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The theorem of Sard asserts that if a mapping F from
a region in B” to R? is smooth enough, then the set of
critical values of F' has measure zero in R?. The purpose of
this paper is to give a constructive proof of this theorem.
By a constructive proof is meant one which has numerical
content, as explained in E. Bishop’s Foundations of Construc-
tive Analysis. In particular, it is shown that in every open
ball in R? one can compute a point which is not a critical
value of F.

The proof is based on one given by Milnor, which is a
modification of a proof of Pontryagin. These proofs, as well
as all other known proofs, are nonconstructive, and it is not
obvious that they can be constructivized. One difficulty lies
in the fact that, given two real numbers ¢ and b, one cannot,
in general, prove constructively that either ¢ = b or a < b;
one can only prove, for arbitrary - > 0, that either ¢ > b — ¢
or ¢ < b. This fact forces, among other things, the consider-
ation of ‘nearly critical values’ instead of critical values, and
the derivation of a slightly more general result., Once a
proper interpretation for ‘‘nearly critical values’” has been
found, Milnor’s proof can be followed, replacing various non-
constructive arguments by constructive ones.

1. Preliminaries.

1.1. Suppose f is a C* function (in other words, that f has con-
tinuous partial derivatives of all orders not exceeding k) on a compact
subset U of R™. If the positive constant M is a bound for the absolute
values of the partial derivatives of f (of order at most k and including
f itself) on U, then we say M is a modulus of k-smoothness of f on
U. Given natural numbers m and %, and a positive real number g,
there are functions @, ., @, x, @y, Dr,, from (0, o) X (0, =) to (0, =)
and a function ¥, from (0, «) to (0, ) with the following properties:

(i) Suppose f, g are C* functions on U = [a,, b,] X « -+ X [a,, O] R™,
and suppose M, and M, are respectively moduli of k-smoothness of f
and g on U. Then the numbers @, .(M;, M,) and @, .(M; M, are
moduli of £-smoothness for f + g and fg respectively on U. If further
lg| = B, then @, ,(M;, M,) is a modulus of k-smoothness for f/g on U.

(i) Suppose f and g are respectively C* functions on U =
[a, 0] X +¢« X [@n, b,] and on

S
U' = [a, b] X ¢+« X [a; ;] X «oo X [an, ba)
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(a hat signifies omission) with g(y) € [a;, b;] for each ye U’. If M, and
M, are moduli of k-smoothness for f and g respectively, then the
function h defined on U’ by h(y) = f(&, « -+, ', g(y), £*F, «+-, ™) (for
each y = (', «- -, @, «++, 2™ in U’) will have @, (M;, M,) as a modulus
of k-smoothness.

(iii) Suppose f is a C* function on U = [a,, b;] X *++ X [@p, b,]
with M, as a modulus of k-smoothness and odffox; = B. If g is a
function from U’ = [ay, b] X =+« X [ bi] X «++ X [am bu] to [as bi]
such that f(', ---, 2", 9(y), &, .-+, 2™) = 0 for every y = (x', ++-,
' «+e, 2™ in U’, then ¥ (M;) is a modulus of k-smoothness for g on U’.

Existence of @, ., ?, ., ., and @, , are obvious. By taking their
maximum we can assume that they all equal the same function @,.
With notation as in (iii), the Implicit Function Theorem gives dg/dx; =
— (0ffox;)/(0f/ox;), and similar formulas give higher order partial deriva-
tives of g. From these the existence of ¥, follows. Explicit forms
of @, and ¥, can be found (e.g., @, (M, M’) = M + M’) but we shall
not need them.

If F=(F, .-+, F'?) is a C* function from a compact set U in R™
to R?, then a positive real number M is said to be a modulus of k-
smoothness of F if it is at the same time moduli of k-smoothness of
each of F', ..., F’*. The partial derivative 0F¢/dx; will be written F'i.

1.2. If m, p are natural numbers, ¢ = min (m, p), and if (¢f) is a
» X m matrix, then D((a%)) will denote

max {|det S|: S is a ¢ X ¢t submatrix of (a?)} .

Suppose F' is a C' function from a compact subset U of R™ to
R?. Then J, will denote the function defined on U by J,(x) = D((F}(x))).
It can easily be shown classically that J,(x) = 0 if and only if F(x) is
a critical value (i.e., if and only if the matrix (F'i(x)) is of less than
full rank.) Thus, roughly speaking, F(x) is a nearly critical value if
Jp(®) is very small. Clearly there exists a function which assigns to
every positive real number M an operation w(M): (0, =) — (0, =) such
that if M is a modulus of 2-smoothness of F' then w(M) is a modulus
of continuity of .J;.

1.3. To simplify the notation we introduce the symbol {(m, p, K,
4, F'y, M) to mean the statement:

m, p are natural numbers with p = 1; K = [a,, b,] X +++ X [an, b,]
where 0 <a; <0; <1 for each ve{l,---,m}, 4 is a positive real
number; F' is a C*™?» function from the closed neighborhood U =
[, — 4,8, + 4] X +++ X [a,, — 4,b,, + 4] to R with M as a modulus
of k(m, p)-smoothness on U, where k(m, p) = 2 + 27'(m — p)(m — p + 1).
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2. Sard’s Theorem.

THEOREM 2.1. Given natural nmumbers m,p and positive real
numbers 4, M, and €, there exists a natural number n = n(m, p, 4, M, &)
and a positive real number v = v(m, p, 4, M, €) such that if {(m, p, K,
4, F, M) then the set {F(x): x€ K, Jz(x) < v} is contained in n cubes
in R? whose edges are equal and whose total volume is less than e.

Proof of the theorem will be by induction, which is broken down
into several lemmas.

LEMMA 2.2, Assume 2.1 s proved for a particular natural
number m —1 (m = 1). Then for every natural number p =1, and
positive real numbers 4, M, e, and B, there exist a mnatural number
n = n'(m, p, 4, M, &, B) and a positive real number v = v'(m, p, 4, M,
&, B) with the following properties: tf {m, p, K, 4, F, M), and if for
some t€f{l, «-+,p} and je{l, -+, m} the partial derivative F} has
absolute value always greater than G on U, then {F(x): x € K, J(x) < V'}
18 contained in n' cubes in R® whose edges are equal and whose total
volume is less than e.

Proof. In case p = 1 we can take v = B/2 and #’ = 0. For by
assumption J, = | F}| = 8>V on U and so our set {F(x): x€ K, Jx(x) =v'}
is void. Thus we can assume p = 2. Without loss of generality we
can also assume M >1 and B < 1/2.

(i) Choose a natural number ¢ and then a positive real number
¢’ for which the following inequalities hold:

q > 68747 'mM; €'(q + D)™ 4*M < Be .

Since 2.1 is proved for m — 1, there exist a natural number n, =
nim—1,p—1,q¢7", 0, (M, U (M)), ¢') and a positive real number v, =
yim —1,p — 1, ¢, O(M, ¥ (M)), €) having the properties as described
in 2.1. Let ¢’ be a positive real number and d a natural number
such that

& = (©n)
A< (p— DM,
and
4 < o(M)(2-6,)

where @ was defined in 1.2. Since d¢” >1 and Mp'd >1-2-1 > 1,
we can find natural numbers o and D such that
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3de” < p < 4de”,

and
2Mp~'d < D < 4Mp~'d .
Now let
n' = n,0**D(q + )™
and let

V' = 278y, .

We shall show »’ and v’ have the desired properties.

(ii) Thus suppose {m, p, K, 4, F, M > and (by relabelling) | F'{| = 53
on U. Without loss of generality assume K = [0,1]™ and F'} = @ on
U. Let {#:i=1,+--,(¢ + 1™} be a family of cubes {(in [0, 1]")
of edges ¢~' which covers [0, 1]™".

In (iii) and (iv) let ¢ be an arbitrary (but fixed) member of
{1, «--, (@ + 1)m_l}'

(iii) Since D > 2Mp~'d and since |F'| < M on [0, 1] X 4, we can
find D points x;, = (@, +++, 27)(h = 1, -+, D) in [0,1] x ¢; such that
{F'(x,)} form a pBd~*-net for F'([0,1] x 0;). Let hef{l, .-+, D} be
arbitrary. Let U, be the cube in R™' with edge 3¢~ and same center
as 6,, the edges of U, being parallel to corresponding ones of 4;. Then
for every y = (2% --+,2™) in U; we have

ly — @l =3¢ (=2 -,m).
If we let ¢, = F'*(x,) it follows that
| F'(@h, y) — ¢ = 3¢7'mM < p4/2 .
Therefore, since F'' = B > 0, there exists ¢"(y) € [— 4,1 + 4] such that
Fg"w,v) —e=0.

By the Implicit Function Theorem and by definition of ¥, the function
g* is a C* function with 7 (M) as a k-smoothness modulus. (k =
k(m, p) = k(m — 1, p — 1).) Now define a function

G U, — R
by
G"(y) = (F*g" W), ¥), <+, F7(g* (), v)) .

Then G* is a C* function with @,(M, ¥ ,(M)) as a k-smoothness modulus.
Therefore, by the definitions of #,, v,, and &”, the set

B, = {G"y):yeb;, J(;h(y) =< v}
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is contained in 7, cubes in R?, each having edges ¢”. Since p > 3¢"d,
the &”-neighborhood of B; is contained in m,0” cubes of edges d~.
Label these cubes 7,1, <+, %1,», Where n, = n,0*".
(iv) Suppose © = (2%, a’, -++, ™) € [0, 1] X 6; is such that Jx(v) <V'.
By definition of {x,: h = 1, --+, D} there exists {1, -+, D} such that
|FH @) —es] < Bd—{.
This implies, if we write y = (2% ---, 2™), that
|[Fi (= y) — F'(9*"(), )| < pd™ .
Therefore, since F! = B, we have
9"(y) — @' <d™.

We shall compute Jah(y). For each ue{2, ..., p} and ve {2, ---, m},
by definition of G* we have

(GMi(y) = F(9*(v), v) + FH(g*(¥), ¥)9.(v)
= {[FiF?* — F!F'/F}9"(v), V) -

Let t=min(m —1,p—1) and let S be any ¢ % t submatrix of
(GMi(y), say S = ((G"):()(y)) (where 7,8 =1, +--,t). Then
|det S| = [det ((FIFy) — Fuo Fr 1/ F) (9" (), v) ]
Ff: Fvl(n y * %% Fvl(z)
F1u“)y F:((Ll))y °t Fvu((tl))
= |(F})""det e e o ("W Y)
Flu(t)’ vu((L;), *t F:((tt))
< B (0" (¥), ¥) - '

The second equality was obtained by an identity in the theory of de-
terminants. Since S was arbitrary we see

IJa(®) = B7J(9" (), ) .

But |g'(y) — 2| < d7' < o(M)(27'By,) and w(M) is by definition a
continuity modulus for J,. Hence

Jr (0" ), v) £ Jr(®) + 276y,
SV 4 278y, = By, .

Combining, we have »
Jn(®) = v,

and so G*(y)e B,. But
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1G"(y) — (F*®), +--, F*(@))]|
= [[(F*g"®), ¥)s -+, F2(¢*"(¥), ¥)) — (F* &', y), -, F? (2", y))
< (p — DM|g*(y) — «'|
<(p-—1DMd*<e.

Therefore (F*(x), «++, F?(x)) is in the ¢”-neighborhood of B, and so by
(iii) is in one of the cubes 7, *+*, 74,,- On the other hand,

|F'(@) — ¢, < Bd™ < 27%d .
Combining, we see
{lew —27d e + 2747 X id=1, 00, n3h=1, -+, D}
are cubes of edges d™, which together contain the set
{F(x): x€[0,1] X 0, Jp(x) < V'}.

(v) Repeating the arguments in (iii) and (iv) for each 7 in
{1, «++, (g + 1)™'}, we can enclose the set {F(x):ze K, Jy(x) <V} in
n'(=(q + 1)™'n,D) cubes of edges d~'. It remains to check that
n'd™® < e. But this is immediate.

LEMMA 2.3. Assume 2.1 is proved for a particular natwral number
m—1 (m=1). Given a natural number p = 1, positive real numbers
4, M, e, and B, there exist a natural number n'’ = n"”(m, p, 4, M, €, B)
and a positive real number V' = v"(m, p, 4, M, &, B) with the following
properties:
of

(i) [m/p] >1,

(ii) <m, p, K, 4, F, M),

(iii) for some he{l, -.-, [m/p] — 1}, some (h + l)st partial de-
rivative Fi .. . has absolute value not less than B on U, and

(iv) B,. denotes the set {xe K: for all re{1, «++, p}, k' e {1, +--, A},
every h' — th partial derivative of F" has absolute value at x not
exceeding V''}, then the set F(B,.) 1is contained imn n” cubes in R®
with equal edges and whose total volume is less than e.

Proof. (i) Choose a natural number ¢ and then a positive real
number & such that the following inegualities hold:

g > 12874 (m — 1) M ;
g+ ) e <e.

Let k' = k(m — 1, p). Since we assume 2.1 is proved for m — 1, there
exist a natural number n,= n(m — 1, p, ¢, 0., (M, ¥, (M)), ') and a



A CONSTRUCTIVE PROOF OF SARD’S THEOREM 297

positive real number v, = y(m — 1, p, ¢, 0,.(M, ¥,.(M)), ¢') with proper-
ties as described in 2.1. Let Q be a positive real number so small
that whenever the entries of a » X (m — 1) matrix A are bounded in
absolute value by @ then D(4) < v,. Let

& = (@fn),
n” = (@ + 1)"'n,,
and let v” be a positive real number so small that
V(L + MR} < Q,
V' Mp'* < Be”
and
V" < R4/8 .

We shall show that »” and v” have the desired properties.

(ii) Therefore suppose {m, p, K, 4, F, M), suppose [m/p] > 1, and
suppose (after relabelling) F .., .= B on U. Without loss of gener-
ality assume K = [0, 1]". Write f = F},...;,. We can easily verify that

k(m, p) — h = k(m, p) — [m/p] + 1
=km—1,p)=Fk.

Hence f is a C* function with M as a k'-smoothness modulus. Let
{0:0=1,+++,(g + 1)} be a family of cubes (in [0, 1] of edges
q~' covering [0, 1]™'. For each 7 let

m; = min {|f(x)|: x€ [0, 1] X 6;} .
Partition {1, -+, (¢ + 1)™'} into subsets P and S such that
m; < 2" if 1eP,
m; >v" if 1¢8.

For each 7 € P choose v; = (%}, «++, 27) € [0, 1] X 4, such that | f(x;)| < 2v".
Write y; = (%, +-+, a7).

(ili) Take any 7€ P. Let U, be a cube in R™' with same center
as 0; and edges 3¢, the edges being parallel to corresponding ones
of §;. Then for each ¥ = (¥ -+, y™) € U; we have

ly' —wll =3¢ (=2---,m).
Hence

[flah, ») | = | f@h, w3) | + 3¢~ (m — )M
<"+ BAA < BAI2 .
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Therefore, since f, = 8 on U, there is a point g¢'(y) € [—4, 1 + 4] such
that f(¢’(y), ¥) = 0. By the Implicit Function Theorem and by the
definition of ¥,, we see ¢' is a C* function with (M) as a k'~
smoothness modulus. Now define a function
Gi: U,L — R?

by

Gy) = F('(v), v)
for each ye U;,. Then G* is a C* function with @, (M, ¥.(M)) as a
k’-smoothness modulus on U;. Therefore, by definition of =, and v,
there are cubes &, +++,&;,,, in R? of edges ¢’ which cover {G'(y):
Yy € b;, Jsi(y) < Vo).

(iv) Now suppose = = (&', ++-, 2™ € B,... Write y = (&% -+, 2™).
Then yec 6, for some 7e{l, -+, (¢ + 1)™'}. Since for this ¢+ we have
m; < |flw)] < v, it follows that ie P. Now f, =8 on U. Hence it
follows from

[fl@, y)| = v’
and
fg'w),v) =0
that
‘xl _ gz(y)l é D/IB-—I .
Therefore, for each re{l, ..+, p} and se{2, ---, m}Twe have
G| = |FI(G' W), v) + FI (' (v), ) 9:i(y) |
S |Fo@)| +v'E7 M + |[FIf/A19 (), v) |
SV + VBT M + | Fi@) | - | [AIAIG(Y), v) | + v/ B M*
< V(1 + 2687 M + BMY)
=V'1+pB'MP=Q.

Consequently, by definition of @, we have
Joi(y) = D(G):(v) = .

Thus, by (iii), there is an « in {1, ---, n,} such that Gi(y)eé&; .. Let
& . be the cube with the same center as &, and with edges 3¢”, the
edges being parallel to the corresponding ones of &;,. Then, since

| F(x) — G'(w) || = |F@', ¥) — F(g'(y), v) |
< ”"B_IMPUZ < e ,

the point F'(x) is in &} ,. Summing up, we see that the »”’ = (¢ + 1)"'n,
cubes {&;, 0t =1,++, (¢ + )" a=1, -+, n} (Where we take &, to
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be some arbitrary cube in R* with edges 3¢” if ¢¢ P) form a cover
for F(B,.). It remains to show #''(3¢”)? < ¢. But this is immediate.

2.4. Proof of 2.1. The theorem is clearly true for m = 0. Assume
it¥is proved for some particular number m — 1 (m = 1).

(i) We are given a natural number p» =1 and positive real
numbers 4, M, and . Let

N = [m/p],
e = 27"\ + 1)~lc .

Let q; be a natural number so large that
qﬁ“‘“"“”(é')’“’ g 2‘"‘/”)+2M(()\. + 1)!)—1m2+1
and let 6, be a positive real number so small that
0,3, mM/h! < 2P -igzmIn(E)
h=1

Inductively define g, ¢, 6,, and n,(h =N — 1, A — 2, --.,0) in the
following way: For each natural number % such that 0 < A < ), let
q, be a natural number such that

m~q, > 47 and q, > 24mMo;L, ,
and let ¢, be a positive real number so small that

(@r+0)™er < €

If 0 < b <\ let ny = n"(m, p, ¢, M, &, 27°0;4,) and 6, = v"(m, p, ¢;",
M, e,, 27%,,,) where n”’ and v” are as given in 2.3. If 0=h <X\ let
ny, = n'(m, p, ¢i*, M, &, 27%0,,,) and 0, = Y'(m, p, ¢;', M, &, 27°0,,)
where n’ and v’ are as given in 2.2. Without loss of generality we
may take 6, < 0,,,. Finally, it is obvious that we can find a natural
number n with the following properties:

If we have (g; + 1)™ cubes in R? of equal edges and of total
volume not exceeding ¢’, and if for each natural number # with
0 < h <)\ we are given (¢, + 1)™n, cubes in R* of equal edges and
of total volume not exceeding ¢’, then we can find » cubes in R? of
equal edges and of total volume not exceeding 27+'(\ + 1)¢/, which
cover all the given cubes.

Take such an n. We shall show % and v = 6, have the desired
‘properties. :

(ii) Thus suppose {m, p, K, 4, F', M ). Without loss of generality
we may assume K= [0,1]". If x=01let C;= K. If » >0 let

C; = {w e K: all partial derivatives of F' -of order &
(1 £ h £ )\) have absolute value at x bounded by 4},
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let for each Z(0 < h < )

C, = {x € K: all partial derivatives of F of order A’
(L < A < h) have absolute values at «
bounded by 0,, but some (A + 1)st partial derivative
has absolute value at x greater than 2-%5,.},

and let

C, = {x e K: some first partial derivative of F has absolute
value at ¢ greater than 274, but J,(x) < v}.

Then, since 0, < 03+(h =0, «-+,x — 1), the set {ze K: Jy(v) < v} is
contained in C,UC,U --- UC,.

(i) Let {#::2=1,--+,(q; + 1)"} be a family of cubes in [0, 1]
of edges ¢;', which covers [0, 1]™. For each 7 choose a point x;€6;.
Let e C;,. Then v is in 6; for some ¢. Taylor’s Theorem gives, for
each je {1, ---, p},

| Fi(w;) — F(x)|
2 m m . . A X A
< kz ED7S, ee S| Fi @)« ol — @] ee @it — o
=1 ip=1

11=1

+ (O + D) Mg
2
< 0., (BY)'mFq7* + (v + ) "'m Mg
k=1
< (20) " 1r ()2

Therefore F(C;) is contained in (g, + 1)™ cubes in R” of equal edges
and of total volume not exceeding ¢&'.

(iv) Let h be any natural number such that 0 <7 < \. Let
{029 =1, +-+,(q, + 1)} be a family of cubes in [0, 1]™ of edges g¢;?,
which covers [0,1]". Let P,Q be a partition of {1, ---, (g, + 1)}
with the following properties: if ¢€ P then some (& + 1)st partial
derivative of F' has absolute value greater than 27%j,,, at some point
in 60;; if 7€ Q then every (h + 1)st partial derivative of F' is bounded
in absolute value by 270, ,, on 6;. Then clearly C,cU;.»@:NC,).
Let U, be the cube of edge 3¢;* and with the same center as 6;, the
edges of U, being parallel to corresponding edges of 6,. Then every
(h + 1)st partial derivative of F' varies by at most 3¢;'ml, or less
than 27%0,., on U,. Thus 7 ¢ P implies some (h + 1)st partial deriva-
tive has absolute value greater than 27%9,., on U,. But {m, p, 6,, ¢;*,
F, M)». Therefore, by the definitions of 7, and 0, and by 2.2 and
2.3, the set F(C,) is contained in (g, + 1)™n, cubes of equal edges
and of total volume not exceeding (g, + 1)™¢, which is less than &.

(v) Combining (ii), (iii), and (iv) we see that {F(z): 2 € K, J(x) < v}
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is contained in a union of (q; + 1)™ cubes of equal edges of total
volume not exceeding &', and of (g, + 1)™n, cubes of equal edges of
total volume not exceeding ¢'(0 < A < \). Therefore, by definition of
n, the set {F(x): z€ K, Jy(x) < v} is contained in a union of n cubes
in R?, whose edges are equal and whose total volume does not exceed
22+1(\ 4 1)¢’ which is less than e.

In 2.1 the mapping is assumed to be 2 + 27'(m — p)(m — » + 1)
times continuously differentiable. The classical theorem ([4], [5]) as-
sumes it is only m — p 4 1 times continuously differentiable if m = p
(while, of course, no differentiability is needed if m < p). The author
has not been able to obtain a constructive proof without assuming
higher differentiability than m — p + 1.
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