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A 7root system A is a partially ordered set having the
property that no two incomparable elements 2 and ¢ have a
common lower bound, 17(4, R)) will denote the direct pro-
duct of copies of R, the set of real numbers, one for each
2ed, V(4, R)) is the following subgroup: ve V = V (4, R))
if the support of v has no infinite ascending sequences. We
put a lattice order on v by setting v =0 if v =0 or else
every maximal component of v is pesitive in R,

This paper has two main results: we first show that the
cone of any finite dimensional vector lattice G can be ob-
tained as the union of an increasing sequence P;, P, --- of
archimedean vector lattice cones on G such that (G, P;) =
(G, P,) = ---, as vector lattices, Next, generalizing this, we
show that for any root system ./ the cone of the Z-group
V =V (4, Rx) can be obtained as the union of a family of
archimedean vector Z-cones {P;: 7€'} on V, where (V, P,) =
(V, Ps), as vector lattices, for all y, e/,

It is proved in [1], Theorem 2.2, that V(4, R,) is indeed an -
group when /4 is a root system. In an <«-group K, xc K is a strong
order unit if x = 0, and for each 0 < ae K thereisan n=1, 2, --.
such that nx = a. The symbol @ will denote the cardinal sum of -~
groups; that is, if K;(te ) are ~groups then K = [ {K;: 1€ I} means
that K is the direct sum of the K;, as groups, and 0 < 2¢ K if and
only if 0 < x;€ K;, for each 7cI. Finally, if » is a real number,
{ry will denote the smallest integer exceeding 7.

Throughout the paper the pair (G, P) will denote an abelian -
group; that is, G is an abelian group, and P is the cone for a
lattice-group order on G. An s-group (G, P) is said to be archimedean
if for any pair a, be P there is a positive integer n such that
na £ b; P is then called an archimedean <-cone. We restrict our
considerations to abelian groups since archimedean s-groups are neces-
sarily abelian (see [2]).

Let (G, @) be an ~-group; we say that Q@ can be approximated by
the archimedean s-cone P if there is a family {P,: veI'} of archi-
medean <~cones on G, such that (i) (G, P,) = (G, P,), for all v,ée I,
(ii) Q = U{P;: ve '} and (iii) P = P,, for some ve . The sgroup
(G, Q) is then called a ltmit A-group. If the approximating family
is directed by set inclusion (resp. a chain under set inclusion) we call
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428 JORGE MARTINEZ

(G, Q) a directed (resp. linear) limit A-group. If I'={1,2, ...} and
P,&P,., forall n=1,2,---, we call (G, Q) a sequential limit A-
group.

(G, Q) is a wvector lattice if G is a real vector space, and in ad-
dition to being an s-cone, P is closed under scalar multiplication by
positive real numbers. The vector lattice (G, Q) can be approximated
by the archimedean vector lattice cone P if there is a family {P,: ve I'}
of archimedean vector --cones on G, such that (i) (G, P,) = (G, P;), as
vector lattices, for all v,0e ", (ii) @ = U {P;: ve '} and (iii) P = P,,
for some vye I'. In this case we call (G, Q) a limit A-space. By a
directed (resp. linear, resp. sequential) limit A-spaze (G, Q) we mean
one where the approximating vector s-cones form a directed set (resp.
a chain, resp. an increasing sequence.)

It will be useful to denote a limit A-group (G, Q) by (G, @, P),
where P = P, for all ve'; this way we can keep track of what
approximation is being used.

Let (G, Q, P) be a limit A-group (resp. limit A-space); we call it
a strong limit A-group (resp. stromg limit A-space) if @ is essential
over each P,. (Let (G, P) be an ~~group, @ be an extension of the
cone P. @ is an essential extention of P if every --ideal of (G, Q) is
an s-ideal of (G, P). For further discussion on essential extensions
see [3]). Suppose the family {P,: ve/'} has a smallest member
(which is once again denoted by P); it follows from a remark in [3]
concerning essential extensions, that (G, Q, P) is a strong limit A-
group if and only if @ is essential over P.

PROPOSITION 1. The cardinal sum of (strong) sequential limit A-
groups is a (stromg) sequential limit A-group. The same statement
holds for (strong) sequential limit A-spaces.

Proof. Let (G, Q) = B (Gi, Q;), 1€ 1. Suppose each Q; 1s the limit
of the sequence {P,;: n=1,2, ...} of archimedean ,-cones on G,
and (G, P,;) = (G;, P,,;) = «-+, for all 7el. Fix n, and let P, be
the ~-cone of the cardinal sum of the (G, P,;). Since each P, ; is
archimedean, so is P,; clearly P, & P,.,, for each n=1,2, -.-,and
P, Q.

So let y¢@Q and 1,7, +--,1, be the nonzero components of .
Then each y; isin Q; , for m = 1,2, ---, k, and there exists an n(m)
such that y; € P,um,:,. Let n=max {n(m):m=1,2,-..,k}; then
each y; € P,; , which implies that ye P,. This show that @ = U,
P,; it is obvious that (G, P) = (G, P,) = ---. It follows therefore
that (G, Q, P) is a sequential limit A-group.

Now suppose Q, is essential over each P,; <€ I. (This is equi-
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valent to saying that each ~ideal of (G;, Q;) is an ~-ideal of
(G:P,;).) Let K be an ideal of (G,Q); then K= B {K;: iel},
where K; = KN G,. Each K, is an «-ideal of (G, Q;), and hence an
/-ideal of (G;, P,,;). Thus K is an ideal of (G, P,), proving that @
is esssential over P,, that is, (G, @, P,) is a strong sequential limit
A-group.

The above proposition can be generalized, in a sense:

PROPOSITION 2. The cardinal sum of (strong) directed limit A-
groups 1s a (strong) directed limit A-group. The same statement holds
for cardinal products.

Proof. Let (G, Q) = B (G, Q;), ieI. Suppose (G;,Q;) = (G;,Q;, P))
is a directed limit A-group, and {P,;: 7v;e I'} is the approximating
family. Let I" = n{I"®: 1€ I} and consider the family {P,: ve I} of
¢-cones defined by: x e P, if for each 1€ I x;¢€ P, (v;e I'). Each P, is
clearly an archimedean --cone for G, and (G, P,) = (G, P,), for v # d.
The P, obviously form a directed system, and finally, if ye @ then
¥; = 0 or y;€Q;; in either case y; € P;, for some d;€ I, and therefore
ye€ P;, where 6 = (+++,0;, --+)€". Thus Q is the join of the P, and
we’re done.

Notice that the above proof works for the cardinal product of
directed limit A-groups. If each (G;, Q;, P;) is a strong limit A-group
then one uses the technique of the proof of Proposition 1 to show
that (G, Q, P) is also a strong limit A-group. We should also point
out once more, that a similar version of this theorem holds for directed
limit A-spaces.

It is not known whether the cardinal sum (resp. product) of linear
limit A-groups is again a linear limit A-group. By Proposition 2 it is
certainly a directed limit A-group.

THEOREM 3. Let (G, Q, P,) be a strong sequential limit A-space
having a strong order unit. Let K=RP G and Q = {r + g: r >0,
or else r =0 and ge Q). Then (K, Q', R+ P,) s a strong sequential
limit A-space.

Proof. Let ue G be a strong order unit relative to @; without loss
of generality we can assume wc P, for each n =1, 2, ---. Let v be
any positive real number and define

(A (50, twnmnnee
n n
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Let V™ = {rv™™: reR}; V™ is a one-dimensional space, and clearly
VenNnG=0, so K=V™”@GE. Now let P, = {rv™” + ¢g: 0 < » and
g€ P,}; then (K, P)) is the cardinal sum of V™, ordered as the reals,
and (G, P,). Since each P, is archimedean it follows that each P, is
also. Notice that V¥ =R and PY=R B P,. If H is an ~ideal of
(K, Q) then either H= K or H= G, or else H is a proper ideal of
(G, Q); in any case H is an <-ideal of (X, P/), since Q@ 1is essential
over P,. Notice also that (K, P,) = (K, P,.,), for all =.

We must show (1) P, S P,.,. S @ and (2) Q = U=, P,.

(1) We show first that P/ S P, = Q', for all k =1,2,..-.. The
first inequality will follow if we can prove that ve P, the second,
if v e @', because we know that P, < P, = Q. That »® is in @’ is
clear since (1/n)v > 0. One can easily show that

v=Fkv® + (k — Du,

proving that v e Pj.
But now observe that for each n =1, 2, --- we have

1
nn + 1)

,U(m _ ,U(n+1) —

(v+ueP &P,

so v is the sum of two elements in P,.,, and hence v~ e P,,,.
That is enough to show that P, & P,...

(2) Let ye@'; we have the following expressions for y: y =
SV 4+ Y, = s™o™ + y®  with s,s™eR and ¥, y™eG. This forces
certain relations:

(1) s™ = g = 0 (since ¥ @),
and
(2) ((1_ n)>s(n)u + Yy =1y,

n

Thus each s = 0; moreover, the above equations give
() Yy = (n — Lsu + ¥, .

Writing ¥, as the difference of its positive and negative parts relative
to @, we obtain

(27) Y™ = (n —)su+ ¥ — Yr

Observe that since % is a strong order unit of (G, @), then so is su.
Therefore if n is large enough, (» — 1)su > y;(rel. @). But since the
P, form a chain we can certainly find an 7, such that ¥, y; ¢ P,, and
(my — 1)su > y;(rel. P,). Thus y{” € P,; together with the fact that
s = 0 this impies that ye P,. This proves the theorem.
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COROLLARY 3.1. Ewvery finite dimensional vector lattice is a strong
sequential limit A-space.

Proof. Note at the outset that every finite dimensional vector
lattice has a strong order unit. For if (V, Q) is a t-dimensional
vector lattice, we may regard (V, Q) as V(4, R;), where 4 is a root
system of ¢ elements, and for each M e 4, R; = R. ([1], Theorem 5.11}
Then « = (1,1, --+, 1) is a strong order unit.

We proceed by induction on ¢:

Case I. /A has a largest element \,. Let A" = A\(\}; then (V, @)
is a direct lexicographic extension of V(4’,R;) by R. But V(/, R))
has dimension ¢t — 1, so it is a strong sequential limit A-space. By
Theorem 3 (V, Q) is also a strong sequential limit A-space.

Case II. /A has no largest element. Then 4 can be written as
the union of two nonempty, disjoint subsets 4, and 4, having the
property that \ is incomparable to f, for all xe 4, and ped, It
follows that (V, Q) = V(4, R;) B V(4,, R;), and both these summands
have dimension less than ¢; thus they both are strong sequential limit
A-spaces, and by Proposition 1 so is (V, Q).

Let A be a root system, I = II(4,R;), V=V(4R;,) and P =
VN Il*, where I1* = {x: z, = 0, for all e 4}. The following discus-
sion will establish that V is a limit A-space. (Of course we consider
V as a vector lattice relative to the cone V+ = {v: all the maximal
nonzero components of v are positive}.) Notice that (V, P) is an
subgroup of //. For each x€ P let s(x) denote the support of x, m(x)
the set of maximal nonzero components of 2. Choose a family
{n,;: » e m(x)} of positive integers, and define a map 6., on /I by:

Y if A ¢ s(x) or A e m(x);

Yz — 0350 Y if v es(x)\ m(xr) and ) has no succes-
W0. 1p)r = sor in s(x);

Yy — 0P Y, if ves(x)\ m(x) and v—1 is the sec-

cessor of \ in s(x).

(Note: )\(x) is the maximal component of x that exceeds \.) This map
has an inverse 6.},
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Y, if A ¢ s(x) or A e m(x);

2,52 Yo + Y if ves(x)\m(x) and A has no succes-
sor in s(x);

(€T ISR TR T ID IR cee (T
(@0 1072 = nz(i? VIRY, + + n;(';g‘ Yneoy T Y=
‘ if ves(x)\m(x) and N;_, is the suc-
cessor of \;; also \, = \(x):

JETRERREREIIN Caggd e Ha )
nih Yy N “ARY, + + Yi=1
if ves(x)\m(x) and \,_, is the suc-

cessor of \;; A, has no successor.

Clearly then 6,,,, is a vector space isomorphism of /I onto itself.
Let P, ., = P0,,.,; we claim first that, restricted to V, each 0, ., is
an isomorphism of V onto itself. This is due to the fact that for all
yell

s(y) S s(®) U s(¥0,,1py) and s(yb,,..,) S s(y) Usw) .

A quick look at the definition of 6;),, readily shows that P4, ., S P,
that ist PS P, .,,. Thus P, ., is an archimedean vector lattice order
on V, and (V, P) = (V, P,,.,), for all xe P and {n;: » € m(x)}.

Now if ye V+ then consider x = |y|,; of course s(x) = s(y) and
m(x) = m(y). We proceed by induction on the maximal chains of s(x).
Let /¢ be a fixed maximal component of «; of course (y0;",.,); = ¥, for
all » = ¢ and every choice of integers {n;: A € m(x)}. So assume N < g
and X € s(x); if ) has no successor in s(x), let %, be the smallest positive
integer = 2 such that n,x, = 2. If y, > 0 then n{?y, + y, = 1, since
%, = Y. If ¥, <0 then y,= —x; now if x, > 1 we get n{’>™' = x,,
for all », = 2. This implies that n{?y, =2z, =2, +1. If 0>y, =1
then ni?y, =n,y,=2=1+ 1=, + 1. Hence in any of the above
cases n¥?y, + y,. =1, for large enough =, Notice that =, is in-
dependent of .

If XN does have a successor in s(x) there are two cases for

(Y07 )

Case I. (Y0;' ny)s = nE@T 1wy, + oo +nfwy,  +y,, where
Ae = N, A, is the successor of \; in s(x) and X\, = f.
Thus

(yﬁ;l,ml')l = n§f2/c>[ni,”lz>+""‘"<’”1k—l>y,¢ 4 eee + ylk—xl + Y s

and by induction the sum in the square brackets is = 1; so
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W07 inp) = nEw + Y = 1.

(The last inequality holds since for any real number r, n<""® = + 1,
for all n = 2.)

Case II.
(?/0;1,4”2))1 — n§x11>+<x12>+...+<z2k>y# + niz”2>+"'+<”">?lzl 4 oeee ni‘xlk>y1k——1 + Ya s

where A\, = X\, \;_, is the successor of A, in s(x) and \, has no successor
in s(x). Again

(?’_,0;1,(7“1})Z — ’n}flﬁ[’nifll”'“+<"1k—1>yp 4 eee ylk_ll + Vi, s
and again by induction the bracketed sum is = 1; so
W0 )2 = 0% + 4y, = 1.

Out of all of this we get that if A < # and X € s(x) then there is
an n,(independent of \) such that (y6;",.,); = 1. This works for every
rem(x) = m(y), and so we can find integers {n;: M € m(x)} such that
Y0;" 1ny € P. (Remark: if X < ¢ in the above arguments, but x, = %, = 0,
then there is no problem; any 6 will fix this component.) Putting
it differently: we’ve discovered an « in P and integers {n,: » € m(x)}
such that ye P,,,,; hence

Vi S U Py € P, {n: M em(®)}} .

To show the reverse containment we show a little bit more. The
maps 0,,.., all take V* into itself. For if ac V* and pem(a) then
(@0e,1n)n = @pe And if X > e then (ad,,(,,); = a; = 0; thus m(a) = m{ab,,.,).
One shows in a similar fashion that m(ad,,..,) S m(a), and hence equality
holds. This clearly shows that V%6, ,, = V* and therefore P,,,, S V",
for all x€ P and {n,: » € m(z)}.

In addition V* is essential over P, in view of Proposition 2.5 in
[3]. We’ve thus proved the following theorem:

THEOREM 4. If A is any root system, then V= V(4 R) is a
strong limit A-space.

Again let 4 be a root system, and F' = F(4, R;) = {ve V: s(v) is
contained in the union of finitely many maximal chains;} F' is then
an <-subgroup of V. In the above construction we can throw out
quite a few of the P,,,,; in this case we take for each xeQ = PN F
and n = 1, 2, -++, mappings 0., where each n, = n. We abbreviate
the notation to 6,, and P,, respectively. (We mention in passing
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that (F Q) is an /—subgroup of (V, P)) For each aec@ and each
Q6,.,. Notice that since s(b) = s\a) U s{b8,.,.) and s(bﬁu,.n) o S(a) U s(b) it
follows that F'4,, = F. This means that Q,, is an scone for F and
(F, Q) = (F, Q. n)

If ye bl FFN V' then z =|yl|,€F; pick #, to be the smallest
integer = 2 such that nw, =2, for 2l j =1, -+, £, with m(x) =
miyy = {tt, <-+, t}. Wlth this notation, we can follow the technique
oi the proof of Theorem 4 and show that ye@.,,. We get therefore
that 7 = U {Q,,.c xe€Q.n = 1,2, ---}, and we’ve proved the follow-
ing:

TerozrEM 5. If A 18 a reot systew, then F = F{/A, R)) 15 a strong
limit A-space.

REMARK. Once again in view of 2.5 in [3] we can conclude that
F' is essential over Q.

Now let 4 be a root system having finitely many maximal chains
and no infinite ascending sequences; note that in this case V = /I.
Let mi{A4) denote the set of maximal components of 4. For each e P
define ¥, on // by

U if e m(A);
Yy, — WEPY, if v € m{4) and N has no successor in
(ywa;,n>2 = A /1;
Y, — vEPY, if xem{d) and A—1 is its successor
in 4.

(Note: A* denotes the maximal entry of A exceeding X\.) As before
V.. is a vector space isomorphism on V, and @,,= P¥?,,=2 P, for
allxe Pand# = 1,2, -»-. Once again (V, P) = (V,Q,,,); andif yec V+
and © = |y|, we pick %, to be the smallest integer = 2 such that
Ny, = 2, for all maximal components g, tt,, -+, £, of 2. Then as in
the proof of Theorem 4, with the various cases, one shows that for
all v < (7 = 1, , k) we get (w¥;L), =1. (We have to assume
here that w,, = 1, for each j, but thls can be done without loss of
generality.) Therefore V' = J{Q, .. xeP,n=1,2,--}.

But in this case we can say more: the system {@, .. xe€ P, n =
1,2, --+} is directed. To prove this we show that if m <n are
posmve integers then Q,,,, S Q,,.; and if 0 <z < y (rel. p) then Q,,, S Q, .-
First suppose m < n; let ae P and consider ao¥,,¥..: given \e
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there are four cases to consider.
(1) »em(4); then (a¥,,,.%5.), = a; = 0.
(2) Ném(4) and ) has no successor in /; then

(awx,mw;‘n)l = n@l)(aw‘x,m)l* +; (azlfz,m)}.
= 10 + @, — mEPq;.
=a; + (¥ — m“)a, =0 .

8) ng¢m(4) and \;_, is the successor of \; where )\, = )\ and
M € m(4). Then

(a¥ ¥ 202
= T, ), A+ e+ 0@, )+ (@),
— n<"22>+"'+<‘”k>a31 4 oeee n<z)‘k>(a2k_1—m<nk—l>a2k_z) + a;, — m<“k>a2k—-1
— n<”s>+"'+<”1k>(n<”2>~m<”2>)azl 4 oeee (n<”2k>_m<zlk>)azk_l + a; = 0.

(4) Me¢m(4) and \,_, is the successor of \;, A, = ) and \, has no
successor. As in (3) one shows that (a?,, ¥;.), = 0. This proves
that P¥,, 7. S P, or Q. n S Q.0

Next, suppose 0 <2z < y(rel. p) and = is a positive integer.
Consider (a¥?,,%,%): with ac P; once again there are four cases.

(1) xem(d); then (¥,,.%;5%);: = a, = 0.

(2) nem(4) and A has no successor in A; then one can check
that (a?,,%,%), = a; + (n? — n¥?)a, = 0, since {y,) = {a).

3) reém(4) and x;_, is the successor of X, A, =X and ), is a
maximal component of 4. One easily verifies that '

(alll'zynllfy_,'n)l —_ n<y23>+-..+(nk>(n<y12> . n(ﬂﬂlg?)azl 4 ees

-+ (n<“") — ’ﬂ<”k>)a;_k_l + agkk g 0.

(4) nem(4) and N, is the successor of \;, where )\, = A but ),
has no successor in 4. One checks as in the other cases that
(a?,,7,;%) =0, Thus P¥,,7;, < P, that is Q,,, S Q,,..

So if Q... and Q,, are given, with a, b€ P, then we may assume
m = n and $0 Qun U Qsn S Quopse; this proves that the system of the
Q... is directed. Hence:

THEOREM 6. If A 1is a root system having finitely many 7roots
and no infinite ascending sequences, then V= V(4, R)) = I1(4, R;) and
V is a strong directed limit A-space.

As an easy corollary of Theorem 4 we prove the following:

PROPOSITION 7. Let A be a root system, and D be an s-subgroup
of V= V(4, R, having the property that



436 JORGE MARTINEZ

(@) D s an s~subgroup of (V, P); P={xeV: 2, =0, all \ e 4}.

(o) And if a,be D, ce V and s(¢) S s(a) Ulis(b), this implies that
ceD.

Then (D, DN V*) is a limit A-group.

Proof. Condition (a) guarantees, of course, that (D, DN P) is an
s-group. Condition (b) says that for each xe DN P and each family
{n,: M e m(x)} the isomorphism 6,,,, takes D onto D. Thus

(D, DNP)= (D, DN P,,{,”,)
and
D= U {D N Pz,(nl)} .

This completes the proof.

In particular ¥ = (4, R;) = {x € V: s(x) is finite} satisfies (a) and
(b) in Proposition 7, and so (Z, XN V*, ¥ N P) is a limit A-space.

In closing we point out that it is unknown whether the construc-
tion of Theorem 4 or 5 yields a directed system. Even if this should
not be the case, some subsystem might be directed and still fill out
V*. A case in point is ¥ = ¥ (4, R;); one can show (the proof being
long, but in the spirit of that of Theorems 4 and 5) that Y is a
directed limit A-space, by taking an appropriate subsystem of the
{P z,{n ;)} .

Suppose we have an 1-group (G, Q); if we knew under what con-
ditions G admitted an archimedean s-order P, of which @ was a very
essential extension, we could perhaps make a construction on P along
the lines of the construction of Theorem 4. It is doubtful that the
construction of Theorem 4 applies to too many ssubgroups of V. The
reason being that the archimedean ~-cones P, ., are of a very special
type, namely they have a basis.

A question which has some interest on its own: what groups G
admit archimedean lattice orders? They must of course be abelian and
torsion free, and if G is divisible then G does certainly admit such a
cone. There is no guarantee however, that an archimedean --cone
on the divisible closure G* of G will even induce an ~-cone on G.

In view of Corollary 3.1 one can ask of course: what ~~groups are
(strong) sequential (or linear) limit A-groups. Let us give one exam-
ple to show that 3.1 does not give all the strong sequential limit A-
spaces. This is also an example of a strong sequential limit A-space
with infinite descending chains of ~-ideals; one can give examples of
strong sequential limit A-spaces which have infinite ascending chains
of s-ideals. It is even possible to find strong sequential limit A-spaces
with descending chains (or ascending chains) of arbitrary length.
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Let G=RERBRMA:- - = {all finitely nonzero real sequences}.
Let @ be the lexicographic total order by ordering from the left; let
P = G*. Let 0, be a map defined by

xon = (xl,xz — Ny 200y By — NXp—1y Lpt1y Loy *° ') .

In the notation of the proof of Theorem 5 6, =6, . where z, =
a1, -+, 1,0, 0, --+); (the last 1 is the n-th position.) We therefore
know that 6, is an isomorphism of G onto itself, and P, = P§, 2 P.
It can be shown further that P, < P,,,, for each n =1,2, .-+, and
finally @ = U~ P,- Thus (G, Q, P) is a strong sequential limit A-
space, for @ is very essential over P.
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