P, x| = 0. Since P is a good approximation for C, |C, z| =
0. Thus there is a point ¥ on C such that x = y. Let t = f'(y).
Let °t be the standard real number in [0, 1] that is nearstandard to
t. Since f is a standard continuous function, f(°¢) is standard, and
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J(°t) is on C, and z = f(°t). Since there is only one standard point
in each monad, x = f(°¢t). Thus z¢C.

THEOREM 3.3. The inside of C is bounded in the standard to-
pology and the outside of C is unbounded in the standard topology.

Proof. It is true in the standard model that there is a real
number 7 such that for some fixed point x,, |z, f(t)| < » for all te
[0,1]. Therefore in the nonstandard model, |z, C| < r. Since P is
a good approximation for C, |z, P| < + 1. This implies that the
inside of C is bounded. The outside of C is unbounded since there
are standard points outside of P that are greater than any given
standard distance.

THEOREM 3.4. The inside of C and the outside of C are open.

Proof. Let a be a point in the inside of C. Let |a,C|=r.
Then °r > 0. Let F = {z|xz is standard and |a, 2| <°7}. Then E is
a standard open set containing a, and E is contained in the inside
of C. Similarly for the outside of C.

DErINITION 3.3. If ¢, t'€][0, 1] let
D@, ¢y = min {|¢/, t|, L+ ¢, t], | L+ ¢ ¢},

Note that if a,be P then a = b if and only if D(i(a), k(b)) = 0.

LemMma 3.1. Let a,beP and a<b, P,={zlasx<0b}, P,=
P — P. Assume that D(h(a), k(b)) is not infinitesimal, x € P, y€ P,,
and v =y. Then x = a or v = 0.

Proof. Suppose not. Sincexec P, anda <2 b, h(a) < h(x) < k(D).
By hypothesis, x is not infinitesimally close to a and z is not in-
finitely close to b. Therefore Ai(x) is not infinitesimally close to h(a)
or h(b). Since ye P, h(y) < h(a) or h(y) = k().

Case 1. h(y) < h(a). Since x =y, either A(z) — h(y)=0 or
h(z) — h(y) = 1. But h(x) — h(y) is not infinitesimal since 2(x) — h(y) =
h(xz) — h(a) which is not infinitesimal. A(x) — h(y) is not in the
monad of 1. For if it were, h(x) = 1 and since h(b) > h(zx), h(b) = 1.
But then A(x) = A(b). A contradiction.

Case 2. h(y) = h(b). Similar to Case 1.

THEOREM 3.5. The inside of C is nonempty.
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Proof. Let L be the set of line segments that have endpoints
on P and are contained in (inside P) U P. Since the function h takes
on only “finitely” many values, there is a fixed segment, ab, in L
such that D(h(a), k(b)) is a maximum.

Case 1. h(b) — h(a) is not infinitesimal. Without loss of gener-
ality, assume that ¢ < b. Let ¢ be the midpoint of ab, P, = {x|a <
¢ < b}, and P,= (P — P) U {a, b}. Since ¢ is not infinitesimally close
to a or b, it follows from Lemma 3.1 that ¢ is not infinitesimally
close to both P, and P,. Without loss of generality, suppose that ¢
is not infinitesimally close to P,. Let » =|c, P,| and A =abN P,.
Since A is a closed set, let a, and b, be those members of A such
that in the ordering of ab, for each x,yc 4 if v < ¢ and y > ¢ then
r<a <c¢<b =y. (SeeFigure3.1.) Then ab, U{xecPla, =z =b}
can easily be shown to be a simple closed polygon, @, with the
property that the inside of @ is inside P. Further, P, (inside Q) = @.
If d is inside @ and is the endpoint of the segment of length /3,
drawn perpendicular through ¢ to the side a0, of @, then it follows

FIGURE 3.1.

FIGURE 3.2.
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that d is inside P and that |d, P| = /3. Since /3 is not infinitesimal,
d is inside C.

Case 2. D(h(a), k(b)) is infinitesimal. Without loss of generality,
assume that ¢ < b and A(a) is not in the monad of 0. Let

B ={xePlarec L and h(x) = h(b)} .

In the ordering “<” of P let ¢ = sup B. By continuity, ace L. Since
¢ =b, hic) = h(b). Since h(a) is not in the monad of 0, and D(h(a),
h(c)) is infinitesimal, and h(c) = h(b), and A(b) — h(e) is a maximum
it follows that h(c) = h(b). Ifec Pande>cthenae¢ L. Forifec P
and e > ¢ and ae € L, then either h(e) = h(c), contradicting the definition
of ¢, or h(e) > h(c), contradicting the maximality of D(h(a), k(D))
together with Z(a) not being in the monad of 0. Similarly a point
de P can be found such that for all e < d,ea¢ L and dac L. (See
Figure 3.2.) Let @, ={zxcPlza<dor v =¢}. LetQ=daUacURQ,.
Then @ is a simple closed polygon with inside @ cinside P. Since
a is a vertex of @, it follows that a segment aq can be drawn such
that intv (a, ¢) is inside @ and ¢ is on Q. It then follows that g€ @Q,.
Thus age L. But by the method in which ¢ and d were chosen, this
is impossible.

4. Connectivity of the inside and outside of C.

DEFINITION 4.1. If Ac B and B is a standard compact set, let
°A = {°x|xe A}.

LEMMA 4.1. If A is a nonempty connected set and A C B where
B is a standard compact set, then °A 1s connected in the standard

model.

Proof. Suppose °A is not connected in the standard model.
Then in the standard model, there are open sets W and V such that
WN° A+, VN°A+= o, WNV=¢g, and " AcWUV. But aec W
in the standard model implies that the monad of x is contained in
W in the nonstandard model. Therefore in the nonstandard model,
W and V are open sets, WNA-«g, VNA+-g, WnV=¢g, and
AcCcW U V. Hence A is not connected. But this contradicts the
hypothesis that A is connected. Therefore °A is connected in the
standard model.

LEMMA 4.2. Let e, g be points on P such that intv (e, g) 1s inside
P. Let a,b be points on eg such that |a, P|, |b, P|, and |a,b| are
not infinitesimal. Then there 1s a commected set, A, such that A is
inside P,a,be A, and | A, P| is not infinitesimal.
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Proof. Assume the hypotheses. Without loss of generality assume
that ¢ and g are on the Y-axis. Let w be an arbitrary point of ab.
Let ¢ and d be points of P such that ¢d is parallel to the X-axis,
weecd, and intv (¢, d) is inside P. It will be shown that (¢, d) is not
infinitesimal. There are three cases to consider: (i) w =a, (ii)) w = b,
(iii) w is not infinitesimally closed to either @ or b. Cases (i) and (ii)
immediately follow from the assumption that |a,P| and [b, P| are not
infinitesimal. (iii) will be shown by contradiction. Assume that ¢ = d.
Without loss of generality we may assume that ¢ is in the left half-
plane d is in the right half-plane, and that in the ordering of P, ¢ < d.
For convenience we assume that i(d) is not in the monad of 1. Let
P ={x|xecP and ¢ < x =< d}. Then for each xe P, h(d) — h(z) = 0.
However, since ¢ is in the left-plane and d is in the right half-plane,
P, intersects the Y-axis at some point p. From (iii) it follows that
min (jw, a|, |w, b]) is not infinitesimal. Since

min ((w, a|, |w, b]) = |w, p| = |d, p|,

it follows that |d, p| is not infinitesimal. Hence i(d) — 2(p) is not
infinitesimal—a contradiction.

One again, let w = (0, w,) be an arbitrary point of abe, = (¢, w))
and d = (d,, w,) be points on P such that cd is parallel to the X-axis
and intv (¢, d) is inside P. Let w(w) = (1/2(d, — ¢,), w,). Then, by
construction, u(w) is inside P and |u(w), P| is not infinitesimal. Let

A = aw(a) U{u(w)|w e ab} Ubdbud) .

Then A is a connected set that is inside P and is such that ae A,
be A, and |4, P| is not infinitesimal.

LEMMA 4.3. Let a,, a, be distinct points inside C. Then there
18 a connected set A such that a,c€ A,a,c A, A s inside P, and
|4, P| is not infinitesimal.

Proof. Let a,, a, be distinet points inside C. Let ¢, d, be a seg-
ment through a, such that |a,, ¢,d,| is not infinitesimal, ¢, and d, are
on P, and intv (¢,, d,) is inside P. Similarly, let c,d, be a segment
through a, that is parallel to ¢,d,, and such that ¢, and d, are on P
and intv (¢, d,) is inside P. Without loss of generality, it may be
assumed that ¢, < ¢, < d, < d,.

Let P,={xePlec,<x=<¢} and P,={xePld, <z =d}. (See
Figure 4.1.) |P,, P,| is not infinitesimal. For if «, and =z, are arbitr-
ary members of P, and P, respectively, thene, <2, <¢, <d. <2, < d,,
and hence h(c,) < h(x,) < hic,) <h(d,) < h(x,) < h(d,). Since c,d, passes
through a, and |a,, P| is not infinitesimal, Z(d,) — h(c,) is not in the
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monad of 0 or 1. Similarly A(d,) — k(c,) is not in the monad of 0 or
1. But, i(d,)) — k(c)) = h(x,) — h(x) = k(d,) — h(c,). Therefore h(x,) —
h(z,) is not in the monad of 0 or 1. Thus |z, #.] is not infinitesimal.
Therefore | P,, P,| is not infinitesimal.

Let r = min {| P, P,|, [c.d,, ed;], |a,, P}, |as, P|}. Without loss of
generality, it may be assumed that c,d, is on the Y-axis. Since each
line segment ! that is parallel to ¢,d, has the same X-coordinate for
each of its points, we shall say that the coordinate of | is the X-
coordinate of its points. Let v be the X-coordinate of c,d,., Without
loss of generality we may assume that v is positive. Let

L ={cd|lce P,de P, intv (¢, d) is inside P,
and cd is parallel to ¢d,} .

Let B = {x|there is an le L such that z<l and |z, P| > r/4}. Let
E be the largest connected subset of B that contains a,. Let

T = {t|there is a ze E such that ¢ is an X-coordinate of z} .

Let s be the supremum of 7. s = wv. For if s were less than
v, let edc L and such that s = X-coordinate of c¢d. Let p» be the
midpoint of ed. If |p, P| = r/4 then the disk D about p of radius
r/4 intersects K. Then (E U D) N B would be a connected subset of
B containing «a, that is larger than E. This is impossible since E is
the largest connected subset of B containing «,. Thus [p, P| < r/4.
Since |p, P,| = r/2 and |p, P,| = r/2, there is a point g€ P — (P, U P,)
such that |p, ¢| < r/4. Since Q@ = ¢,d, U P, U ed, U P, is a simple closed
polygon, and p is inside @ and ¢ is outside @, p¢ N Q # @. This
can only happen if pgned, = @ or pgNed, # @. Assume that
pgNed # @. (The case of pgnNecd,+ ¢ follows similarly.) Then
[P, ed;] <r/d. Sincece P,and dc P, and ¢d is parallel to ¢,d,, there
is a point weed such that |w, a,| < /4. Since |a, P| = r, the disk
D, of radius »/4 about the point w has the property that |D,, P| >
r/4. Also, D,N E+ @ and (BN D) — E #+ ». Therefore (BN D) U E
is a larger, connected subset of B than E. A contradiction.

FIGURE 4.1.
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Since s=v, ENecd, # ©. Let ec EN ¢, d,. Since |E, P|= r/4,
e is not infinitesimally close to P. By Lemma 4.2, there is a con-
nected set F such that ec F,a,¢ F, |F, P| is not infinitesimal, and
Fisinside P. Let A= EUF. Thena,a,c A, A is connected, |4, P|
is not infinitesimal, and A is inside P.

THEOREM 4.1. The inside of C 1is connected (in the standard
model).

Proof. Suppose not. Let X = inside C. Then in the standard
model, there are open sets V and W such that VN X+ @, WNX #Q,
WNV=0@,and XcWUV. Let ac VN X and be WN X. Then
in the nonstandard model, by Lemma 4.3 there is a connected set
A such that a,be A, A is inside P, and |4, P| is not infinitesimal.
Note that since | A, P| is not infinitesimal, °A is inside C. That is,
°A < X. Also, by Lemma 4.1, °A is connected in the standard model.
Therefore in the standard model,

VN°A+0, WNn°A+o, VonW=90,

and Ac VU W. Hence °A4 is not connected. A contradiction.

LEMMA 4.4. Let a,b be points in the outside of C. Then there
is o line 1 that intersects P and such that

(1) |a,l| and |b, 1| are not infinitesimal, and

(2) a and b are in the same half-plane determined by 1.

Proof. Let a,b be points in the outside of P and ¢ a point in
the inside of C. Then a, b, and ¢ are standard and |a, P|, |b, P|, and
le, P| are not infinitesimal. Let k& be the line through « and ¢. Let
H, and H, be the closed half-planes determined by k. Without loss
of generality, suppose that be H,. Since |¢, P| is not infinitesimal,
there is a point d that is inside P and such that |d, H,| is not in-
finitesimal. Let [ be the line through d that is parallel to k. Then
la,l| and [b, 1| are not infinitesimal and a and b are in the same
half-plane determined by .

THEOREM 4.2. The outside of C 1s connected (in the standard
model).

Proof. Let a and b be points in the outside of C. It only needs
to be shown that there is a connected set in the outside of C that
contains ¢ and b. By Lemma 4.4, let | be a line through P such
that @ and b are in the same closed half-plane, H, that is determined
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by I. Then a square S can be found with the following four pro-
perties:

(1) one side of S is on I,

(2) [N P is contained on a side of S,

(3) aandb are inside S and ja, S|and |b, S| are not infinitesimal,

(4) ScH.
Let T = (inside of S) N (outside of P). Then it is easy to show that
T is an open set that has a simple closed polygon, @, as a boundary.
In other words, inside of @ = 7T, a and b are in the inside of @,
la, @] and |b, @| are not infinitesimal. Now, °Q = {°z|x € Q} can
easily be seen to be a Jordan curve in the standard model (composed
partly of the square °S = {°x |2 e S} and partly of C) with ¢ and b
in the inside of °@Q. Thus by Theorem 4.1, in the standard model
there is a polygonal path, A, which is inside °Q and such that
a,be A. But since the inside of °@ c the outside of C, it follows
that a and b belong to a connected set that is in the outside of C.
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