AN n-ARC THEOREM FOR PEANO SPACES

J. H. V. Hunt
AN N-ARC THEOREM FOR PEANO SPACES

J. H. V. HUNT

G. T. Whyburn gave an elementary inductive proof of the n-arc theorem for Peano spaces, which had originally been proved by G. Nobeling and K. Menger. In the course of doing this he gave a necessary and sufficient condition for there to be n disjoint arcs joining two disjoint closed sets A and B in a Peano space S. In this paper we split the set A into n disjoint closed subsets A_1, A_2, \ldots, A_n and give a necessary and sufficient condition for there to be n disjoint arcs joining $A_1 \cup A_2 \cup \cdots A_n$ and B in S, exactly one arc meeting each A_i. Our proof uses the inductive technique that Whyburn introduced.

In this paper we present a theorem and a conjecture that arise from [2].

We first recall some definitions from [2]. Let A, B and X be closed subsets of a topological space S. We say that X broadly separates A and B in S if $S - X$ is the union of two disjoint open sets (possibly empty) one of which contains $A - X$ and the other of which contains $B - X$. The space S is n-point strongly connected between A and B provided no set of less than n points broadly separates A and B in S. An arc ab joins A and B if $ab \cap A = \{a\}$ and $ab \cap B = \{b\}$.

The following theorem, in which we have replaced “completeness” by “local compactness,” appears in [2]. It is called the second n-arc theorem by Menger in [1].

The Second N-Arc Theorem. Let A and B be disjoint closed subsets of a locally connected, locally compact metric space S. A necessary and sufficient condition that there be n disjoint arcs in S joining A and B is that S be n-point strongly connected between A and B.

In § 2 we split the closed set A into n disjoint closed subsets A_1, A_2, \ldots, A_n. The theorem then gives a necessary and sufficient condition for there to be n disjoint arcs joining A and B, one meeting each A_i.

In § 3 we split A and B into disjoint closed subsets A_1, A_2, \ldots, A_n and B_1, B_2, \ldots, B_n. The conjecture then gives a necessary and sufficient condition for there to be n disjoint arcs joining A and B, one meeting each A_i and one meeting each B_i. (I have given a proof of this conjecture for the case $n = 4$, which is the first case that offers difficulties, but it is not included here.)
It will be noticed that the space S in the theorem and in the conjecture is not actually a Peano space, as the title of the article states, but it becomes one when the property of connectedness is placed on it.

2. The theorem. Let A_1, A_2, \ldots, A_n and B be disjoint closed subsets of a topological space S. We shall say that a subset X of S is a large point of S (with respect to A_1, A_2, \ldots, A_n) if it is a one-point set or one of the sets A_i. We shall say that S is n-point strongly connected between A_1, A_2, \ldots, A_n and B provided the union of less than n large points does not broadly separate $A_1 \cup A_2 \cup \cdots \cup A_n$ and B in S.

We shall say that a system of n disjoint arcs in S joins

$$A_1, A_2, \ldots, A_n$$

and B if each arc joins $A_1 \cup A_2 \cup \cdots \cup A_n$ and B and each A_i is joined to B by exactly one of the arcs.

Theorem. Let A_1, A_2, \ldots, A_n and B be disjoint closed subsets of a locally connected, locally compact metric space S. A necessary and sufficient condition that there be n disjoint arcs in S joining

$$A_1, A_2, \ldots, A_n$$

to B is that S be n-point strongly connected between A_1, A_2, \ldots, A_n and B.

We need two more definitions for the proof of the theorem. Let A_1, A_2, \ldots, A_n be disjoint closed sets in a topological space S, and let $\beta_1, \beta_2, \ldots, \beta_m$ be disjoint arcs in S. We shall say that A_i is a zero, a single or a multiple with respect to $\beta_1, \beta_2, \ldots, \beta_m$ according as to whether it meets zero, one or more than one of the arcs $\beta_1, \beta_2, \ldots, \beta_m$. A subarc β of some β_i is said to be a bridge of $\beta_1, \beta_2, \ldots, \beta_m$ spanning A_1, A_2, \ldots, A_n if β joins some A_j to some A_k, for $j \neq k$. Clearly there are only a finite number of bridges in $\beta_1, \beta_2, \ldots, \beta_m$ spanning A_1, A_2, \ldots, A_n.

Proof. Using the terminology and notation of the theorem, it is clear that the condition is necessary for the existence of n disjoint arcs joining A_1, A_2, \ldots, A_n to B in S. So we turn to proving that it is sufficient.

By the arcwise connectivity theorem, the condition is sufficient for $n = 1$. So we assume its sufficiency for each positive integer $< n$ and prove its sufficiency for n by induction.
By the second n-arc theorem there are n disjoint arcs $\beta_1, \beta_2, \ldots, \beta_n$ in S joining $A_1 \cup A_2 \cup \cdots \cup A_n$ and B. Let p be the number of singles of A_1, A_2, \ldots, A_n with respect to $\beta_1, \beta_2, \ldots, \beta_n$. We shall suppose that $p < n$ and show how to construct a second system of n disjoint arcs joining $A_1 \cup A_2 \cup \cdots \cup A_n$ and B with respect to which the number of singles is $p + 1$. The process can be repeated $n - p$ times to obtain the desired system of arcs joining A_1, A_2, \ldots, A_n and B.

Let A_1, A_2, \ldots, A_p be the singles, $A_{p+1}, A_{p+2}, \ldots, A_q$ the zeros and $A_{q+1}, A_{q+2}, \ldots, A_n$ the multiples of A_1, A_2, \ldots, A_n with respect to $\beta_1, \beta_2, \ldots, \beta_n$. Since $p < n$ there is at least one zero and at least one multiple here. We shall construct a system of n disjoint arcs joining $A_1 \cup A_2 \cup \cdots \cup A_n$ and B with respect to which A_{p+1} are singles. To this end we consider the locally connected, locally compact space $S - A_{p+2} \cup A_{p+3} \cup \cdots \cup A_n$. Since it is $(p + 1)$-point strongly connected between $A_1, A_2, \ldots, A_{p+1}$ and B and $p + 1 \leq q < n$, it follows from the inductive hypothesis that it contains $p + 1$ disjoint arcs $\alpha_1, \alpha_2, \ldots, \alpha_{p+1}$ joining $A_1, A_2, \ldots, A_{p+1}$ and B. We suppose, further, that α_r meets A_r for $r \leq p + 1$.

We now use an inductive technique that is familiar from [2]. We relabel $\beta_1, \beta_2, \ldots, \beta_n$ so that β_r meets A_r, for $r \leq p + 1$, and we start by defining $\alpha_r = \alpha_r \cap A_r$, for $r \leq p + 1$ and $\beta_r = \beta_r$ for $r \leq p$. Now we suppose that we have defined systems of arcs $\alpha_1^m, \alpha_2^m, \ldots, \alpha_{p+1}^m$ (possibly degenerate) and $\beta_1^m, \beta_2^m, \ldots, \beta_n^m$ such that (a) $\alpha_r \cap A_r \subset \alpha_r^m \subset \alpha_r$, and α_r^m does not meet $B \cup \beta_{p+1} \cup \beta_{p+2} \cup \cdots \cup \beta_n$, (b) $\beta_s \cap B \subset \beta_s^m \subset \beta_s$, (c) if A_r, β_s^m meet then α_r^m is degenerate, (d) if α_r^m, β_s^m meet then they meet in a common end point, (e) exactly one of the sets

$$
\alpha_1^m \cup A_1, \alpha_2^m \cup A_2, \ldots, \alpha_{p+1}^m \cup A_{p+1}
$$

fails to meet $\beta_1^m \cup \beta_2^m \cup \cdots \cup \beta_n^m$, (f) if b_m is the number of bridges of $\beta_1^m, \beta_2^m, \ldots, \beta_n^m$ that span

$$
\alpha_1 \cup A_1, \alpha_2 \cup A_2, \ldots, \alpha_{p+1} \cup A_{p+1},
$$

then $b_m < b_{m-1}$ for $m \geq 1$. We now show how the induction may be continued to the next stage and how it leads, after at most a finite number of stages, to the construction of n disjoint arcs joining

$$
A_1 \cup A_2 \cup \cdots \cup A_n
$$
to B with respect to which $A_1, A_2, \ldots, A_{p+1}$ are singles.

We proceed by denoting by $\alpha_i^m \cup A_i$ the set, given in (e), which does not meet $\beta_1^m \cup \beta_2^m \cup \cdots \cup \beta_n^m$. We let x be the first point of α_t in the direction $\alpha_t \cap A_t, \alpha_t \cap B$ that belongs to the union of the three sets $\beta_1^m \cup \beta_2^m \cup \cdots \cup \beta_n^m, \beta_{p+1} \cup \beta_{p+2} \cup \cdots \cup \beta_n$ and
We consider separately the three mutually exclusive cases (1)
\[x \in \beta_1^m \cup \beta_2^m \cup \cdots \cup \beta_n^m , \]
(2)
\[x \in \beta_{p+1}^m \cup \beta_{p+2}^m \cup \cdots \cup \beta_n^m \]
and (3) \[x \in B - \beta_1 \cup \beta_2 \cup \cdots \cup \beta_n . \]

We first consider case (1) and let \(x \in \beta_w^m \). We define \(\alpha^m_{r+1} = \alpha_r^m \) for \(r \neq t, r \leq p + 1 \), and \(\alpha^m_{w+1} \) as the subarc of \(\alpha \) whose endpoints are \(a_t \cap A_t, x \). We define \(\beta^m_{r+1} = \beta_r^m \) for \(s \neq u, s \leq p \), and \(\beta^m_{w+1} \) as the subarc of \(\beta_u^m \) whose endpoints are \(\beta_u \cap B, x \). It is easily seen that (a)–(d) of the inductive hypotheses are preserved. In order to verify that (e) is preserved, we notice that it follows from (a)–(d) that each \(\beta_u^m \) meets at most one \(\alpha_r^m \cap A_r \). Thus it follows from (e) that the relation \((\alpha_r^m \cup A_r) \cap \beta_u^m \neq \emptyset \) establishes a one-to-one correspondence between the collections \(\beta_1^m, \beta_2^m, \ldots, \beta_p^m \) and

\[\alpha_1^m \cup A_1, \alpha_2^m \cup A_2, \ldots, \alpha_{t-1}^m \cup A_{t-1}, \alpha_{t+1}^m \cup A_{t+1}, \ldots, \alpha_{p+1}^m \cup A_{p+1} . \]

If we now let \(\alpha_k^m \cup A_k \) be the set that correspond to \(\beta_u^m \) under this relation, it is clear that by (d) \(\alpha^m_{w+1} \cup A_v \) does not meet

\[\beta_1^m + 1 \cup \beta_2^m + 1 \cup \cdots \cup \beta_p^m + 1 , \]

and that it is the only set among \(\alpha_{t-1}^m \cup A_{t-1}, \alpha_t^m \cup A_t, \ldots, \alpha_{p+1}^m \cup A_{p+1} \) with this property. It is clear that (f) is also preserved, since

\[(\beta_u^m - \beta_u^m + 1) \cup \{ x \} \]

is an arc that joins \(\alpha_v^m \cup A_v \) and \(\alpha_t^m \cup A_t \), and so it contains at least one bridge of \(\beta_1^m, \beta_2^m, \ldots, \beta_p^m \) spanning \(\alpha_1 \cup A_1, \alpha_2 \cup A_2, \ldots, \alpha_{p+1} \cup A_{p+1} \) that is not contained in \(\beta_1^m + 1 \cup \beta_2^m + 1 \cup \cdots \cup \beta_p^m + 1 \), i.e., \(b_{m+1} < b_m \).

Thus in case (1) the inductive hypotheses are preserved. We notice that it follows from (f) that case (1) can occur for only a finite number of values of \(m \), since \(b_m \) is finite. Thus case (2) or case (3) must eventually occur. We complete the proof of the theorem by showing that in either of these cases we can readily obtain a system of \(n \) disjoint arcs joining \(A_1 \cup A_2 \cup \cdots \cup A_n \) and \(B \) with respect to which \(A_1, A_2, \ldots, A_{p+1} \) are singles.

We shall only deal with case (2), as case (3) is practically identical to it. Thus we let \(x \in \beta_w, p + 1 \leq w \leq n \). We define \(\alpha \) as the subarc of \(\alpha_t \) whose endpoints are \(a_t \cap A_t, x \) and \(\beta \) as the subarc of \(\beta_w \) whose endpoints are \(\beta_w \cap B, x \). We first notice that it follows from (a)–(d) that if \(\alpha_r^m \cup A_r \) and \(\beta_s^m \) meet, then \(\alpha_r^m \cup \beta_s^m \) is an arc joining \(A_r, B \). Since a one-to-one correspondence is established between the collections

\[\alpha_1^m \cup A_1, \alpha_2^m \cup A_2, \ldots, \alpha_{t-1}^m \cup A_{t-1}, \alpha_{t+1}^m \cup A_{t+1}, \ldots, \alpha_{p+1}^m \cup A_{p+1} . \]
and $\beta_1^m, \beta_2^m, \ldots, \beta_p^m$ by the relation $(\alpha_1^m \cup A_r) \cap \beta_s^m \neq \emptyset$ it follows that the union of

$$\alpha_1^m, \alpha_2^m, \ldots, \alpha_{t-1}^m, \alpha_{t+1}^m, \ldots, \alpha_{p+1}^m, \beta_1^m, \beta_2^m, \ldots, \beta_p^m$$

may be expressed as a union of p disjoint arcs joining

$$A_1, A_2, \ldots, A_{t-1}, A_{t+1}, \ldots, A_{p+1}$$

and B. Furthermore, by (a), (b) these arcs are disjoint from the arcs $\beta_{p+1}, \beta_{p+2}, \ldots, \beta_{w-1}, \beta_{w+1}, \ldots, \beta_n, \alpha, \beta$. Thus the union of

$$\alpha_1^m, \alpha_2^m, \ldots, \alpha_{t-1}^m, \alpha_{t+1}^m, \ldots, \alpha_{p+1}^m, \beta_1^m, \beta_2^m, \ldots, \beta_p^m,$$

$$\beta_{p+1}, \beta_{p+2}, \ldots, \beta_{w-1}, \beta_{w+1}, \ldots, \beta_n, \alpha, \beta$$

may be expressed as a union of n disjoint arcs joining

$$A_1 \cup A_2 \cup \cdots \cup A_n$$

and B with respect to which $A_1, A_2, \ldots, A_{p+1}$ are singles. This completes the proof of the theorem.

3. The conjecture. Let A_1, A_2, \ldots, A_n and $B_1, B_2, \ldots B_n$ be disjoint closed subsets of a topological space S. We shall say that a subset X of S is a large point of S (with respect to A_1, A_2, \ldots, A_n and B_1, B_2, \ldots, B_n) if it is a one-point set, a set A_i, or a set B_i. We shall say that S is n-point strongly connected between A_1, A_2, \ldots, A_n and B_1, B_2, \ldots, B_n provided the union of less than n large points does not broadly separate $A_1 \cup A_2 \cup \cdots \cup A_n$ and $B_1 \cup B_2 \cup \cdots \cup B_n$ in S.

We shall say that a system of n disjoint arcs in S joins

$$A_1, A_2, \ldots, A_n \text{ and } B_1, B_2, \ldots, B_n$$

if each arc joins $A_1 \cup A_2 \cup \cdots \cup A_n$ and $B_1 \cup B_2 \cup \cdots \cup B_n$, and each A_i meets just one arc, and each B_i meets just one arc.

Conjecture. Let A_1, A_2, \ldots, A_n and B_1, B_2, \ldots, B_n be disjoint closed subsets of a locally connected, locally compact metric space S. A necessary and sufficient condition that there be n disjoint arcs in S joining A_1, A_2, \ldots, A_n and B_1, B_2, \ldots, B_n is that S be n-point strongly connected between A_1, A_2, \ldots, A_n and B_1, B_2, \ldots, B_n.

The necessity of the condition is again trivial, so it is the sufficiency of the condition that is interesting.

The conjecture is clearly true if the sets

$$A_1, A_2, \ldots, A_n \text{ and } B_1, B_2, \ldots, B_n$$
are compact. For in this case the quotient space Q obtained by identifying a pair of points if they belong to a common A_i or a common B_j is locally compact, locally connected and metrizable. If π is the natural projection from S onto Q, it is clear that Q is n-point strongly connected between

$$\pi(A_1) \cup \pi(A_2) \cup \cdots \cup \pi(A_n) \text{ and } \pi(B_1) \cup \pi(B_2) \cup \cdots \cup \pi(B_n).$$

Consequently it follows from the second n-arc theorem that there are n disjoint arcs in Q joining

$$\pi(A_1) \cup \pi(A_2) \cup \cdots \cup \pi(A_n) \text{ and } \pi(B_1) \cup \pi(B_2) \cup \cdots \cup \pi(B_n).$$

The π-inverse of each of these arcs contains a connected closed set which meets both $A_1 \cup A_2 \cup \cdots \cup A_n$ and $B_1 \cup B_2 \cup \cdots \cup B_n$, from which it easily follows that there are n-disjoint arcs in S joining A_1, A_2, \cdots, A_n and B_1, B_2, \cdots, B_n.

When some of the sets A_1, A_2, \cdots, A_n or B_1, B_2, \cdots, B_n fail to be compact, the above argument does not suffice as the quotient space Q is not in general metrizable.

There ought to be a combinatorial proof of this conjecture along the lines of the proof in § 2, which would work equally well whether some of the sets A_1, A_2, \cdots, A_n or B_1, B_2, \cdots, B_n fail to be compact or not. Such a proof has been given for the case $n = 4$, as was remarked in paragraph § 1.

References

Received August 26, 1970. The theorem in this paper is taken from the author's doctoral dissertation, presented to the University of Warwick, Coventry, in March 1970.

University of Saskatchewan
Yuen-Kwok Chan, *A constructive proof of Sard’s theorem* 291
Charles Vernon Coffman, *Spectral theory of monotone Hammerstein operators* .. 303
Edward Dewey Davis, *Regular sequences and minimal bases* 323
Israel (Yitzchak) Nathan Herstein and Lance W. Small, *Regular elements in P.I.-rings* ... 327
Marcel Herzog, *Intersections of nilpotent Hall subgroups* 331
W. N. Hudson, *Volterra transformations of the Wiener measure on the space of continuous functions of two variables* 335
J. H. V. Hunt, *An n-arc theorem for Peano spaces* 351
Arnold Joseph Insel, *A decomposition theorem for topological group extensions* ... 357
Caulton Lee Irwin, *Inverting operators for singular boundary value problems* .. 379
Abraham A. Klein, *Matrix rings of finite degree of nilpotency* 387
Wei-Eihn Kuan, *On the hyperplane section through a rational point of an algebraic variety* ... 393
John Hathway Lindsey, II, *On a six-dimensional projective representation of PSU_4(3)* ... 407
Jorge Martinez, *Approximation by archimedean lattice cones* 427
J. F. McClendon, *On stable fiber space obstructions* 439
Mitsuru Nakai and Leo Sario, *Behavior of Green lines at the Kuramochi boundary of a Riemann surface* 447
Donald Steven Passman, *Linear identities in group rings. I* 457
Donald Steven Passman, *Linear identities in group rings. II* 485
David S. Promislow, *The Kakutani theorem for tensor products of W*-algebras* ... 507
Richard Lewis Roth, *On the conjugating representation of a finite group* .. 515
Bert Alan Taylor, *On weighted polynomial approximation of entire functions* ... 523
William Charles Waterhouse, *Divisor classes in pseudo Galois extensions* .. 541
Chi Song Wong, *Subadditive functions* 549
Ta-Sun Wu, *A note on the minimality of certain bitransformation groups* .. 553
Keith Yale, *Invariant subspaces and projective representations* 557