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Let S denote a Banach Space, B the bounded linear
transformations on S, and let @ and A denote functions from
[0, «©) into B with @ continuous. The objective here is to
derive a Green’s function K, and hence an integral invert-
ing operator R, for the singular boundary value problem

Y'—QY=H

1
(0 LAY (0) + lim A(c,)Y (c.) =0,

where {¢,}>_, is a positive, increasing, unbounded number
sequence and H is a continuous function from [0, <o) into S.

The method here provides Green’s functions for singular boundary
value problems associated with nonself-adjoint, as well as self-adjoint,
linear differential expressions. The asymptotic boundary conditions in
(1) permit one to extend some of the regular two-point boundary
value problem techniques suggested by [3] and [4] to the singular
case without being restricted to the Hilbert Space L,[0, ). Simi-
lar, but different, asymptotic boundary conditions are used by Cod-
dington and Levinson in [2, Chapter 10}, and by Benzinger [1].

As noted in §3 of [3] there exists a unique continuous function
M from [0, ) x [0, =) to B so that if each of =z, ¢, and w is in
[0: m)y

(1) Mz, t) = Q@)M(z, t) and M, t) =T

(ii) Mz, )M, w) = M(x, u)

(iii) if H is a continuous function from [0, <) to S and « is in
S, then the only function Y such that Y’/ — QY = H and Y(0) = «
is given by

Y (@) = M(z, 0)a + g dt M(z, H)H(t)
for all x in [0, <o).

DEFINITION. A is a determinate boundary condition function for
@ on ¢, ¢, -+» means that if H is a continuous function on [0, )
and Y is a solution of the boundary value problem (1) for the non-
homogeneous term H, then Y is unique.

NoOTATION. If A is a boundary condition function for @ on ¢,
¢, +++ and 7 is a positive integer, let 7T, denote the transformation
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[A(0) + A(c.) M (e, 0)].

THEOREM 1. A is a determinate boundary condition function for
Q on ¢, ¢y - if and only if the convergence of {T, o)., to zero vmplies
that a s the zero of S.

Proof. The proof follows from property (iii) of the M function
and the linearity of the problem.

NoraTioON. Let D, denote the continuous functions with compact
support on [0, o).

THEOREM 2. Suppose A is a determinate boundary condition
Sunction for @ on ¢, ¢y, +++; the following two statements are equiva-
lent.

(1) There is an integral tnverting operator R, with kernel K,
of the form
M (x, 0)K (0, 0)M(0, t) if0<t=sxw

K (z, t) = {M(m, 0)[K (0, 0) — I]M(0, t) f 0= <t

for boundary value problem (1) so that D, is a subset of the domain
of R,.

(ii) There is a transformation = in B such that if « is in S,
then {T,(ra)yp., converges to A(Q)a.

Proof. Assume (i) holds; if H is in D, and U= R,H, then U
is a solution of boundary value problem (1) and so

lim [A(0)U(0) + A(c.) U(e,)] = 0 .

Let b denote a positive number so that if = > b, H(x) = 0; then, if
¢, > b,

AV U©) + Ale,) Ule,) = A(0) S" dt [K,(0, 0) — I1M(0, )H(t)
+ Ale,) S" dt M(e., 0)K (0, 0)M(0, t)H (z)
- T,(KA(O, 0) gb dt M (0, t)H(t))
— A(0) S" dt M(0, ) H (£)

and so
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lm1E(Kxaowbﬁﬂﬂmiﬂﬂw>:AﬂmS:ﬁﬂﬂQtﬂﬂw.

eroo
Now, if a is in S, define H as

M(t, 0)(2 — 2t)a ifo<t<l1

H@:{o ift>1.

H belongs to D, and det M(0,t)H(t) = a, 80 (ii) holds with 7 = K ,(0, 0).
0
Now, assume (ii) holds; since A is a determinate boundary con-
dition function for @ on ¢, ¢, +++, @ must be unique. Define K, on
[0, o) x [0, =) as
M(x, 0)TM(0, t) ifost<=x

(2) K 8) = { M(w, 0)x — T1M(0, t) H0=o<t

and let R, denote the integral operator with kernel K,. Let H be
in D, and b denote a positive number so that if « >0b, H(x)=0.
Define U on [0, ) as

YﬁM@mMM&@Hm
Ue) = +Swum%mm—nM@me fo<z<b
YﬁM@ﬂMM&wH@ ife>b.

Differentiation yields that U’(x) — Q(x) U(x) = H (x) for each x in [0, o)
and if ¢, > b,

A0)TU(0) + A(e,) Ule,)
=ﬂ«nxﬁmeH@>—meﬁM&me.

By the definition of 7, lim,_..[4(0) U(0)+ A(c,) U(c,)]=0 and so (i) holds.

For the remainder of the paper suppose that A is a determinate
boundary condition function for @ on ¢, ¢, +--, condition (ii) in
Theorem 2 holds and K, is defined on [0, =) X [0, =) by (2). (Con-
dition (ii) is implied, for example, in case the sequence {T,}s., con-
verges in norm to a regular element of B.) Let D denote the set

of continuous functions H on [0, -) such that r dt K,(x, t)H (t) exists
0

for each « and furthermore, if U is defined as
U@ﬁ:VdHQWOH@) for @ in [0, <) ,

then U is a solution of boundary value problem (1) for the nonhomo-
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geneous term H. Let R, denote the integral operator with kernel
K, and domain D; i.e., if H belongs to D

(R H () = r dt K (o, H() .

Two aspects of the present development which differ from other
treatments of Green’s functions for singular boundary value problems
are: (1) the Green’s functions here are not necessarily square integrable
in either place and (2) the domains of the associated integral
inverting operators are not restricted to functions which are square
integrable on [0, ). However, the domain of R, does depend upon
the problem, i.e., upon the particular @ and A involved. This de-
pendence is the subject of the following two theorems.

Two sets of continuous function on [0, o) which are relevant to
the description of D are defined as follows. Let D, denote the collec-
tion of continuous functions H on [0, o) for which there exists a solu-
tion of (1) for the nonhomogeneous term H. Let D, denote the col-

lection of continuous functions H on [0, «) such that r dt(x—I)M(0,t)
0

H(t) exists.
It is clear that D is a subset of the intersection of D, and D,;

not so obvious is the extent to which D, N D, is contained in D.

LEMMA. Suppose H belongs to D, N D,; let Y denote the solution
of (1) for H and let X(x) = S:dt K (x, t)H(t) for all = in [0, ),
then

T,[Y(0) — X(0)] = [A(0)Y(0) + A(c,)Y (c,)]
+ [A(0) — T.x] S dt M(0, ) H(z)

_ T, S‘” dt(z— )M, ) H ()
for each positive integer m.

Proof. Let m denote a positive integer; property (iii) of the M
function provides that

Y(e) = Mew 0Y(0) + M(ew 0| " dth0, 0H () ,
SO

T.Y(0) = A(0)Y(0) + A(c.)M(c,, 0)Y(0)
= A(0)Y(0) + A(c.) Y(ca) — Alc.) M(ca, O)S:”dt M, t)H(?) .
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Also,
T.X(0) = [A(0) + A(c.)M(c,, 0)] S:dt(ﬂ — )M, )H() .

A straightforward computation provides the result of the lemma.
The domain D of the inverting operator R, may be studied for
the following three cases.

Case 1. There is an increasing sequence of positive integers n,,
Ny, +++ such that T} exists for all < and the transformation sequence
{T'7}}i=. is uniformly norm bounded.

Case 2. There is an increasing sequence of positive integers =,
N,, +++ such that T, exists for all 4, but no subsequence of inverses
is uniformly norm bounded.

Case 3. There is a positive integer N such that if » > N, then
T, does not exist.

Note. Case 1 above is a sufficient condition for a function 4 from
{0, <) into B to be a determinate boundary condition function for Q
on ¢, Cy; .

THEOREM 3. Suppose Case 1 above holds; if H is in D, N D, then
H s in D if
lim [A(0) — T, 7] S dt M0, ) H(t) = 0 .
Proof. By the lemma and existence of T,! for all 4, we obtain
in the notation of the lemma that
Y(0) — X(0) = T;;[A(0) Y (0) + Alc.,) Y(cn)]

+ T [A(0) — T,.x S dt M(0, H)H(t)

_ r dt(m— )M (0, t)H(2) for each i .

c

H in D, provides that lim,.... S” dt(x—I)M(0, H)H(t) = 0 and Y satis-

fies the asymptotic boundary condition so

Y (0) — X(0) = lim T5{A(0) — T,,7] S dt M(0, )H(2) .

Now, if lim [4(0) — T, .x] § dt M(0, t)H(t) = 0, then Y (0) — X(0) = 0

{00
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and so Y = X, i.e., X is the unique solution of (1) for H and so H is

in the domain of R,.
A subcase of Cases 1, 2, and 3 above is that the transformation

sequence {T,}3-, be uniformly norm bounded, which occurs, for example,

with S= E, and T, = H 8] n odd, [8 ﬂ if n is even.

THEOREM 4. Suppose {T,)7-, s uniformly norm bounded; if H is
wn D, N D, then H is in D if and only if

lim [A(0) — T,7] S dt M0, )H(E) = 0 .

Proof. Let H denote a function in D, N D,; by the lemma
T.[Y(0) — X(0)] = [A(0) Y (0) + Alc.) Y(ca)]
+ [A(0) — T,z] S:dt MO, ) H(?)
— T, S‘” dt (m— D)M(0, t)H (£)

for each positive integer n. Where Y denotes the solution of (1) for
H and X is defined on (0, ) by

X () = S“dt K. (2, ) H(t) & in [0, o) .
0
Y satisfies the asymptotic boundary condition so
A(0)Y(0) + lim A(e,) Y (¢c,) = 0.

The transformation sequence {T,}:-, is uniformly norm bounded and H
is in D, so

lim T, r di(@—T)M(, )H(t) = 0 .

N->00

So
lim T, [Y(0) — X(0)] = lim [A4(0) — T,x] So” dt M0, t)H(t) .

The result of the theorem follows from A being a determinate
boundary condition funection.

The following example illustrates the subcase for a Case 1 pro-
blem and shows that the domain of R, may be a proper subset of
D, N D..
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ExampLE. Let ¢, ¢, --- denote a positive, increasing, unbounded
number sequence. Consider the singular boundary value problem as-
sociated with the differential expression Ly = y” and the boundary
condition function A defined as

1 0
[ :i if =0,

{~—(1)/[1 + log(1 + )] x/[ll + log(1 + ac)]J i 2>0,

We have Q(x) = [8 (1)] for x =20, M(x,t) = [(1) v I t] for all numbers

2 and ¢ and if » is a positive integer,

7 - [log(l +¢,)/[1 +log(1 +¢,)] OJ
" Lo 1]’

01 02
ary condition function for @ on ¢, ¢, +-+ and K, is calculated by
equation (2).

So, lim, ... T, =1I= [1 0 and 7w = [1 0]. A is a determinate bound-

Let H(z) = [g/(l n 9{22)] 2 =0. His in D, since the function Y de-
fined by
Y (@) — [ arctan o — log + (12%)'* + (7/2)x — 1]
arctan « + /2

for » = 0 is a solution of the singular boundary value problem with
nonhomogeneous term H. Also, Sw dt(r—I1)M(0, t)H(t) exists so H is
0

in D, and Swdt K, (x, t)H(t) exists for each # = 0. The function X

defined by X(x) = Sw dt K (x, t)H() for =0 does not satisfy the

asymptotic boundary condition and so H is in D, N D, but not in the
domain of R,.

It remains to more completely describe how the domain of R,
depends upon the problem and to investigate the complex numbers X
for which one obtains an inverting operator R(4, ¢, ») for the singular
boundary value problem

Y - (Q+N)Y=H
A(0)Y(0) + lim A(e,) Y (c,) = 0

where ¢ denotes a function from [0, «) into B.
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