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ON STABLE FIBER SPACE OBSTRUCTIONS
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It will be proved that every stable fiber space obstruction
is a coset of the image of some stable twisted cohomology
operation.

1*. Statement of the theorem* Consider the following tower of
iΓ-principal fibrations over a path connected space B.

Ci C 3 G 2 Oi

* ί ί
Each Ci is a product, over K = K(π, 1), of L(G, n)'s. π = πjβ) and
L(G,ri) = Lφ(G,n) where φ:π—>autG. ("Lφ(G,n)" and "if-principal
fibration" are discussed in § 2. They generalize "K(G, n)" and "prin-
cipal fibration".) Suppose X is a CTF space and f:X—>B is a given
map. Define

O<(/) - {/*&;!/: X - # , is a lifting of /} c [X, CJ* .

Then Oi(/), O2(/), •••,()*(/), are the successive obstructions to lifting
/ to JS?i+1 (/ lifts to J5 i+1 if and only if 0 e O, (/), l ^ i ^ i ) . A more
detailed description of local coefficient obstruction theory is given in
[4]. The purpose of the present paper is to prove the following
theorem.

THEOREM. Assume that there is an N such that the C/s are
products of L(Gy n)'s and N + 1 <£ n < 2N. Then there is a stable
B-operation Φ = ΦXyfi [X, ΩC^\K -^ [X, Ci]κ (an additive relation) such
that Oι(f) is a coset of the subgroup Image Φ c [X, Ci]κ.

It will be seen from the proof that Oι(f) is a coset under more
general circumstances. The hypotheses stated here cover the case of
a modified Postnikov system for a fibration F—+E-+B (not necessarily
orientable) when dim X ^ 2C, C = connectivity of F.

For simplicity, all spaces are assumed to be path connected, pointed
and to have the homotopy type of CW spaces. All maps are assumed
pointed.

The result here seems to be new even for orientable systems.
Results similar to this have been obtained, independently and earlier,
by Mahowald [2] for orientable sphere bundles and Meyer [5] for
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orientable ίibrations. However, neither shows that the obstruction
is actually a coset.

2* Some definitions* First, recall from [Gitler 1] and [Siegel 7]
the definition of LΦ(G, n). Let φ; π —»autG be a homomorphism of a
group π into the automorphism group of an abelian group G. Then
there is an associated map φ from π into the group of base point pre-
serving homeomorphisms of K(G, n)(K(G, n) is a pointed CW space
which is an Eilenberg-MacLane space of type (G, n)). The following
diagram is commutative

π x πn(K(G, n), *) -ΪU πn(K(G, n), *)

π x G ψ- > G

where φ*(x, y) means Φ{x)*{y) Let π~*L-*K be the universal cover
of K = K(π, 1). It is a universal principal 7r-bundle. Let LΦ(G, n) —>
K(π, 1) be the associated bundle with fiber K(G, n). It has a natural
section. (L, K) can be assumed to have the homotopy type of a CW
pair. Let Γ be a local coefficient system on a space X classified by
x: X-+ K = iΓ(π, 1). Then Hn(X: Γ) — [X, L]^ where the latter is the
set of homotopy classes of maps over K (see [Steenrod, 8] or [Olum,
6]).

Now suppose, in general, that D—^-> W • D and ώώ = identity.
Define

PW = {keWτ\ ώk(t) = ώk(if), t, V e I, fc(0) - ώώ(0)}

ΩW= {kePW\k(0) =

If W->D is a fibration then PW-^ T7(fc -> k(ΐ)) is a fibration with
fiber ΩW (the ordinary loop space). Call it and any fibration induced
from it a D-princίpal fibration. The following diagram is a pullback.

ΩW >PW

1 I
D > W .

Now apply these definitions to K(π, n) —> LΦ(G, n) —> iΓ(7Γ, 1).
is L^G, π — 1). f: X-+L lifts to PL if and only if / is zero as an
element of Hn(X; Γ) if and only if / factors up to homotopy through
K-> L.

Next, define LD(G, n) = LD,φ,a{G, n) as follows. Suppose a: π1(D)-->π
is a given homomorphism corresponding to a map D —> iΓ(π, 1) also
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denoted by a. Define LD(G, n) as the pullbaek of a and LΦ(G, n) —>
K{π, 1). If the classifying map for a local coefficient system Γ on X
can be factored through a then Hn(X, Γ) «-> [X, LD(G, n)]D. Suppose
πx(D) = π, a = the classifying map for Γ, and φ determines Γ. Then
write LΓ(Gf n) for LD)φ,a(G, n).

3* Twisted operations with local coefficients* Let Γ and Γf

be local coefficient systems on a space D determined by φ: π —• aut G
and Ψ:π—»aut if respectively, where π = πx{D). Let &: X—• £> be
given. A primary operation Φx>a;: H

n(X; x*Γ) —+ Hk(X; x*Γ') is repre-
sented by a map from (LΓ(G, n), D) to (LΦ(H, k), K{π, 1)) which extends
the classifying map for Γ'. This map determines a unique map from
LΓ(G, n) to LΓ,(Hj k) which is a map in TD = the category of spaces
under and over D (see [3]).

Higher order operations can be defined by towers of K(π, 1)-prin-
cipal fibrations such as the following one:

Lr L3 L2 Lt

\ i i ί
Er > > Ez > E2 > L

where L = LΓ(G, n), Lτ — LΨ(H, k), and L3 — Lφj(Gj, % ) , φ.\ π—> aut G3-,
1 ^ 3 ^ r — 1, and £7̂  —> Lά sends JD to ϋΓ(τr, 1). More specifically, Φ
is defined by the following commutative diagram:

Hn(X; x*Γ) Hk(X; x*Γ)

[X, LΓ(G, n)]D < [X, Er)D > [X, Lr\κ .

The L's may be replaced by products over K(π, 1) to give operations
in several variables.

Suppose in the stable case that f: D—» B is given and that all
coefficient systems for the above tower are obtained by pullbaek from
systems over B. Assume also that f*:H*(B)—*H*(D) is isomorphic
for i < N and for all coefficient systems involved. Then there is a

X f

5-operation Ψ such that if X >D >B the operations ΦXtX and
Ψx,fx are the same. This is proved by constructing a tower over B
whose pullbaek is the given tower which defines the D-operation Φ.

The following lemma accounts for the "additive" in the main
theorem.
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LEMMA. IfN+l^n3< 2N for all n3 then the operations de-
fined above are additive relations.

The proof will be given for secondary operations of one variable.
The argument for higher order operations of several variables is quite
similar (see [3] for the constant coefficient case).

First, we recall some facts from [3]. Let D be any space. Top
D is defined to be the category whose objects are triples (W, w> w)
with w: D—> W, w: W—>D, and ww = identity. The morphisms are
continuous functions /: W—> W such that wf= wr and fw = w\
Homotopy is defined in the natural way. The path and loop functors
are defined as in § 2. There are cone and suspension functors also.
All of the basic properties of Top (pt) remain valid for Top D (Top (pt)
is just the category of pointed spaces and maps). If W, W'eΎopD,
let ζW, W'y be the set of homotopy classes of maps from W to W.
If W is a [double] loop space in TopD then ζW, Wfy is a natural
[Abelian] group. If /: W —> W is a loop map then /* is a homomorphism.

Proof of the lemma for primary operations. Let a be a primary
operation. By definition a is represented by a map in Top D (also
denoted by a) a: LΓ(G, n) —> LΓ,(H, nf). If n' < 2n (as in the present
theorem) then it can be shown that a is a loop map in Top D so the
operation is a homomorphism.

The map PW-+W defined by Z->ί(l) is a fibration in Top D.
Any fibration induced from it by a map to W (classifying map) is
called a principal fibration. If the classifying map is a loop map then
the total space of the principal fibration is a loop space.

Consider the following two diagrams

E —

T
 a i

>L2 E

(1) (2)

LΓ = LΓ(Gj n), Li = Lφ{i)(Giy %), L\ = LΓ{i)(Gi9 %) = DxKLi. Γ, Γt are
three given local coefficient systems on D classified by φ:π—>AutG,
Φϊ. π —* Aut Gi. βi = (μ, a{) where u is the map to D obtained from
2?—> LΓ—• D. The important point is that p\E—*LΓ is the principal
fibration induced by & in Top D. This can be proved directly from
the definitions.
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Proof of the lemma for secondary operations. Consider the fol-
lowing commutative diagram.

Hn(X; x*Γ) > iP ( 2 )(X: x*Γ2)

\ i
[X, LΓ{G, n)]D Jϊ- [X, E]B ^ [X, L2]κ

I 1 „ I
[X, LΓ{G, n)]D ^ - [X, E]D ^ ^ [X, L2]D

•(XVD, LΓ(G, n)> ̂ - <_XVD, E> ^ A ζXVD, L2> .
A is the secondary operation defined by line 2. The diagram shows
that A = β(2)*p~ιι via line 4. Line 4 is obtained from Top D. p: E~>
LΓ is a loop map and L2 is a loop space in Top D. It can be shown
that the dimension hypothesis of the lemma implies that /3(2) is a loop
map in TopZλ Hence p* and β(2)* are both homomorphisms and A
is an additive relation.

If D = K(π, 1) — K the operations discussed above are closely re-
lated to those defined by Siegel in [7]. The difference is as follows.
Let local coefficient systems Γ and Γ' on K(π, 1) be represented by

% m

LΦ(G, n) -^=^K{π, 1) L+(H, k) ^=1 K(π, 1) .
/ m

Then in the present paper a primary operation is represented by a

map /: LΦ{G, n) —> Lψ(H\ k) which is a if-map, i.e., mf = I and fl — m.
In SiegeΓs paper [7], a primary operation may be represented by a
map which is merely a map over K, i.e., mf ~ ϊ. The narrower de-
finition of the present paper excludes the "characteristic operations"
of [l, 7]. The advantage of the present approach is that all of the
primary operations in the stable range are homomorphisms and the
higher operations are additive relations. Presumably, the broader
definition of [7] is more suitable for non-stable obstruction theory.

4. Proof of the theorem* Consider the following diagram
where the left hand column is obtained from the right hand column
by pullback. Let s,-: Ei -*°Eiti be the natural section for the projection
Pji Eitj —> E^ Let k) be the composition
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ΊP v p
&i,i > &i

I 1

i I
Et >B

ki

Claim. ( 1 ) j ^ i — 1 implies k'jS3- ~ 0 (over K).
( 2 ) k'i = ki + u, kiPi = kf, kfSi = k{, and us; ~ 0 (over K).

Proof of claim. (1) is clear since k'3Sj = E{—* E} —•• Cs ~ 0 (over

ίΓ). Write E for so

= Pi

Hence

0

where H* is [ , C,]^. A ίSi = kit that is, s*A;ί = k{. Hence k'{ = k{ + u
where fc4 = p*ki and M. = g*u' and w. and fc{ are unique. Hence fc^ =
^ps = k{. Also ki — k\ = fc{Sί + %Sί = fej + %s{ implying %s{ = 0. This
proves the claim.

Consider the following diagram:

E

Et

where fa is a fixed lifting of / to E{. Let A; = k{, k' = k'it and E = Et.
Then Oiif) = {f*k\f: X-^E lifts /} = {f*k'\f: X-+E lifts /,} (since
the liftings of / and f0 are in one-to-one correspondence)

= {/*£ + /*«} = f*ϊe + {/'Ml/ lifts /„}

= f*ϊe + {f*u I / lifts /„': X — EiΛ and /0' lifts /}

= f*k + Φx,h[X, ΠCJs .

Use: EiΛ = E,x KPCU [X, E ^ ^ [X, PCX\K = [X, 0CJ. Φ is the Er
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operation defined by Eif2+— E—+Ci. If Cx is the product of L(G,n)'s
over K then Eii2 is a corresponding product over E{ of LE.(G, n — l)'s.

This shows that O<(/) is a coset of the image of the stable E-
operation Φ defined by Eit2<—E—>Ci. The hypotheses of the theorem
and the remarks in the third paragraph of § 3 guarantee that there
is a stable J5-operation Ψ with the same domain and image. This
completes the proof.
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