AN INTERESTING COMBINATORIAL METHOD IN THE THEORY OF LOCALLY FINITE SEMIGROUPS

Thomas Craig Brown
AN INTERESTING COMBINATORIAL METHOD IN THE
THEORY OF LOCALLY FINITE SEMIGROUPS

T. C. BROWN

Let X be a finite set, X^* the free semigroup (without
identity) on X, let M be a finite semigroup, and let φ be an
epimorphism of X^* upon M. We give a simple proof of a
combinatorial property of the triple (X, φ, M), and exploit
this property to get very simple proofs for these two theorems:
1. If φ is an epimorphism of the semigroup S upon the
locally finite semigroup T such that $\varphi^{-1}(e)$ is a locally finite
subsemigroup of S for each idempotent element e of T, then
S is locally finite.
2. Throughout 1, replace "locally finite" by "locally nilpotent".

The method is simple enough, and yet powerful enough,
to suggest its applicability in other contexts.

1. Theorem 1 below was first proved by the author in [1] by a
circuitous and laborious method. In the present paper it drops out
easily from Lemma 2 below, as does Theorem 2, which is new. Lemma
2 was first discovered by J. Justin ([3]) as a generalization of Lemma
1, which is the author’s ([2]). The proof given here, however, is
new, and is conceptually quite transparent, though apparently non-
trivial. Justin has used Lemma 2 in an alternative proof of his
generalization of Van der Waerden’s Theorem (on Arithmetic Progressions), using Van der Waerden’s Theorem in the course of the proof.
The author is inclined to believe that a refined or more powerful ver-
sion of Lemma 2 would yield a proof of Van der Waerden’s Theorem
itself.

The construction of a sequence “in the regular way”, given below,
has been formalized by R. Rado in [4].

2. Notation and definitions. The symbol X will always denote
a finite set, and X^* denotes the free semigroup without identity on
X. Thus X^* is the semigroup of nonempty “words” in the “letters”
of the “alphabet” X, with juxtaposition as multiplication. If $w =
x_1x_2 \cdots x_k \in X^*$, where the $x_i \in X$, then the length of w, denoted by
$|w|$, is k. The symbol X^ω denotes the set of sequences on X, regarded
as “infinitely long words” in the alphabet X. If $x, y, z \in X^*$ and $s \in X^\omega$,
then $x, y,$ and z are each factors (x is a left factor) of the word xyz
and of the sequence $xyzs$.

Let H be an infinite subset of X^*. We indicate now how to
construct a sequence $s = a_1a_2 \cdots \in X^\omega$ such that each left factor of s
is a left factor of infinitely many of the words of \(H \). Such a sequence is used several times in the proofs that follow, and is said to be constructed in the regular way from \(H \).

We choose the \(a_i \)'s inductively. In view of the fact that \(H \) is infinite and \(X \) is finite, we choose \(a_1 \) to be an element of \(X \) which occurs infinitely often as the first letter in the words of \(H \), and we denote by \(H_1 \) the (infinite) set of those words of \(H \) which have \(a_1 \) as first letter. Thus \(a_1 \) is a left factor of infinitely many of the words of \(H \). Now suppose that \(a_1, \ldots, a_n \in X \) have been chosen so that \(a_1a_2 \cdots a_n \) is a left factor of each word in an infinite subset \(H_n \) of \(H \). We choose \(a_{n+1} \) to be an element of \(X \) which occurs infinitely often as the \((n+1)\)st letter in the words of \(H_n \), and denote by \(H_{n+1} \) the (infinite) set of those words of \(H_n \) which have \(a_{n+1} \) as \((n+1)\)st letter. Thus \(a_1a_2 \cdots a_{n+1} \) is a left factor of infinitely many of the words of \(H \).

3. Two lemmas.

Lemma 1. Let \(s = a_1a_2 \cdots \in X^\omega \). Then there exist an element \(x \in X \) and a fixed integer \(k \) such that for any \(n \) there are integers \(i_1 < i_2 < \cdots < i_n \) (these depend on \(n \)) with \(x = a_{i_1} = a_{i_2} = \cdots = a_{i_n} \) and \(i_{j+1} - i_j \leq k, 1 \leq j \leq n - 1 \).

Proof. We proceed by induction on \(|X| \), the cardinal of \(X \). If \(|X| = 1 \), we are through. Assume the result for \(|X| = k \), and suppose now that \(|X| = k + 1 \), \(X = \{x_1, \ldots, x_{k+1}\} \). Let \(s = a_1a_2 \cdots \in X^\omega \). If \(x_{k+1} \) is not missing from arbitrarily long factors of \(s \) we are done, hence we may assume that there is an infinite set \(H \) of factors of \(s \) from which \(x_{k+1} \) is missing. Thus \(H \subset \{x_1, \ldots, x_k\}^* \), and we construct a sequence \(t = b_1b_2 \cdots \in \{x_1, \ldots, x_k\}^\omega \) from \(H \) in the regular way. By the induction hypothesis, there exist an element \(x \in \{x_1, \ldots, x_k\} \) and an integer \(k \) such that for any \(n \) there are integers \(i_1 < i_2 < \cdots < i_n \) with \(x = b_{i_1} = b_{i_2} = \cdots = b_{i_n} \) and \(i_{j+1} - i_j \leq k, 1 \leq j \leq n - 1 \). But every left factor of \(t \) is a left factor of words in \(H \), and each word in \(H \) is a factor of \(s \), therefore every left factor of \(t \) is a factor of \(s \), and hence every factor of \(t \) is a factor of \(s \), in particular the factor \(b_{i_1} \cdots b_{i_2} \cdots \cdots b_{i_n} \). By a translation of indices (perhaps a different translation for each \(n \)) we are done.

Lemma 2. Let \(\varphi \) be an epimorphism of \(X^* \) upon a finite semigroup \(M \), and let \(s \in X^\omega \). Then there exist an idempotent \(e \in M \) and a fixed integer \(k \) such that for any \(n \) there are \(n \) consecutive factors \(g_1, \ldots, g_n \) (these depend on \(n \)) of \(s \) (i.e., \(s = ag_1g_2 \cdots g_ns' \), where \(a, g_1, \ldots, g_n \in X^*, s' \in X^\omega \)) with \(e = \varphi(g_1) = \varphi(g_2) = \cdots = \varphi(g_n) \) and \(|g_j| \leq k, 1 \leq j \leq n \).
AN INTERESTING COMBINATORIAL METHOD 287

Proof. We proceed by induction on $|M|$. If $|M| = 1$, we are done, so now let M be fixed with $|M| \geq 2$ and assume the result for all semigroups with cardinal smaller than that of M. Now with this M we proceed by induction on $|X|$. If $|X| = 1$ we are through, so we may assume the result for $|X| = k$ and now let $|X| = k + 1$.

Let $s = a_1a_2\cdots \in X^*$, and let x be a fixed element of X. If x is missing from arbitrarily long factors of s, then constructing in the regular way a new sequence from the set of these factors, and arguing as in the proof of Lemma 1, we are done by the induction hypothesis on $|X|$. Thus we may assume that there is an integer m and integers i_1, i_2, \cdots such that $x = a_{i_1} = a_{i_2} = \cdots$ and $0 < i_{j+1} - i_j \leq m$ for $j = 1, 2, \cdots$. To simplify the notation, let us assume without loss of generality that $i_1 = 1$.

Next, we take a new (finite) alphabet $B = \{a_{i_1}a_{i_1+1}\cdots a_{i_j+1-1} | j = 1, 2, \cdots\}$ and write s as a sequence in B^*. Let $\varphi(x) = p$. Then $\varphi(a_{i_j}) = p$ for $j = 1, 2, \cdots$, so the restriction of φ to B^* is an epimorphism of B^* upon the semigroup pM. If $|pM| < |M|$, then we are done by the induction hypothesis on $|M|$, since we can easily find our way back to s regarded as a sequence in X^*. (Indeed, if the length of a factor g of s in the alphabet B is $\leq k$, then the length of g in the alphabet X is $\leq mk$.) Thus we may assume that $|pM| = |M|$, and similarly that $|Mp| = |M|$, for all $p \in M$ (since the fixed element x chosen above was an arbitrary element of X). Since M is finite, this amounts to saying that M is a (finite) group.

All we have to do now is to regard M temporarily as a set only, and apply Lemma 1 to the sequence $p_1p_2\cdots \in M^*$, where $p_i = \varphi(a_1a_2\cdots a_i)$, $i = 1, 2, \cdots$. Thus there exist an element $p \in M$ and a fixed integer k such that for any n there are integers $i_1 < i_2 < \cdots < i_n$ with $p = p_{i_1} = p_{i_2} = \cdots = p_{i_n}$ and $i_{j+1} - i_j \leq k$, $1 \leq j \leq n - 1$. Setting $g_1 = a_1\cdots a_{i_1}$, $g_2 = a_{i_1+1}\cdots a_{i_2}$, \cdots, $g_n = a_{i_{n-1}+1}\cdots a_{i_n}$, this says $\varphi(g_1) = \varphi(g_2) = \cdots = \varphi(g_1g_2\cdots g_n)$, an so $e = \varphi(g_1) = \varphi(g_2) = \cdots = \varphi(g_n)$ (where e is the identity of the group M), which is the conclusion we seek.

4. Two theorems.

THEOREM 1. Let φ be an epimorphism of the semigroup S upon the locally finite semigroup T such that $\varphi^{-1}(e)$ is a locally finite subsemigroup of S for each idempotent element e of T. Then S is locally finite.

Proof. First we note that if suffices to consider the case where T is finite. (For suppose the theorem is true in this case, and let φ be
an epimorphism (with the required properties) of S onto an arbitrary, that is, possibly infinite, locally finite semigroup T'. Let X be a finite subset of S, and let $\langle X \rangle$ denote the subsemigroup of S generated by X. It is required to show that $\langle X \rangle$ is finite. Now $\langle \varphi(X) \rangle T$ is a finite subsemigroup of T' since T' is locally finite, hence restricting φ to $\varphi^{-1}(T)$ we get an epimorphism (with the required properties) of $\varphi^{-1}(T)$ onto the finite semigroup T. By our assumption, $\varphi^{-1}(T)$ is locally finite, hence, since $X \subset \varphi^{-1}(T)$, $\langle X \rangle$ is finite, as required.

Therefore we assume that T is finite, and we let X denote a finite subset of S, $\langle X \rangle$ the subsemigroup of S generated by X.

To show that $\langle X \rangle$ is finite, it is convenient to introduce some additional notation. Let $X = \{x_1, \ldots, x_m\}$, and let $\bar{X} = \{\bar{x}_1, \ldots, \bar{x}_n\}$ be a set. If $\bar{w} = \bar{x}_{i_1} \cdots \bar{x}_{i_k} \in \bar{X}^*$, let w denote the element $x_{i_1} \cdots x_{i_k}$ of $\langle X \rangle$. Thus "removal of bars" is a homomorphism of \bar{X}^* upon $\langle X \rangle$. We shall call a word $\bar{w} \in \bar{X}^*$ contractible if there is another word $\bar{u} \in \bar{X}^*$ such that $|\bar{u}| < |\bar{w}|$ and $\bar{u} = \bar{w}$. A sequence $\bar{s} \in \bar{X}^*$ is contractible if \bar{s} has a contractible factor. Now $\langle X \rangle$ will be finite provided every sufficiently long word of \bar{X}^* is contractible, and this will be the case provided that every sequence in \bar{X}^* is contractible; for otherwise we could take an infinite set of noncontractible words of \bar{X}^* and, by then constructing a sequence in the regular way from this set, obtain a non-contractible sequence.

Thus it remains to show that every sequence in \bar{X}^* is contractible.

Let $\bar{s} \in \bar{X}^*$, and define the homomorphism $\overline{\varphi}$ from \bar{X}^* into T by setting $\overline{\varphi}(\bar{w}) = \varphi(w)$ for $\bar{w} \in \bar{X}^*$. Applying Lemma 2, we obtain an idempotent $e \in T$ and a fixed integer k such that for any n there are n consecutive factors $\bar{g}_j, \ldots, \bar{g}_n$ of \bar{s} with $e = \overline{\varphi}(\bar{g}_j) = \cdots = \overline{\varphi}(\bar{g}_n)$ and $|\bar{g}_j| \leq k$, $1 \leq j \leq n$. By the definition of $\overline{\varphi}$, we have g_1, \ldots, g_n all in $\varphi^{-1}(e)$, which is locally finite by assumption. Since $|\bar{g}_j| \leq k$ there are only finitely many possibilities for the elements g_j, \ldots, g_n, hence the element $g_1 \cdots g_n$ always belongs to a certain fixed finite subsemigroup of $\varphi^{-1}(e)$, no matter how large n is. Thus if n is taken sufficiently large, the factor $\bar{g}_1 \cdots \bar{g}_n$ of \bar{s} will be contractible. Thus the sequence \bar{s} is contractible. This completes the proof.

Theorem 2. Let φ be an epimorphism of the semigroup S upon the locally nilpotent semigroup T such that $\varphi^{-1}(e)$ is a locally nilpotent subsemigroup of S for each idempotent element e of T. Then S is locally nilpotent.

Proof. The proof of Theorem 2 is practically the same as the proof of Theorem 1. Here instead of showing that every sequence \bar{s} in \bar{X}^* (same notation as in the proof of Theorem 1) has a contractible factor, one shows that every sequence \bar{s} has a factor w with $w = 0$.
REFERENCES

Received November 3, 1969. Partially supported by Canadian N.R.C. Grant No. A-3982.

Simon Fraser University
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California 94305

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. R. PHELPS
University of Washington
Seattle, Washington 98105

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLE K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF TOKYO
UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH
MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON
NEW MEXICO STATE UNIVERSITY *
OREGON STATE UNIVERSITY *
UNIVERSITY OF OREGON *
OSAKA UNIVERSITY *
UNIVERSITY OF SOUTHERN CALIFORNIA

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typewritten form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsuusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>George E. Andrews</td>
<td>On a partition problem of H. L. Alder</td>
<td>279</td>
</tr>
<tr>
<td>Thomas Craig Brown</td>
<td>An interesting combinatorial method in the theory of locally finite semigroups</td>
<td>285</td>
</tr>
<tr>
<td>Yuen-Kwok Chan</td>
<td>A constructive proof of Sard’s theorem</td>
<td>291</td>
</tr>
<tr>
<td>Charles Vernon Coffman</td>
<td>Spectral theory of monotone Hammerstein operators</td>
<td>303</td>
</tr>
<tr>
<td>Edward Dewey Davis</td>
<td>Regular sequences and minimal bases</td>
<td>323</td>
</tr>
<tr>
<td>Israel (Yitzchak) Nathan Herstein and Lance W. Small</td>
<td>Regular elements in P.I.-rings</td>
<td>327</td>
</tr>
<tr>
<td>Marcel Herzog</td>
<td>Intersections of nilpotent Hall subgroups</td>
<td>331</td>
</tr>
<tr>
<td>W. N. Hudson</td>
<td>Volterra transformations of the Wiener measure on the space of continuous functions of two variables</td>
<td>335</td>
</tr>
<tr>
<td>J. H. V. Hunt</td>
<td>An n-arc theorem for Peano spaces</td>
<td>351</td>
</tr>
<tr>
<td>Arnold Joseph Insel</td>
<td>A decomposition theorem for topological group extensions</td>
<td>357</td>
</tr>
<tr>
<td>Caulton Lee Irwin</td>
<td>Inverting operators for singular boundary value problems</td>
<td>379</td>
</tr>
<tr>
<td>Abraham A. Klein</td>
<td>Matrix rings of finite degree of nilpotency</td>
<td>387</td>
</tr>
<tr>
<td>Wei-Eihn Kuan</td>
<td>On the hyperplane section through a rational point of an algebraic variety</td>
<td>393</td>
</tr>
<tr>
<td>John Hathway Lindsey, II</td>
<td>On a six-dimensional projective representation of $PSU_4(3)$</td>
<td>407</td>
</tr>
<tr>
<td>Jorge Martinez</td>
<td>Approximation by archimedean lattice cones</td>
<td>427</td>
</tr>
<tr>
<td>J. F. McClendon</td>
<td>On stable fiber space obstructions</td>
<td>439</td>
</tr>
<tr>
<td>Mitsuru Nakai and Leo Sario</td>
<td>Behavior of Green lines at the Kuramochi boundary of a Riemann surface</td>
<td>447</td>
</tr>
<tr>
<td>Donald Steven Passman</td>
<td>Linear identities in group rings. I</td>
<td>457</td>
</tr>
<tr>
<td>Donald Steven Passman</td>
<td>Linear identities in group rings. II</td>
<td>485</td>
</tr>
<tr>
<td>David S. Promislow</td>
<td>The Kakutani theorem for tensor products of W^*-algebras</td>
<td>507</td>
</tr>
<tr>
<td>Richard Lewis Roth</td>
<td>On the conjugating representation of a finite group</td>
<td>515</td>
</tr>
<tr>
<td>Bert Alan Taylor</td>
<td>On weighted polynomial approximation of entire functions</td>
<td>523</td>
</tr>
<tr>
<td>William Charles Waterhouse</td>
<td>Divisor classes in pseudo Galois extensions</td>
<td>541</td>
</tr>
<tr>
<td>Chi Song Wong</td>
<td>Subadditive functions</td>
<td>549</td>
</tr>
<tr>
<td>Ta-Sun Wu</td>
<td>A note on the minimality of certain bitransformation groups</td>
<td>553</td>
</tr>
<tr>
<td>Keith Yale</td>
<td>Invariant subspaces and projective representations</td>
<td>557</td>
</tr>
</tbody>
</table>