BEHAVIOR OF GREEN LINES AT THE KURAMOCHI BOUNDARY OF A RIEMANN SURFACE

Mitsuru Nakai and Leo Sario
BEHAVIOR OF GREEN LINES AT THE KURAMOCHI
BOUNDARY OF A Riemann surface

Mitsuru Nakai and Leo Sario

We shall establish necessary and sufficient conditions, in
terms of Green lines, for a point of the Kuramochi boundary
Γ^k of a hyperbolic Riemann surface R to be of positive har-
monic measure.

Explicitly, let ℬ be the bundle of all Green lines l issuing
from a fixed point of R. It forms a measure space with the
Green measure. We call a subset ℱ of ℬ a distinguished
bundle if it has positive measure and there exists a point p
in Γ^k such that almost every l in ℱ terminates at p. The
point p will be referred to as the end of ℱ.

Our main result is that a point p of Γ^k has positive
measure if and only if there exists a distinguished bundle ℱ
whose end is p.

We shall also give an intrinsic characterization of the
latter property, without reference to points of Γ^k: A bundle
ℱ is distinguished if and only if it has positive measure and
for every HD-function u there exists a real number c_u such
that u has the limit c_u along almost every l in ℱ.

1. Green lines

1. Let R be a hyperbolic Riemann surface, the hyperbolicity
characterized by the existence of Green's functions. Fix a point z_0 ∈ R
and denote by g(z) = g(z, z_0) the Green's function on R with singularity
z_0. Consider the differential equations

\begin{align}
 (1) \quad \frac{dr(z)}{r(z)} &= -dg(z), \quad r(z_0) = 0, \\
 (2) \quad d\theta(z) &= -\ast dg(z).
\end{align}

Equation (1) has the unique solution r(z) = e^{-g(z)} on R with 0 ≤ r(z) < 1.
In any simply connected subregion of R - z_0 where dg(z) ≠ 0, equation
(2) also has a solution \(\theta(z) \), unique up to an additive constant. The
global solution \(\theta(z) \), however, is a multivalued harmonic function.

Set \(G_\rho = \{ z \in R | r(z) < \rho \} \), \(C_\rho = \partial G_\rho (0 < \rho < 1) \). For a sufficiently
small \(\rho \), the analytic function \(w = \varphi(z) = r(z)e^{i\theta(z)} \) is single-valued and
gives a univalent conformal mapping of \(G_\rho \) onto the disk \(|w| < \rho \).
Denote by \(\rho_0 \) the supremum of all \(\rho \) with this property.

2. An open arc α is called a Green arc if \(dg(z) \neq 0 \) for all \(z \in \alpha \),
and a branch of \(\theta \) is constant on \(\alpha \). The set of Green arcs is partially ordered by inclusion. A maximal Green arc in this partially ordered set is called a Green line.

A Green line \(l \) is said to issue from \(z_0 \) if \(z_0 \in \overline{l} \). We denote by \(\mathcal{B} \) the set of Green lines issuing from \(z_0 \) and use the suggestive term bundle for a subset \(\mathcal{A} \) of \(\mathcal{B} \), with the case \(\mathcal{A} = \mathcal{B} \) not excluded.

For a fixed \(\rho \in (0, \rho_0) \) and a given \(p \in C_\rho \) let \(l(p) \) be the Green line in \(\mathcal{B} \) passing through \(p \). Making use of the function \(w = \varphi(z) = r(z)e^{i\theta(z)} \) we see that the mapping \(p \rightarrow l(p) \) is bijective; let \(p(l) \) be the inverse mapping. We call a bundle \(\mathcal{A} \subset \mathcal{B} \) measurable if \(p(\mathcal{A}) \) is measurable in \(C_\rho \), and define the Green measure of \(\mathcal{A} \) by

\[
(3) \quad m(\mathcal{A}) = \frac{1}{2\pi} \int_{p(\mathcal{A})} d\theta(z) = -\frac{1}{2\pi} \int_{p(\mathcal{A})} *d\varphi(z) .
\]

The space \((\mathcal{B}, m)\) is a probability space, i.e., a measure space of total measure unity. The definition is independent of the choice of \(\rho \in (0, \rho_0) \).

3. Fix an \(l \in \mathcal{B} \). The number \(a(l) = \sup_{z \in l} r(z) \) is in \((0, 1]\). If \(a(l) < 1 \), then \(l \) terminates at a point of \(R \) at which \(\varphi = 0 \). Such an \(l \) is called singular. If \(a(l) = 1 \), then \(l \) tends to the ideal boundary of \(R \) and is called regular. The bundle \(\mathcal{B}_r \) of regular Green lines “almost” comprises \(\mathcal{B} \), that is, \(m(\mathcal{B}_r) = 1 \). This is a result of Brelot-Choquet [1] (cf. [7], [8]).

2. Compactifications.

4. Let \(R^e \) be a compactification of \(R \), i.e., a compact Hausdorff space containing \(R \) as its open dense subspace. For a bounded continuous function \(\varphi \) on the ideal boundary \(\Gamma^e = R^e - R \) of \(R \), denote by \(U_\varphi^{R^e} \) the class of superharmonic functions \(s \) on \(R \) such that

\[
\lim \inf_{z \in R, z \to p} s(z) \geq \varphi(p)
\]

for every \(p \in \Gamma^e \). The function

\[
H_\varphi^{R^e}(z) = \inf_{s \in U_\varphi^{R^e}} s(z)
\]

is harmonic on \(R \). We assume that \(R^e \) is a resolutive compactification (cf. Constantinescu-Cornea [2]), that is, \(\varphi \rightarrow H_\varphi^{R^e}(z) \) is a continuous linear functional. Then for \(z_0 \in R \) there exists a measure \(\mu^e \), called the harmonic measure on \(\Gamma^e \), and a function \(P^e(z, p) \) on \(R \times \Gamma^e \) with properties \(P^e(z, p) = 1 \),

\[
(4) \quad H_\varphi^{R^e}(z) = \int_{\Gamma^e} P^e(z, p)\varphi(p)d\mu^e(p) .
\]
This representation extends to bounded Borel measurable functions \(\varphi \) on \(\Gamma^c \).

Let \(\widetilde{HD}(R) \) be the class of harmonic functions \(u \geq 0 \) on \(R \) such that there exists a decreasing sequence \(\{u_n\} \subset \widetilde{HD}(R) \) with \(u = \lim_n u_n \) on \(R \). A function \(u \in \widetilde{HD}(R) \) is said to be \(\widetilde{HD} \)-minimal if for every \(v \in \widetilde{HD}(R) \) with \(v \leq u \) on \(R \) there exists a constant \(c_v \) such that \(v = c_v u \) on \(R \). We shall call the compactification \(R^e \) \(\widetilde{HD} \)-compatible if the following condition is satisfied: \(u \in \widetilde{HD}(R) \) is \(\widetilde{HD} \)-minimal if and only if there exists a point \(p_0 \in \Gamma^c \) with \(\mu^e(p_0) > 0 \) and a number \(k > 0 \) such that

\[
(5) \quad u(z) = k \int_{p_0} P^e(z, p) d\mu^e(p).
\]

5. The Royden compactification \(R^* \) of \(R \), with the Royden boundary \(\Gamma' = R^* - R \), is a typical example of an \(\widetilde{HD} \)-compatible compactification (see [6], [8]). We let \(\mu \) and \(P \) stand for \(\mu^e \) and \(P^e \) corresponding to \(R^* \).

A compactification \(R^e \) is said to lie below \(R^* \) if there exists a continuous mapping \(\pi = \pi^e \) of \(R^* \) onto \(R^e \) such that \(\pi|_R \) is the identity and \(\pi^{-1}(R) = R \). Clearly \(\pi \) is unique and we have

\[
(6) \quad \int_{R^e} P^e(z, p) \varphi(p) d\mu^e(p) = \int_{R} P(z, p^*) \varphi(\pi(p^*)) d\mu(p^*)
\]

for every bounded Borel function \(\varphi \) on \(\Gamma^c \).

6. We are interested in the behavior of \(l \in \mathcal{B} \) in \(R^e \). We set

\[
(7) \quad e^c(l) = \overline{l^c} - l \cup \{z_0\},
\]

with \(\overline{l^c} \) the closure of \(l \) in \(R^c \), and call \(e^c(l) \) the end part of \(l \) in \(R^c \). It is a compact set in \(\Gamma^c \). If

\[
\mathcal{B}^c = \{l \in \mathcal{B} | e^c(l) \text{ is a single point}\}
\]

is of measure \(m(\mathcal{B}^c) = 1 \), then we call \(R^e \) Green-compatible.

We shall make use of a result of Maeda [4]: A metrizable compactification \(R^e \) which lies below \(R^* \) is Green-compatible.

7. A compactification \(R^e \) of \(R \) is said to be of type \(G \) if \(R^e \) is metrizable, \(\widetilde{HD} \)-compatible, and lies below \(R^* \). Note that \(R^e \) is then Green-compatible. An important example:

Proposition. The Kuramochi compactification \(R^k \) of \(R \) is of type \(G \).

In fact, metrizability and \(\widetilde{HD} \)-compatibility of \(R^k \) are immediate
consequences of related results of Constantinescu-Cornea [2, pp. 171 and 169]. That \(R^k \) lies below \(R^* \) follows from the definition of the Kuramochi compactification given in [2, p. 167].

\(R^k \) is actually the only significant compactification of type \(G \) known thus far. For a general discussion of its properties we also refer to [5].

3. Distinguished bundles.

8. Let \(R^e \) be a compactification of \(R \) of type \(G \). We call a bundle \(\mathcal{A} \subset \mathcal{B} \) \(R^e \)-distinguished if \(m(\mathcal{A}) > 0 \) and there exists a point \(p \in \Gamma^e \) such that \(e^e(l) = p \) for almost every \(l \in \mathcal{A} \). The point \(p \) will be referred to as the end of \(\mathcal{A} \). In the case \(R^e = R^* \) we simply say that \(\mathcal{A} \) is distinguished.

We shall characterize points \(p \in \Gamma^e \) of positive measure in terms of \(R^e \)-distinguished bundles:

Theorem. Let \(R^e \) be a compactification of type \(G \) of a hyperbolic Riemann surface \(R \). A point \(p \in \Gamma^e = R^e - R \) has positive harmonic measure if and only if there exists an \(R^e \)-distinguished bundle \(\mathcal{A} \) with end \(p \).

The proof will be given in 9–13.

9. Let \(\Gamma^* = R^* - R \) be the Royden boundary of \(R \). For \(l \in \mathcal{B} \), denote by \(e(l) \) the set \(\bar{l} - l \cup \{z_0\} \) in \(\Gamma \), with \(\bar{l} \) the closure of \(l \) in \(R^* \). Given a subset \(S \subset \Gamma^* \) we write

\[
\check{S} = \{l \in \mathcal{B} | e(l) \cap S \neq \emptyset\}, \quad \check{S} = \{l \in \mathcal{B} | e(l) \subset S\}.
\]

We shall employ the following auxiliary result ([7], [8]): For every \(F_e \)-set \(K \) (resp. \(G_e \)-set \(U \)) in \(\Gamma^* \)

\[
(9) \quad \check{m}(\bar{K}) \leq \mu(K), \quad \check{m}(\bar{U}) \geq \mu(U),
\]

where \(\check{m} \) and \(\check{m} \) are the outer and inner measures induced by \(m \).

Let \(p^* \) be on the Royden harmonic boundary \(\Lambda \) of \(R \). The set

\[
\Lambda_{p^*} = \{q^* \in \Gamma^* | \check{u}(q^*) = u(p^*) \text{ for all } u \in \text{HBD}(R)\}
\]

is called a block at \(p^* \). It is known ([7], [8]) that it has a measurable \(\check{\Lambda}_{p^*}, \)

\[
(10) \quad \check{m}(\check{\Lambda}_{p^*}) = \mu(p^*),
\]

and that

\[
(11) \quad u(p^*) = \lim_{z \in \bar{l}, l(z) \rightarrow 1} u(z)
\]

for every \(u \in \text{HD}(R) \) and almost every \(l \in \check{\Lambda}_{p^*} \).
10. Suppose \mathcal{A} is an R^e-distinguished bundle with end $p \in \Gamma^e$. We are to prove that $\mu^e(p) > 0$. Take the projection $\pi = \pi^e$ of R^e onto R^e (see 5). The set $K = \pi^{-1}(p)$ is compact and clearly $\mathcal{A} \subset \tilde{K}$. By (9),

$$0 < m(\mathcal{A}) \leq \bar{m}(\tilde{K}) \leq \mu(K).$$

From (6) it follows that $\mu(K) = \mu(\pi^{-1}(p)) = \pi^e(p)$. Therefore

$$0 < m(\mathcal{A}) \leq \mu^e(p).$$

11. Conversely suppose that $p \in \Gamma^e$ and $\mu^e(p) > 0$. Since R^e is $\tilde{H}D$-compatible, the function $u(z) = \int_{\mathcal{A}} P(z, q)d\mu^e(q)$ is $\tilde{H}D$-minimal on R. By (6) we see that

$$u(z) = \int_{\pi^{-1}(p)} P(z, q^*)d\mu(q^*).$$

Since R^e is also $\tilde{H}D$-compatible and the integral representation (12) of the $\tilde{H}D$-function u is unique up to a boundary function vanishing μ-almost everywhere on Γ ([6], [8]), we conclude that there exists a point $p^* \in \pi^{-1}(p)$ with $\mu(p^*) = \mu(\pi^{-1}(p)) > 0$. Observe that

$$m(\tilde{A}_{p^*}) = \mu(p^*) > 0.$$

In view of the Green-compatibility of R^e, there exists a measurable subset $\mathcal{A} \subset \tilde{A}_{p^*}$ with $m(\tilde{A}_{p^*}) = m(\mathcal{A})$ and such that $e^e(l)$ is a single point in Γ^e for each $l \in \mathcal{A}$.

To conclude that \mathcal{A} is an R^e-distinguished bundle with end p, we must show that $\mathcal{A}' = \{l \in \mathcal{A} | e^e(l) \neq p\}$ is of m-measure zero. For this purpose take a sequence $\{U_n\}$ of open sets in Γ^e with

$$U_{n+1} \subset \tilde{U}_{n+1} \subset U_n, \quad \bigcap_{1}^{\infty} U_n = \{p\}.$$

Let $\mathcal{A}'_n = \{l \in \mathcal{A}' | e^e(l) \in U_n\}$. Since $\mathcal{A}' = \bigcup_{n=1}^{\infty} \mathcal{A}'_n$, it suffices to show that $m(\mathcal{A}'_n) = 0$ for every n.

12. First we assume that $R \in O_{HD}$. For an arbitrarily fixed n there exists a $u_n \in HBD(R)$ such that

$$0 \leq u_n | \Delta \leq 1, \quad u_n | \pi^{-1}(U_{n+1}) \cap \Delta = 1, \quad u_n | (\Delta - \pi^{-1}(U_n)) = 0.$$

In view of (11), there exists a measurable subset $\mathcal{A}'' \subset \mathcal{A}'$ with $m(\mathcal{A}' - \mathcal{A}'') = 0$ and

$$1 = u_n(p^*) = \lim_{z \in \Gamma, z \rightarrow p^*} u_n(z)$$

for every $l \in \mathcal{A}''$. The set $E_n = \{q^* \in \Gamma | u_n(q^*) < \frac{1}{2}\}$ is open in Γ. By
(15), \(e(l) \cap E_n = \emptyset \) for every \(l \in \mathcal{U}_n \). Because of the definition of \(\mathcal{U}_n \), it is also clear that \(e(l) \cap \pi^{-1}(U_n) = \emptyset \) for every \(l \in \mathcal{U}_n \). Since the set \(K_n = \Gamma - \pi^{-1}(U_n) \cup E_n \) is compact and \(\pi^{-1}(U_n) \cup E_n \supset \Delta \), we have \(K_n \subset \Gamma - \Delta \) and a fortiori \(\mu(K_n) = 0 \).

On the other hand, \(e(l) \subset K_n \) for every \(l \in \mathcal{U}_n \). Therefore \(\mathcal{U}_n \subset K_n \subset \mathcal{K}_n \). In view of (9), we obtain

\[
m(\mathcal{U}_n) \leq \bar{m}(\mathcal{K}_n) \leq \mu(K_n) = 0
\]

and conclude that \(m(\mathcal{U}_n) = m(\mathcal{U}_n') = 0 \).

13. If \(R \in O_{HD} \), then \(\Delta \) consists of a single point and consequently \(\Delta = \{ p^* \} \). The set \(F_n = \Gamma - \pi^{-1}(U_n) \) is compact in \(\Gamma - \Delta \) and hence \(\mu(F_n) = 0 \). By the definition of \(\mathcal{U}_n \) we have \(\mathcal{U}_n \subset \mathcal{F}_n \subset \bar{F}_n \). Therefore

\[
m(\mathcal{U}_n) \leq m(\mathcal{F}_n) \leq \mu(F_n) = 0.
\]

The proof of Theorem 8 is herewith complete.

14. We next give necessary and sufficient conditions for a bundle to be distinguished, without referring to its end:

Theorem. Let \(R^* \) be a compactification of type \(G \) of a hyperbolic Riemann surface \(R \). A bundle \(\mathcal{U} \subset \mathcal{B} \) is \(R^* \)-distinguished if and only if \(m(\mathcal{U}) > 0 \) and for each \(u \in HD(R) \) there exists a number \(c_u \) such that

\[
\lim_{z \in l, r(z) \to 1} u(z) = c_u
\]

for almost every \(l \in \mathcal{U} \).

The proof will be given in 15-18.

15. First suppose \(\mathcal{U} \) is \(R^* \)-distinguished with end \(p \in \Gamma^* \). Then by 10 and 11, there exists a point \(p^* \in K = \pi^{-1}(p) \) such that

\[
0 < \mu^*(p) = \mu(K) = \mu(p^*).
\]

Fix a \(u \in HD(R) \). By the Godefroid theorem [3] (see also [7], [8]),

\[
u(l) = \lim_{z \in l, r(z) \to 1} u(z)
\]

exists for almost every \(l \in \mathcal{B} \). On omiting from \(\mathcal{U} \) a set of measure zero we may assume that \(u(l) \) in (17) exists for every \(l \in \mathcal{U} \). We may also suppose that \(e^*(l) = p \) and a fortiori \(e(l) \subset K \) for every \(l \in \mathcal{U} \).

Since \(\mu(p^*) > 0 \), \(|u(p^*)| < \infty \) (cf. [6], [8]). Let

\[
\mathcal{U}' = \{ l \in \mathcal{U} | u(l) - u(p^*) \neq 0 \}
\]
and
\[K_n = \{ q^* \in K \mid |u(q^*) - u(p^*)| \geq 1/n \}. \]
Clearly \(K_n \) is a compact set. For \(l \in \mathcal{U}' \) and \(q^* \in e(l) \), we have \(u(l) = u(q^*) \) by (17) and the continuity of \(u \) on \(R^* \). Therefore \(|u(q^*) - u(p^*)| \geq 1/n \) for some \(n \) and a fortiori \(e(l) \subset K_n \). It follows that
\[\mathcal{U}' \subset \bigcup_{n=1}^{\infty} \tilde{K}_n \subset \bigcup_{n=1}^{\infty} K_n, \]
which by (9) gives
\[m(\mathcal{U}') \leq \bar{m} \left(\bigcup_{n=1}^{\infty} \tilde{K}_n \right) \leq \sum_{n=1}^{\infty} \bar{m}(\tilde{K}_n) \leq \sum_{n=1}^{\infty} \mu(K_n). \]
From \(K_n \subset K - p^* \) and \(\mu(K) = \mu(p^*) \), we obtain \(\mu(K_n) = 0 \). Consequently \(m(\mathcal{U}') = 0 \) and, since
\[\lim_{z \to l^*} u(z) = u(l) = u(p^*) \]
for every \(l \in \mathcal{U} - \mathcal{U}' \), we have (16) for almost every \(l \in \mathcal{U} \).

16. Conversely suppose that, for a bundle \(\mathcal{U} \subset \mathcal{B} \) with \(m(\mathcal{U}) > 0 \), (16) is satisfied. We may assume that \(e^*(l) \) is a single point in \(\Gamma^c \) for every \(l \in \mathcal{U} \).

First consider the case \(R \in O_{HD} \). The harmonic boundary \(\Delta \) consists of a single point \(p^* \) and \(\mu(p^*) > 0 \). Let \(p = \pi(p^*) \). Take a sequence \(\{U_n\}_n \) of open sets in \(\Gamma^c \) such that \(\bigcup_{n=1}^{\infty} U_n = \{p\} \). For the bundles \(\mathcal{U}_n = \{ l \in \mathcal{U} \mid e^*(l) \notin U_n \} \), \(n = 1, 2, \ldots \), and
\[\mathcal{U}' = \{ l \in \mathcal{U} \mid e^*(l) \neq p \} \]
we have \(\mathcal{U}' = \bigcup_{l}^\infty \mathcal{U}_n \). Set \(K_n = \Gamma - \pi^{-1}(U_n) \subset \Gamma - \Delta \). Every \(l \in \mathcal{U}_n \) has \(e(l) \subset K_n \) and we obtain \(\mathcal{U}_n \subset \tilde{K}_n \subset \tilde{K}_n \). Hence
\[m(\mathcal{U}_n) \leq \bar{m}(\tilde{K}_n) \leq \mu(K_n) = 0 \]
and therefore \(m(\mathcal{U}') = 0 \), i.e., \(e^*(l) = p \) for almost every \(l \in \mathcal{U} \). This proves that \(\mathcal{U} \) is \(R^c \)-distinguished.

17. Next suppose \(R \in O_{HD} \). The family
\[T(\mathcal{U}) = \{ u \in HBD(R) \mid 0 \leq u \leq 1 \text{ on } R, u(l) = 1 \text{ for almost every } l \in \mathcal{U} \} \]
is a Perron family and
\[s(z) = \inf \{ u(z) \mid u \in T(\mathcal{U}) \} \]
is an \(\hat{H}D \)-minimal function on \(R \) (see [7], [8]). We can therefore choose a decreasing sequence \(\{h_n\} \subset T(\mathcal{U}) \) such that
(19) \[s(z) = \lim_{n \to \infty} h_n(z) \]
on R. Let \(\mathcal{U}_0 \) be a measurable subset of \(\mathcal{U} \) with \(m(\mathcal{U}) = m(\mathcal{U}_0) \) such that \(h_n(l) \) exists and equals unity for every \(n = 1, 2, \ldots \), and for every \(l \in \mathcal{U}_0 \). We set \[\bar{s}(l) = \limsup_{z \in \mathcal{U}, r(z) \to 1} s(z) \]
and observe that
\[s(z_0) = \int_{\mathcal{U}} s(re^{it})dm(l) \leq \int_{\mathcal{U}} h_n(re^{it})dm(l) = h_n(z_0) \]
for every \(r \in (0, 1) \) (see [7], [8]). By Fatou’s lemma
\[s(z_0) \leq \int_{\mathcal{U}} \bar{s}(l)dm(l) \leq \int_{\mathcal{U}} h_n(l)dm(l) = h_n(z_0) . \]
Let \(h(l) = \lim_{n} h_n(l) \). Since \(h_n(l) \geq \bar{s}(l) \) and
\[0 \leq \int_{\mathcal{U}} (h(l) - \bar{s}(l))dm(l) \leq \lim_{n \to \infty} (h_n(z_0) - s(z_0)) = 0 , \]
we conclude that \(\bar{s}(l) = h(l) \) almost everywhere on \(\mathcal{U} \). In view of \(h(l) = 1 \) for every \(l \in \mathcal{U}_0 \) we may suppose that

(20) \[\bar{s}(l) = 1 \quad (l \in \mathcal{U}) . \]

18. The remainder of the proof is analogous to that in 11–12. In fact, since \(s \) is \(\widetilde{H}D \)-minimal, there exist points \(p \) and \(p^* \) in \(I^c \) and \(I^r \) respectively such that \(\mu^c(p) = \mu(p^*) > 0, p^* \in \pi^{-1}(p) \), and
\[s(z) = \int_{p} P^c(z, q)d\mu^c(q) = \int_{p^*} P(z, q^*)d\mu(q^*) . \]
We wish to show that \(e^c(l) = p \) for almost every \(l \in \mathcal{U} \), that is, \(\mathcal{U} \) is \(R^c \)-distinguished with end \(p \). For this purpose set \(\mathcal{U}' = \{ l \in \mathcal{U} | e^c(l) \neq p \} \). To see that \(m(\mathcal{U}') = 0 \) take a sequence \(\{ U_n \} \) of open sets in \(I^c \) such that
\[\overline{U}_{n+1} \subset U_n, \quad n \cup U_n = \{ p \} . \]
For \(\mathcal{U}' = \{ l \in \mathcal{U} | e^c(l) \in U_n \} \) we have \(\mathcal{U}' = \bigcup_{1}^{n=\infty} \mathcal{U}' \) and it suffices to show that \(m(\mathcal{U}_n') = 0 \) for every \(n = 1, 2, \ldots \). Take a function \(u_n \in HBD(R) \) with
\[0 \leq u_n |A| \leq 1, u_n |\pi^{-1}(U_{n+1}) \cap A| = 1, u_n |(A - \pi^{-1}(U_n))| = 0 . \]
We may suppose \(u_n(l) \) exists for every \(l \in \mathcal{U} \). Since \(1 \geq u_n \geq s \) on \(R \), (20) implies that

(21) \[u_n(l) = 1 \quad (l \in \mathcal{U}) . \]
Clearly \(e(l) \subset \Gamma - \pi^{-1}(U_n) \) for every \(l \in \mathcal{U}' \). Moreover, if we set \(E_n = \{ q^* \in \Gamma \mid u_n(q^*) < \frac{1}{2} \} \), then \(e(l) \subset \Gamma - E_n \cup \pi^{-1}(U_n) = K_n \) for every \(l \in \mathcal{U}' \). Since \(K_n \) is compact and contained in \(\Gamma - \Delta \),

\[
\mathcal{U}_n \subset \overline{K}_n \subset \overline{K}_n
\]

implies that

\[
m(\mathcal{U}_n) \leq \overline{m}(\overline{K}_n) = \mu(K_n) = 0.
\]

The proof of Theorem 14 is herewith complete.

5. Conclusion.

19. Recall that a bundle \(\mathcal{U} \subset \mathcal{V} \) is distinguished with end \(p \) on the Kuramochi boundary if \(m(\mathcal{U}) > 0 \) and almost every Green line in \(\mathcal{U} \) terminates at \(p \). Since the Kuramochi compactification is of type \(G \), Theorems 8 and 14 imply:

Theorem. A point \(p \) of the Kuramochi boundary of a hyperbolic Riemann surface \(R \) has positive measure if and only if there exists a distinguished bundle \(\mathcal{U} \) of Green lines with end \(p \).

A bundle \(\mathcal{U} \) of Green lines with \(m(\mathcal{U}) > 0 \) is distinguished if and only if, for every \(u \in \text{HD}(R) \), there exists a number \(c_u \) such that the "radial limit" \(\lim_{z \to \infty, r(z) \to 1} u(z) \) exists and equals \(c_u \) for almost every \(l \in \mathcal{U} \).

References

Received April 13, 1970. The work was sponsored by the U.S. Army Research Office-Durham, Grant DA-AROD-31-124-G855, University of California, Los Angeles.

NAGOYA UNIVERSITY

CHIKUSA-KU, NAGOYA, JAPAN

UNIVERSITY OF CALIFORNIA

LOS ANGELES, CALIFORNIA
George E. Andrews, *On a partition problem of H. L. Alder* .. 279
Yuen-Kwok Chan, *A constructive proof of Sard’s theorem* 291
Charles Vernon Coffman, *Spectral theory of monotone Hammerstein operators* .. 303
Edward Dewey Davis, *Regular sequences and minimal bases* 323
Israel (Yitzchak) Nathan Herstein and Lance W. Small, *Regular elements in P.I.-rings* ... 327
Marcel Herzog, *Intersections of nilpotent Hall subgroups* 331
W. N. Hudson, *Volterra transformations of the Wiener measure on the space of continuous functions of two variables* 335
J. H. V. Hunt, *An n-arc theorem for Peano spaces* 351
Arnold Joseph Insel, *A decomposition theorem for topological group extensions* .. 357
Caulton Lee Irwin, *Inverting operators for singular boundary value problems* .. 379
Abraham A. Klein, *Matrix rings of finite degree of nilpotency* 387
Wei-Eihn Kuan, *On the hyperplane section through a rational point of an algebraic variety* .. 393
John Hathway Lindsey, II, *On a six-dimensional projective representation of PSU$_4$(3) .. 407
Jorge Martinez, *Approximation by archimedean lattice cones* 427
J. F. McClendon, *On stable fiber space obstructions* 439
Mitsuru Nakai and Leo Sario, *Behavior of Green lines at the Kuramochi boundary of a Riemann surface* .. 447
Donald Steven Passman, *Linear identities in group rings. I* 457
Donald Steven Passman, *Linear identities in group rings. II* 485
David S. Promislow, *The Kakutani theorem for tensor products of W*-algebras* .. 507
Richard Lewis Roth, *On the conjugating representation of a finite group* .. 515
Bert Alan Taylor, *On weighted polynomial approximation of entire functions* .. 523
William Charles Waterhouse, *Divisor classes in pseudo Galois extensions* .. 541
Chi Song Wong, *Subadditive functions* .. 549
Ta-Sun Wu, *A note on the minimality of certain bitransformation groups* .. 553
Keith Yale, *Invariant subspaces and projective representations* 557