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WEI-EIHN KUAN

Let V/k be an irreducible affine algebraic variety of di-
mension = 3 defined over an infinite field © with p as its prime
ideal in k[X|, ---, X,]. Let P be a rational normal point on
V/k. Tt is proved that (1) for a generic hyperplane H, through
P, (v, H,) is a prime ideal and (p, H,) is quasi-absolutely (ab-
solutely irreducible) if p is quasi-absolutely (absolutely irre-
ducible), (2) It is not true in general that V' n H, is normal
at P; however, V n H, is normal at P if the local ring of
Vik at P is also Cohen-Macaulay (Theorem 8),

It is well known [11] that if V/k is a normal variety of dimen-
sion = 2, then for almost all hyperplanes H the section V N H is again
a normal variety. This research is motivated by this result to study
the following problem: If V/k is normal at a rational point P on V,
will hyperplane sections of V through P be normal at P? Section 1
localizes some of the results of [11]. Section 2 describes the ideal de-
composition of the generic hyperplane section through a given rational
point of an irreducible variety, and Section 3 gives a negative answer to
the problem of normality. As a consequence the converse of [3; Lemma
4, p.360] is invalid in general.

1. Generalities. In the following and the subsequent sections, a
variety V/k shall mean an irreducible algebraic variety in the affine
space A" defined over a field & of arbitrary characteristic.

Recall the following definitions.

DErFINITION 1. Let V/k be a variety with (¢) = (&, --+,&,) as a
generic point over k, and let P be a point on V. Let

kl¢], = {—'gf%rf, gek[g] and g(P) = o}

be the local ring of V at P in the function field k(&) of V over k.
We say that P is k-normal on V if k[£], is integrally closed in %(%),
that P is k-simple on V if k[&], is a regular local ring, and that P is
singular on V if P is not k-simple on V.

DEFINITION 2. Let V/k be a variety of dimension #, and let P
be a point on V. We say that V/k is locally free of s-dimensional
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singularities at P if every s-dimensional subvariety of V containing P
is k-simple on V.

DEFINITION 3. Let R be a finite integral domain k[¢, ---, &,] over
a field % or a localization thereof relative to a prime ideal of k[&,, -+, &,].
Let p be a prime ideal of B we define

ht p = max. (length of chains of prime ideals contained in p),
depth p = max. (length of chains of prime ideals containing p),
dim p = transcendence degree of the quotient field of R/p over k,
dim R = transcendence degree of the quotient field of R over k.

It is well known that At p + depth p = dim R and dim p = depth p.

The following criterion for local normality is parallel to [11; Th.
3, p.363] and is well known [8; (12.9), p. 41].

PROPOSITION 1. Let V/k be a variety of dimension r defined over
a field k, and let P be a point of dimension s on V. P is k-normal
on V if and only if (1) V/k is locally free of (r — l)-dimensional
singularities at P, (2) every nonzero principal ideal (a) - k[£], 7
unmized of dimension r — s — 1,

PROPOSITION 2. Let V/k, (€), and P be the same as those in Pro-
position 1, let k[€]F be the integral closure of k[&],, and let €, be the
conductor of kl&],. If V is locally free of (r — 1)-dimensional sin-
gularities at P and tf €, %= (1), then every mnonzero element of €,
generates a mixed principal ideal.

Proof. Let ack[&]} not in k[&],, and let ¢ € €,, whence ca € k[é],,
say ca = b, be kl&],. Then (¢) - k[¢], must be mixed. Indeed, if (¢) k[£],
were unmixed, and let p, --.,p, be the associated prime ideals of

(¢) k[&],, then dimp,=r —s—1, for ¢ =1, 2, t. a is integral
over k[£],, hence integral over (k[¢], ) for ¢+ = 1 2, ,t. By hypothe-
sis (k[E],,) is a regular local ring of ‘ dimension 1, for 1=1,2, .., ¢,
therefore (k[&],,) is integrally closed for ¢ = 1,2, .-.,¢. Hence ac

=1 (k[s.]p) and be (n 1(0)(]0[5]1,);’.) N k[E]p = 5:1 Tss Where Q1m e N q:
isa prlmary decomposition of (¢) k[é]p. Thus b€ (c) b[&],, i.e., a€k[£],,
a contradiction.

Let V/k be a variety of dimension » defined over a field £ with
(§) as a generic point, and let P be a point on V. Let u be an in-
determinate over k(§), it is well known that V is a variety over k(u)
with (€) as a generic point of V over the pure transcendental extension
field %k(u). Let k(w)lél, = {f(w; &)/g(u; &)1 £, g € k@)[E] and g(u; p) # 0}
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be the local ring of V at P over k(u). We have, by [10, (d), p. 64],
the following lemma. ‘

Lemma 1. k[é], ts integrally closed if and only <f k(w)[¢], s
integrally closed.

Recall the definition of the ground form of an unmixed r-dimensional
ideal ', [11; p. 373], as following: Let % be an unmixed r-dimensional
ideal in the polynomial ring k[X,, --., X,], we form » + 1 linear forms
in the X,’s with indeterminates coefficients u;;: z; = ;@ + <+ + U, X,,
1=1,2,+++, 7 + 1, and consider the ideal % - k(w)[X]NEkw)[2, « -, 2,_],
where k(w)[X] = k(uy, «+ +%pr1.)[X;, +++, X,], which is a principal ideal
(E(z,y »++, 2,y u)) in E(w)[X]. If E is normalized so as to be a poly-
nomial in the u,;; and primitive in them, so that F is defined to within
a factor in %, then FE is the elementary divisor form or the ground
form of . The polynomial E is integral in any 2z, over the other z;’s
and is a polynomial in 2, ---, 2,., of least degree in z,.,, which is in
A - ku)[X]. If A is prime, then its ground form is irreducible, the
converse is not true in general; but 2 is primary if and only if its
ground form is a power of an irreducible polynomial [9; Th. 9, p. 252].
o is prime and absolutely irreducible if and only if (¥) is prime and
absolutely irreducible [9; Th. 15, p.259]. If 2 is prime and quasi-
absolutely irreducible, then (E) is prime and quasi-irreducible [11, p.
373].

PROPOSITION 3. Let V/k be an r-dimensional variety defined over
a field k with v as its prime ideal in k[X] (=k[X,, +-+, X,]). Let p
be a point on V and let E be the ground form of b. Then V 1is k-
normal at p if and only if (p, 0K/[0z..,) « k(w)[X], 1s unmized.

Proof. By Lemma 1, V is k-normal at P if and only if V is
k(w)-normal at P. By [13; Lemma 2, p. 132] V/k(u) is free of (r — 1)-
dimensional singularities at P. Let (§) be a generic point of V/k(u),
and pass to k(u)[&], we assert that k(w)[€], is integrally closed if and
only if (0E/0z,.,) + k(w)[], is unmixed, where the bar denotes residue.
By the proof of [11; Th. 5, p. 365], we have 0E/3z,, , € €, the conductor
of k(u)[&] in its integral closure k(w)[£]*. Let €, be the conductor of
k(w)[£], in its integral closure k(w)[¢}¥. By [15; Lemma, p.269], € .
kE(w)[¢], = €,. Therefore 0E/0Z,., € €,. By Proposition 2, we have that
k(uw)[£], is integrally closed if and only if (0E/67,.,) - k(u)[€], is unmixed.

2. Irreducibility of generic hyperplane section through a
normal point. Let V/k be a variety of dimension » = 2. Let PeV
be a rational point. We are studying the generic hyperplane section
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of V through P. Without loss of generality, we may assume once for
all in the sequel that V passes through (0) the origin of the affine
space and that P = (0). We shall denote the prime ideal of V/k by p
in the sequel. Let u, ---,u, be n indeterminates over %k, and let H,
be the generic hyperplane through (0) defined by %, X, + -+ + %, X, =0.
We shall use H, in two senses whenever it is proper: (1) H, means
the linear polynomial . X, + -+ + %, X, in k(w)X] (=k{w, -+, u,)
[X, .-+, X,]), (2) H, stands for the hyperplane defined by », X, + -+- +
u, X, = 0. Let k(u) = k(u, ---,u,), V is a variety over k(u) and
V n H, is defined over k(w). Let (b, H)=q, N +--Ngq, be an irre-
dundant primary decomposition with b, -+, b, as the associated prime
ideals. Let p, ---, p,, s < ¢, be the isolated prime ideals. Since (0) e V,
M, H) (X, +++, X,) - kw)[X]. Hence (X, ++-, X,) - k(w)[X] must con-
tain at least one of the p,, 7 < s, say p. Let us denote p, by p, and
let W, be the variety over k(w) of b, - W, is of dimension » — 1 as
it is well known that any component of V N H, where H is a hyper-
surface, is of dimension » — 1. Let (§) be a generic point of W, over
k(w). Since tr.degy. k(u; &) + tr.deg, k(&) = tr. deg, k(u; &) = tr. deg,
k(u) + tr.degiw k(u; &) = n + r — 1 and tr.deg,., k(u; & < n — 1, we
have tr. deg,, k(u; &) = r. But (&) € V, therefore tr. deg, k(&) = r. We
thus have

LEMMA 2. If dim V = 2, a generic point of W, over k(u) is also
a generic point of V over k.

LEMMA 3. If &;#0, then wu,, +«tj_i, Ujiy, 5 U, are algebraically
independent over k(§).

Proof. Say

t =1, tr. de@iiuy, . u, Kty =5 s )
4 tr.deg k(uy »oou,) =1 + 7 - 1.

Therefore tr. degyu,,...,u kU, .. %38 = 7.
Since

quz + eee + unfn
&

we have k(u,, «++, U,; &) = k(uy, =+, u,; §). Now

ek(uzy soey Ups Eu cy Sn) ’

tr.degug Kty =+ o Uy ) +7r=r+mn —1.

Therefore tr.deg,., k(uy +++, u,;6) = n — 1, i.e., @, +++, v, are alge-
braically independent over k(¢).

PROPOSITION 4. Let (£),p, and W, be as above. Then (p, H,):
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(X, =+ oy X)) = P, for sufficiently large integers o, where (X, -+, X,) =
(X, 00y Xn) ¢ k(u’)[X]'

Proof. Let F(u, ++-,u,; X)€p, be a polynomial, we may assume
FQuy ooy by X) e k[t oo, wJ[X]. If & 20, Fluy, -+, %,; &) = 0 im-
plies that F(—(u.s, + <+« + %L, /6), Uy +++, %,; ) = 0. Hence there
exists a nonnegative integer ¢ such that X/.

F<— u2X2 = .).(. — M“Xn’ Uy ¢y Uy X)ek(uzy M) un)[X]
1

vanishes at (). By Lemma 3, the prime ideal determined by (§) in
k(uzr %y ’Z,[,,,,)[X] is pk(%g, M un)[X]' Thus

X10F<_ uzXz + .:X: -+ unXu, s gy = o0y Ui X)ep . k(u“ IR ’M)[X]

for sufficiently large ¢. But

X10F<— u2X2 + .).(. + ?l/.an y Ugy * 00y Uy, X)
1

_XloF(un "’,un;X) =0

mod (u, X, + +++ + 4, X,) - k(w)[X] for sufficiently large 0. We have
XF(uy, +»v, u,; X) € (b, Hy,) - kw)[X] for sufficiently large o. The
above discussion is symmetric with respect to those &; = 0. Therefore
for any &, = 0, we have X% F(u,, «--, u,; X) e (p, H,) for sufficiently
large integer o; and for all F'ep,. For any j such that & = 0, X, € p.
Thus X/iF e (p, H,) for any positive integer o; and for all F e p,. Thus
v, H,): (X,, +++, X,)r Dp, for sufficiently large integer 0. We now
show the other inclusion. Let g(u,, +--, u,; X) be an element in
M, H): (X, --+, X,)*. Then for any h(u, +--, 4,; X)e (X, «-+, X,)%
hu; X) - g(u; X) € (v, H,). Therefore, there exists m;(u; X), n(u; X) €
kEw)[X] such that i(u; X)g(u; X) = Dii mi(u; X) » Fy(X) + n(uw; X)H,,
where (F, +++, F,) « k[X] = p. Thus h(u; &g(u; & =0. If g(u; & =0,
then A(u; X) =0 at (¢) for all Au; X)e (X, ++-, X,)?, which implies
that (¢§) = (0), a contradiction. Thus g(u; X) = 0 at (¢§) and therefore
p>o (p’ Hu): (Xn tt Xn)p-

COROLLARY. (b, H,) has only one isolated component.

Proof. Suppose p, is another isolated component, by Proposition 4,
we have (p, H,): (X, -+, X,)* = p,, for sufficiently large integer p’.
Hence we have p, = (b, H,) = (X3, +++, X,)* = P

THEOREM 1. If V/k is of dimension r = 2, then (p, H,) « k(w)[X]
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18 either a prime ideal p, or an intersection of the prime ideal P,
with a primary ideal of which (X, ++-, X} - k(w)[X] is its radical.

Proof. Let B = (p, H,) and let B=q,N --- N q, be the irredun-
dant primary representation of B with p, ---,p, as the associated
prime ideals. By the corollary, there exists only one isolated prime
component, say q;, and denote p, by p,. Let m = (X, --+, X,) - k(w)[X].
Since B: m* = p, for sufficiently large o, we have (q;: m°) = p,. There
are two possibilities (I) no p; contains m* for any nonnegative integer
A, or (II) some of p; contains a power of m. (I) leads to B=1p,. In
case of (II), say b, contains m* for some » then m = p,. We may as-
sume that there is no other p; to contain m* for any 0 < xeZ. Thus
fori=1,8,4,--+7,q:m = q; forany 0 < xeZ. Since q,: m* = f(u)[X]
for large 0, hence B:m? = (q;:M") N (W) N «++ N (qy: M) = q, N G5 N
q;N +++ N q and thus p, N a. = (b, H,).

COROLLARY 1. If V is normal over k, then (p, H,) = p,.

Proof. Passing to the coordinate ring of V, k(u)[n], we have that
(W), + <o+ + %2, « k(w)[y] is unmixed. Letting p, = p./p, 6. = q./p we
have (3 u®;) = b, Nq, or S, w;7;) =D,, by Theorem 1. The unmixed-
ness implies that (3 u.%;) = b, i.e., (b, H,) = p,.

COROLLARY 2. If V is k-normal at (0), then (v, H,) = p, i.e.,
(v, H,) is a prime ideal.

Proof. By Theorem 1, (p, H,) = p, or (p, H,) = p, N q,. Passing
to the local ring k(u)[7]e. of V at (0), we have (3 u:9.)ku)[7]o = P,
or B¢ N q: where P, = b./b, G, = G,/pP; and q:, are extensions of b, and
q, in k(u)[n], respectively. Since k(u)[7], is integrally closed, the
unmixedness of (3 u;n;) - k(w)[9], implies that (3, w:n,)k(w)[y] = b, and
(’pr Hu) = Pu.

Recall that V/k is a quasi-absolutely irreducible variety if %k is
quasi-algebraically closed in the field k(&,, -+, &,) of rational functions
on V/k; a prime ideal U in k[X,, --., X,] is quasi-absolutely irreducible
if k[X,, +--, X,]% is primary, where k is the algebraic closure of .
By [11; Th. 10, p. 371], p is quasi-absolutely irreducible if and only if
V/k is quasi-absolutely irreducible. V/k is absolutely irreducible if %
is algebraically closed in k() and k(&) is separable over k. A prime
ideal ¥ in k[X,, --+, X,] is absolutely irreducible if k[X,, -+, X,]. «
is a prime ideal. It is well known that the prime ideal p of V/k is
absolutely irreducible if and only if V/k is.

THEOREM 2. If V/k is quasi-absolutely irreducible of dimension
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r = 3 and if k is infinite, then V N H,/k(u) is quasi-absolutely irre-
ducible.

Proof. Let (y) be a generic point of V' N H, over
k(w) = k(uy, ==+, u,) .

By Lemma 2, () is a generic point of V over k. Let 7,7, and 7,
be algebraically independent over k. By Lemma 3, () is a generic
point of V over k(u, ---,u,). By [11; Lemma 5, p. 368], k(uy, =+, u,)
is quasi-algebraically closed in k(u, +++, w,)(3). Let ¥ = k(uy * ¢, Uny)
(m), w, is algebraically independent over ¥. Viewing k(us, «++, u,_,) as
the field & and w, as the % in [11; corollary, p. 369], we have X(u,) =
F(tlyy ooy Up_) () (M) = k(u)(E). Let & and &, in [11; corollary, p. 369]
be replaced by — (w9, + +++ 4+ Un_i9a)/? and —7),.,, respectively, one
sees that —(u,), + +++ + %,_,_)/n, and 7,/n, are algebraically inde-
pendent over k(u,, --+, u,_,). Hence by the same corollary we have
that

k(uzr °t un——l)(un)("‘ (7/(/2772 + oo + u”n—l)/vl - u’n??'n/vl)
= k(u‘u ) un—l)(un)(ul) = k(u)

quasi-algebraically closed in X(u,) = k(u)(®).

LeEMMA 4. Let K be a regular finitely generated extension of an
infinite field k with tr.deg, K = 3. Let x,y,z be three elements of
K algebrateally independent over k, and z/x¢ K°k, where p 1is the
characteristic of k. Then for all dbut a finite number of constants
cek, K is a regular extension of k(y + cz/x). Moreover, let T be an
indeterminate K(7) is regular over k(z)(y + 7z/x).

Proof. [5; Lemma 3].

THEOREM 3. If V/k is an absolutely irreducible variety of di-
mension r = 3 defined over an imfinite field k, then V N H,[/k(uw) is
an absolutely irreducible variety.

Proof. VN H,/k(w) is irreducible. Let (£) be a generic point of
VN H, over k(u). By Lemma 3, (£) is a generic point of V over k,
hence tr. deg, k() = 3 and £(¢) is a regular extension over k& by [12;
Proposition 1, p.69]. Let &,¢&, and &, be three elements in a separa-
ble transendental basis of k(&) over k. Let K = k(uy »++, Un_) (), U,
is algebraically independent over K. Viewing k(uy +++, %,_,) as the
field & and %, as the 7 in Lemma 4, we have K(u,) = k(u)(&). Let
Y= — (UL + *o+ + % 8p),2=&, and =&, then x, ¥ and z are
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algebraically over k(u,, ---, u,_,). By [6, Proposition 1, p. 185] and [6;
corollary to Proposition 2, p.186], z/x = —&,/§, ¢ K?k(uy, «+ -, %,_,), We
have that K(u,) is a regular extension over

Rty < oo, un_l)(un)(-y—%%> = k(u) .

Therefore k(u)(é) is a regular extension over k(w), hence V N H,/k(u)
is an absolutely irreducible variety.

Let {F, ---, F,} be a set of generators of p in k[x]. Let P be a
point on V. According to [14], P is k-simple on V if and only if the
mixed Jacobian of {F, «-+, F',} is of rank » — r at P. When k(P) is
separable over k, P is k-simple on V if and only if the classical Jacobian
of {F, .-, F,} is of rank n — r at P.

Following Theorem 1, we denote p, as the sole isolated component
of (v, H,) and W,/k(u) as its variety in the sequel.

THEOREM 4. Let V/k be of dimension » = 2. Then Pe W, is
k(u)-stmple if and only if P is k-simple on V.

Proof. Let Pe W, be k-simple on V. By Theorem 1, (p, H,) =
p. N Y, where A is the embedded component with (X, ---, X,) as radical.
Let (1) be a generic point of V over k(u), and let (§) be a generic
point of W, over k(w). Let k(w)[n], and k(u)[£], be the local rings of
V and W, at P respectively. k(w)[7], is regular and

k)&, = k@) [9]o/P. « kW1], »

where p, is the residue of p, modulo p. If P =~ (0), let A be the
residue of A modulo p and let m, be the maximal ideal of k(u)[7],,
then Wk(u)[y] ¢ m,. For otherwise (7, -+, 7,)° Cm, for some integer
©0>0,a8 (X, -+, X))’ UA. Thus P = (0), a contradiction. Therefore,
when P = (0), (Su1y) « k@)[7l, = B, + k@7l and k@IE], = kw)l,/
(Zum)e(u)[n],. By [16; Th. 26, p. 303], to show that k(u)[£], is regular
it is sufficient to show that > u;7;¢ m3. But this is the case, for if
> um,emd, taking partial derivatives with respect to u; for ¢ =
1,2, -+, m, we have n,em, for ¢ =1,2, ..+, n, l.e., P= (0) a con-
tradiction. Therefore k(u)[¢], is regular. If P = (0), then (0) is k-
normal on V. By Corollary 2 to Theorem 1, (b, H,) = p,. In viewing
[14, Th. 7, p. 28], we let F', ---, F, be a basis of p, and let F,’s and
X.’s be so arranged that (det (0F;/0X;)) # 0, where i,7 = 1,2, -+,
n — r, and the subscript (0) means that we replace (X) by (0) after
the determinant of the Jacobian is formed, as the rank of

LIf P20, and if P is k-simple on V, then P remains simple on Wau/k(u) follows
also from [13; the theorem of Bertini, p. 138].
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J(Fly R Fs:le "‘an)(o) = n —7r.
Consider

OFJ3X, ++» OFJ3X,.. OF.J0X,

4, =det| -
o, JoX, -+ F, [0X, . OF,_J0X,

ul cee un~r /M'J (0)

where 7 —r + 1 <j <. If 4, =0 for some j then u, «--, u,_,, ¥;
are algebraically dependent over k. This is a contradiction, hence (0)
is k-simple on W,. Conversely, assume that Pe W, is k(x)-simple on
W,. If P= (0), we have k(w)[&], = k(w)[n],/(2v7.) « k(w)[n], from the
above. If P= (0), then P is k(u)-normal on W,. By Theorem 6 in
the following V/k is normal at (0), therefore (p, H,) = p, and kw)[€] =
k@) [} o/ (Zumn:) « k(w)[7]o. Therefore k(w)[], = k(w)1]./(w::) - kW)[7],
if P is k(u)-simple on W,. Since ht((Zu;n;) - k(w)[7],) = 1, it follows
from [8; (9;11), p. 28] that k(u)[%], is a regular local ring. Hence P
is k-simple on V.

By an argument similar to the proof of Lemma 2, we have the
following.

COROLLARY. If V/k is of dimensiton r = 3 and if V/k is locally
free of (r — 1)-dimenstonal singularities, then V (\ H,/k(u) is locally
free of (r — 2)-dimensional singularities.

Note. If r = 2, the corollary is clearly false as one sees by taking
V to be a cone with vertex at (0).

THEOREM 5. If V/k is a complete intersection of dimension = 3
and if V is k-normal at (0), then the gemeric hyperplane section
VN H, is also k(w)-normal at (0).

Proof. V/k(w) is k(u)-normal at (0), by Lemma 1. By corollary
to Theorem 1, (b, H,) = p, is prime. For any polynomial F = 0 in
E(w){X], by [7; Th. p.49] or [16; Th. 26, p.203], (b, F) = (b, H,, F')
is unmixed. Hence, passing to the quotient modulo p,, we have that
every nonzero principal ideal in the coordinate ring k(u)[é] of V N H,
is unmixed. It follows that every nonzero principal ideal in the local
ring of V N H, at (0), k(w)[&] ., is also unmixed. Since V/k is k-normal
at (0), therefore V/k is locally free of (r — 1)-dimensional singularities
at (0). By the above corollary, V N H, is locally free of (r — 2)-di-
mensional singularities at (0). It follows from Proposition 1 that V' N H,
is k(u)-normal at (0).
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THEOREM 6. If VN H, is k(w-normal at (0), then V/k is normal
at (0).

Proof. This theorem is really a consequence of [3; Lemma 4, p.
360] (I8; (36.9), p.134]). Indeed, let () be a generic point of V over
k(u). Passing to k(u)[n], by Theorem 1, we have (w,, + -+« + u,7,) *
Ew)[n] = B. N q, where P, and q are residues of p, and q modulo p
respectively. It is clear that (1) (w2, + <+ + 4.9, » k@)[9]e = . *
E@)[n]w N ak@) 9], w9, + «++ + %7, is in the Jacobson radical of
k(?’(’)[yi](o), (2) (%17?1 + e + uny}'n) ¢ (k(u)[ﬁ](m)ﬁu =P, (k(%)[y]] (0))ﬁu) and
(8) let (¢) be a generic point of V' N H, over k(u), then

k) [1] 0 ~ L
Skl B

which is integrally closed as VN H, is k(u)-normal at (0). Moreover,
let %&(u)[7]% be the integral closure of k(u)[7]e in k(w)(y), and let p
be a minimal prime divisor of (w7, + +++ + u,%,) « k(W) [7]%. It follows
from [2; Th. 2, p.253] and [2; Th. 8; p. 254] that At(p’' N k(w)[n]w) =
htp = 1. Therefore P’ N k(w)[n]w = P., i.e., every minimal prime divisor
of (wn, + <+« + u,m,) « k(w)[n% lies over p,. The above verify the
conditions of [3; Lemma 4, p. 360], therefore k(u)[n]. is integrally
closed.

3. The local normal problem. Throughout this section let V/k
be a variety of dimension » = 3, passing through (0) with (§) as a
generic point over k and let H,: u,.X, + -+ + 4, X, = 0 be a generic
hyperplane through (0). If V/k is normal at (0), is it true that H, N V
k(w)-normal at (0)? If V/k is a complete intersection then by Theorem
5, the answer to the question is yes. However we shall prove the
answer to the question is negative in general.

DEFINITION 4. (a) Let R be a Noetherian ring. Subset {a,, -+ -, a,}
of R is a prime sequence if for each 1 =1, 2, .-+, q, a; is not a zero
divisor in the ring R/(a, +--,a,) - R.

(b) Let R be a local ring, the number of elements of a maximal
prime sequence in R is called the homological co-dimension of R, and
is denoted by cod h(4). If cod h(4) = dim A, we say that A is a Cohen-
Macaulay ring.

For a general commutative ring R and a multiplicative system S
which does not contain 0, it is well known [15, p. 219] that (Ul B)°c
Ae: B and (X: Y)° < XY, where (*)° = (*) - Bs, (*)° = ("), f is the
canonical homomorphism of R into R; and where %, B are two ideals
in R, and %, Y are two ideals in R,.
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ProposITION 5. Let U, B, X and ¥ be the same as above. Then
(@) QLB =A:B; if ADKer f and B is finitely generated, also (b)
X: D) =%:9 if D is finitely generated.

Proof. Let B = (b, +++,b,)R, we have B° = (f(b,), -+, f(b,) « R..
Let xe3: B°. Then «B° < UA° and zf(b,) = f(a;)/f(s;) for some a; e U and
s;€ S. Therefore f(w;s,)xf(b;) € f(A). For each be f(B), b = 3> f(r;)f(b;)
for some r;e R. Now f(m;s;)xb = >; f(m:8:)%f(r;)f(b;) € (), which im-
plies that f(x;s;)x € f(2): f(B). Hence x e (f(2): f(B))R,. Since A D Ker f,
by [15; (15), p. 148], f@): f(B) = fQL: B). Therefore xe (2 B)° and
A% B = (WA: B)*. The proof of (b) is similar.

LemmA 5. k(w)[€]w ts Cohen-Macaulay if and only if k[l is
Cohen-Macaulay, where k[&] is the coordinate ring of V/k, and w 1is
an indeterminate over k(&).

Proof. If k|é], is Cohen-Macaulay, then there exist 4, -+« 4 such
that {4, --- 4} forms a maximal prime sequence, where » = dim V.
Thus (/13 R /i)k[E](o): (/b)‘l) * k[E](O) = (/1: R /z) ° k[é](o) for i = 1! 27 e T
By [15; (1), p.227], [15; (15), (21), p. 148] Proposition 5 and [16; (3),
p. 221] one has (4 « -+, HkW)[Elw: (4@ ) = (4, « -+, HE(@)[E] ), for
1=1,2,+++,7r. Therefore {4, --+, 7} remains as a maximal prime
sequence of k(u)[¢]w. Thus k(u)[&]« is Cohen-Macaulay.

Conversely, let k(u)[¢], be Cohen-Macaulay, let {#(u; &), -+ Z4(u; &)}
be a maximal prime sequence of k(4)[£]. Then, forv=1,2, -+, r, we
have (4(u; &), «++, 4(u; &) - k(W[w: (44:(%; ) - EW)[E]w = (45 8), » -,
Zi(u; &) « k(w)[€]w. By [15; (21), p. 148], going back to the polynomial ring
k(w)[z], we have (4(u; %), -+, 4(u; x), Dk@)[2]w: (4.(w; %), PE@)[2] 0 =
(4(u; ®), -« -, 4w ), Dw)|z]w. In viewing [4; Satz 3, p. 59], one sees
that

(Zi(w; ), + ==, 405 %), D) 2] 0
(G (u; @), PEW 2] = (4(u; @), <« -, 4(u; @), PE@)]x]

almost always for ¢ = 1, 2, - -+ , where the bar means specialization of
u to elements in k. Passing to the local ring of V/k(w) at (0), by [15;
(15), p. 148], we have A(u; &, --+, 4(u; kW] ivi(u; HEW)E] 0 =
(4w &), <+, 4(u; &)kW)[E] o, almost always for¢ = 1,2, -+« r. Letack
be such that the above holds and ~(a; &) =0, for ¢ =1,2, ---, », then
(4(a; &), =+ <, 4ila; Nl o (dralas EE]w = (4(a; &), « -+, 4(a; &) - k[E] o
for ¢ =1,2, -+« r. Therefore {4(a, &), «+-, 4(a, &)} forms a system of
prime sequence of k[¢],. Hence k[£], is Cohen-Macaulay.

THEOREM 7. Let V/k and H, be the same as the above. It is mnot
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true in general that if V/k is k-normal at (0), then V N H,/k(u) is
k(u)-normal at (0).

Proof. Suppose that if V/k is k-normal at (0), then V N H,/k(u) is
k(u)-normal at (0). Let (£) be a generic point of V over k and let ()
be that of V' N H, over k(u). Applying the supposition to V N H,/k(w),
we get (VN H,) N H,,k(w, w(2))-normal at (0), where

Hu(z): ulel + b + uZan = O
is a generic hyperplane through (0) on
VN HJk(uw) and w(2) = {ts, **+, U}

are algebraically independent over k(u)(&, 7). Repeating the supposition
and Corollary 2 to Theorem 1 in this way until dimension r of V is
cut down to 2, we have then

VNH,NH, N~ N Hy_ok(u, w(2), <+, u(y — 2))-normal

at (0), where u(%) = {us, =+, Ui}, and {u;, <+, u;,} are indeterminates
over k(w, u(2), «--, u(t — 1), 9, Ny 7;—) With »; = (Misy =+ 77m) being
a generic point of VN H,N H,, N --- N H,; over k(u, u(2), - -+ u(g)).
Let U= {u, u(2), «++, u(¥ — 2)}, then k(U) = k(u, u(2), -+, u(v — 2)).
Consider V/k(U), () is a generic point of V over k(U) - Correspondingly
in the coordinate ring k(U)[E] of V over k(U) we have then » — 2
quantities 4 = %8, + + oo + Uiubpyt = 1,2, ¢+ r — 2, such that (4, ++-, 4)
is a prime ideal in k(U)[¢]l and 4.2 (4 -+, )k(U)[E]lw. Thus
{4, +++, 45} is a prime sequence in the local ring k(U)[¢].,. Let R be
E(O)E /(45 <+ +y 4_s) « E(U)[€]w, then R is integrally closed of dimen-
sion 2. By [16; (3), p. 397], R is Cohen-Macaulay. Let a, b€ k(U)[&],
be such that their residues modulo (4, «+-, 4_) - E(U)[£]w form a
maximal prime sequence of R, then {4, --+, 4_,, a, b} is a prime sequ-
ence of k(U)[¢l. Therefore dim k(U)[&]« = cod hk(U)[&],, and hence
k(U)[¢]w, is a Cohen-Macaulay ring. It follows from Lemma 5 that
k[£], is a Cohen-Macaulay ring. So under the supposition, we conclude
that k[¢], is integrally closed implies that k[¢],, is Cohen-Macaulay.
But on the other hand, [1; Proposition, p. 655] and [1; Th. 5, p. 653]
yield an example of a local ring of an algebraic variety at a rational
point which is a factorial local ring (hence normal), but not a Cohen-
Macaulay local ring. Hence the above supposition yields a contradiction.

THEOREM 8. If V/k is normal at (0), and the local ring k[],.,
is a Cohen-Macaulay ring, then V N H,[k(w) is normal at (0).

Proof. By the corollary to Theorem 4, (p, H,) is free of (v — 2)-



ON THE HYPERPLANE SECTION THROUGH A RATIONAL POINT 405

dimensional singularities. By Lemma 5, k(w)[£],, is Cohen-Macaulay.
For any nonzero a(w; &) in k(u)[€], not in the prime ideal

(ul‘fl + oo + unEn) * k(u)[ﬂ(o): {a'(u’ E)v u151 + oo + unEn}

forms a prime sequence of k(w)[£],, therefore by [16; Lemma 5, p.
401], (a(u, &), w,é, + +++ + u,&,) « k(w)]€lw, is unmixed. Hence every
nonzero principal ideal of k(u)[&]w/(wé + +++ + ) « k(w)[€] e, is un-
mixed. It follows from Proposition 1 that V N H, is k(u)-normal at

0).

I would like to take this opportunity to express my thanks to
Professor A. Seidenberg for suggesting the problem, his valuable advice
and continuous encouragement.
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