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LINEAR IDENTITIES IN GROUP RINGS

D. S. PASSMAN

Let K[G)] denote the group ring of a (not necessarily
finite) group G and suppose that this ring satisfies a nontrivial
polynomial identity of degree n. If 4 denotes the finite con-
jugate subgroup of G, then we show that [G: 4] < n!. Fur-
thermore, if K[G] is semiprime, then G has an abelian subgroup
of finite bounded index.

Several years ago this author worked on two seemingly unrelated
group ring problems. In [9] I studied the question of the existence
of nontrivial nilpotent ideals in group rings and the methods used were
essentially combinatorial in nature. Later in [6] and [7], I. M. Isaacs
and I studied group rings satisfying polynomial identities and the
chief tool here was the ordinary character theory of finite groups. In
her recent thesis [12] Martha Smith has observed that these two pro-
blems are in fact related and she applied the methods used in the
first to obtain new results in the second. In this paper I take a more
combinatorial and less ring theoretic approach than in [12] to the
study of polynomial identities in group rings.

It occurred to me while writing this paper that I had the oppor-
tunity to include in one manuscript an elementary, essentially self-
contained study of three distinet problems in group rings. These are
the problems of finding necessary and sufficient conditions for K[G] to
be prime, semiprime and for K[G] to satisfy a polynomial identity.
I have availed myself of this opportunity, and therefore I have necess-
arily included here a number of results already in the literature. I
hope that in doing this I have made this paper more enjoyable and
interesting for the reader.

I would like to thank Miss Smith and her thesis advisor Professor
I. N. Herstein for a number of stimulating conversations on this sub-
ject and for allowing me early access to [12].

1. First reduction. Let K be a field and let G be a (not ne-
cessarily finite) group. We let K[G] denote the group ring of G over
K. Thatis, K[G] is a K-algebra with basis {x|x e G} and with multi-
plication defined distributively using the group multiplication in G.

If « = Yk, xc K[G] we define the support of « to be

Suppa = {xe G|k, # 0} .

‘Then Supp « is a finite subset of G.
Suppose for a moment that « is central in K[G] and let ¢ ¢ Supp «.
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If ye G then
a2¥ = y~'zy e Supp ¥y lay = Supp « .

Since Supp « is finite it follows that there are only a finite number
of distinet #* with y<G. The set of all elements xc G with this
property will be of great interest to us. We define

4= 4G = {ze G|[G: Co(®)] < ) -

Since the conjugates of x are in one to one correspondence with the

right cosets of C,(x) it follows that x has only finitely many conjugates
if and only if x e 4.

We can now observe that 4 is a normal subgroup of G. First
le 4 and sinece Cy(x) = Cy(x™) we see that xe 4 implies 2 4. Fin-
ally, since a conjugate of xy is the product of a conjugate of x with
one of y, it follows that if x, y € 4 then xye 4. Thus 4 is a subgroup

of G and it is clearly normal. It is called the F. C. (finite conjugate)
subgroup of G.

The importance of 4 here is two-fold. First we are able to reduce
the problems studied from K[G] to K[4] and second we are able to
handle the much simpler group 4. In this section we consider the
reduction to K[4] which will yield results on prime and semiprime
group rings.

Lemma 1.1. Let H,, H,, - -+, H, be subgroups of G of finite index.
Then H= H,N H,N «++ N H, has finite index in G and in fact

[G: H] £ [G: H]IG: Hj} --- [G: H,] .
Proof. If Hx is a coset of H then clearly
Hr=HxNHzxn---NHzx.
Since there are at most [G: H|]|G: H,] --- [G: H,] choices for
Hgaz, Hax, -++, Hz ,

the result follows.

LEMMA 1.2. Let G be a group and let H,, H,, ---, H, be a finite
number of subgroups. Suppose there exists a finite collection of
elements 2;,€G (1 =1,2,«««,m; § = 1,2, ««+, f(¥)) with

G = U” Hu,; ,

a set theoretic union. Then for some , [G: H;] < oo.

Proof. By relabeling we can assume all the H; to be distinct.
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‘We prove the result by induction on 7%, the number of distinct H,.
The case n = 1 is clear.

If a full set of cosets of H, appears among the H,x,; then [G: H,] <
o and we are finished. Otherwise if H,x is missing then

H,» = U, Hai; .
But H,x N H,x,; is empty so H,x & Uiz, ;Hi:;.  Thus
H’nxnr _g-_ U Hixijm~1xnr
TN
J

and G can be written as a finite union of cosets of H,, H,, ---, H,_,.
By induction [G: H;] < -~ for some 7= 1,2, +++, » — 1 and the result
follows.

Let ¢ denote the projection 9: K[G] — K|[4] given by
a=>kx—0a) = k.
rel xed

Then ¢ is clearly a K-linear map but it is certainly not a ring hom-
omorphism in general.

Lemma 1.3. Let «, 8 K[G] and suppose that for all xe G we
have axB = 0. Then 0(a)0(B) = 0.

Proof. We first show that #(a)g = 0. Suppose, by way of con-
tradiction, that 0(a)B == 0 and let v e Supp f(x)B.
Suppose Supp 0(c) = {uy, U, +++, u,} and set W = N Cx(u;). Since
u; € 4, it follows from Lemma 1.1 that [G: W] < .
Write & = f(e) + @' where Suppa’ N 4 = ¢ and then write the
finite sums
a = Zay; Yy &4

with @;, b;¢ K and y;,2,€G. If y, is conjugate to some vz;' in G
choose h;; € G with hijyh; = vz;'. We show now that

(* ) wWe U..; CG(yi)hH .
Let xe W. Then
0 = a”'awg = (x0(a)x + o ')
= 0(@)B + (z'a'x)B

since @ € W implies that « centralizes #(a). Now v occurs in Supp 6(a)8
and so this element must be cancelled by something from the second
term. Thus there exists y;, z; with v = 2 'y,xz; or
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ey = vyt = hijyih .

Thus xzh;# € Cx(y;) and x € Cy(y:)h;; and (*) is proved.
Now [G: W] < = so0 if G = U Ww, then by (*)

G = Ui,i,kCG(yi)hijwk

a finite union of cosets. By Lemma 1.2, [G: Ci(y;)] < « for some 1,
a contradiction since y; ¢ 4. Thus 8(a)g = 0.
Now Write 8 = 6(G8) + 8’ where Supp 8’ N4 = . Then

0=0)p=0)0ip) + 0@)p .

Since Supp f(a)0(B) S 4 and Supp (a)B' N 4 = @ we have d(a)0(B) = O
and the result follows.

THEOREM 1.4. (Passman [9]). Let A and B be ideals in K[G]
with AB=0. Then 0(A) and 8(B) are ideals in K[4] and 6(A)0(B) =0.

Proof. We show first that 0(4) is an ideal in K[4]. Since
O(a) + O(ay) = O(a, + @)

0(4) is clearly closed under addition. Furthermore, if e 4 and ve
K|[4] then ave A, yae A and we have easily

f(ay) = O(a)y, 0(va) = v0(c) .

Thus 6(A4) is an ideal.
Now let acA,geB. If xeG then axe A so axBc AB and
axB = 0. By Lemma 1.3 we have 6(a)0(8) = 0 and hence 8(4)8(B) = 0.

We remark that more generally if A, A4, ---, 4, are ideals in
K[G] with A4, .-+ A, = 0, then 0(4)06(A,) --+ 0(4,) = 0. A proof of
this, in the more complicated context of twisted group rings, can be
found in [11].

LEMMA 1.5. Let A be an ideal in K[G]. Then A+ 0 if and
only if 0(4) = 0.

Proof. Certainly 6(A) = 0 implies A = 0. Now suppose A = 0
and let ac A, ¢ = 0. If xeSuppa then since A is an ideal z~'ac 4
and 1eSuppaa. Thus 0 = 0(x"'a) € 6(A) and 6(A) + 0.

2. Prime rings. A ring R is said to be prime if for any two
ideals A, B in B, AB = 0 implies A = 0 or B= 0. In this section we
consider the possibility of K[G] being prime. We start by studying
4(G).



LINEAR IDENTITIES IN GROUP RINGS 461

LEmmA 2.1. Let G be a group with a central subgroup Z of
finite index. Then G, the commutator subgroup of G is finite.

Proof. Let (x,y) = x7'y'xy denote commutators in G. Since
@, v = (y, ) we see that G’ is the set of all finite products of com-
mutators and it is unnecessary to consider inverses.

Let 2z, 2,, ++-, 2, be coset representatives for Z in G and set
c;; = (x5, ;). We observe first that these are all the commutators of
G. Let z,ye G and say xe Zx,, ye Zx;. Then x = ux, y = vx; with
% and v central in G. This yields easily (x, ¥) = (x;, ®;) = c;;.

Now let z,ye G. Since Z is normal in G and G/Z has order =
we have (z, y)"e Z. Thus

(@, Y = a7y wy(x, ¥)" = a7y 2, Y)Y
= ey w@ Yy ey) (@, Y)Y
= o7y eyt YN, Y)Y = (@, )Yy, v)V
since conjugation by y being an automorphism of G implies that
Y@ Y)Yy = Wy, vy = ey, y)m

We show finally that every element of G’ can be written as a
product of at most n® commutators and this will yield the result.
Suppose ue G and u = ¢, +++ ¢, a product of m commutators. If
m > n° then since there are at most »® distinct ¢;; it follows that some
¢;j, say ¢ = (x,%), occurs at least » + 1 times. We shift n + 1 of
these successively to the left using

(@, ) (2, Y) = (&, Y)e (@, x,)c
= (x, Y)(c™'x,cy c'@,C)

and obtain u = (x, ¥)"*'¢c,+Chrs » * » ¢, Where each ¢} is a possibly new
commutator. Using

(@, )" = (@, Py 2y, v)~*

we can then write # as a product of m — 1 commutators. Thus every
element of G’ is a product of at most »® of the ¢;; and thus clearly
G is finite.

LEMMA 2.2. Let H be a finitely generated subgroup of 4(G).
Then [H:Z(H)] and |H'| are finite. Thus if 4(G) contains no non-

identity elements of finite order then 4(G) is torsion free abelian.

Proof. Let H be generated by =z, @, +++, %,. Since each z; has
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only a finite number of conjugates in G, they have a finite number
of conjugates in H. Hence [H: Cy(z;)] < . By Lemma 1.1, Z =
N Cx(x;) has finite index in H. Since x,, 2,, +--, x, generate H we see
that Z is central in H. Thus by Lemma 2.1, H’ is finite.

Now suppose 4(G) has no nontrivial elements of finite order and
let @, ye 4(G). Set H=<wx,y). Since H is finitely generated the
above implies that H’ is finite and hence H’ = {1>. Thus « and y
commute and 4(G) is abelian. By definition 4(G) is torsion free.

LEMMA 2.83. Group G has a finite normal subgroup H whose
order is divisible by a prime p if and only if A(G) contains an
element of order p.

Proof. Let H be given. Since p||H|, H contains an element 2
of order p. Since H is normal in G, all conjugates of x are contained
in H and hence xe€ 4.

Now let xe 4 have order p. Let x, = 2, a,, -+, x, be the finite
number of distinct conjugates of x. If H = {&,, %, +++, 2, then HS 4
and H is normal in G since conjugation by an element of G merely
permutes the generators of H. By Lemma 2.2, H’ is finite. Now
H/H' is a finitely generated abelian group generated by elements of
finite order. Thus H/H' is finite and H is finite. Since z ¢ H, p||H|
and the result follows.

LEMMA 2.4. Let H be a torsion free abelian subgroup of G and
let ae K[H) < K|[G] with a« 0. Then a is not a zero divisor in

K[G].

Proof. We show that a8 = 0 implies that 8 = 0. An analogous
proof works in the other direction. Suppose @B = 0. We can choose
Y Yor **+, Y in distinet right cosets of H in G so that

B =B+ BY, + +++ + Bl
with g8, K[H]. Then
0 =ap = (aB)Y: + (AB)Y: + *++ + (@BIY:

and since ap; € K[H] we have clearly ag; = 0. Thus it suffices to
show that aB; = 0 implies 8; = 0 or equivalently we can assume that
G = H is a torsion free abelian group.

Assume then that G = H. Now there clearly exists a finitely
generated subgroup WS G with «, 8 K[W]. Thus we may also
assume that G = W is finitely generated. By the fundamental theorem
of abelian groups G = {(&,> X (&) X +++ x <x,», a finite direct product
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of infinite cyclic groups. Then K[G] is essentially a polynomial ring
in the variables x, x,, ---, 2, except that negative exponents are also
allowed. It is now obvious that K[G] is an integral domain so af8 = 0
implies 5 = 0.

THEOREM 2.5. (Connell [4]). The following are equivalent:
(i) KI|G] 1s prime.

(ii) 4(G) s torston free abelian.

(iii) G has mo nonidentity finite normal subgroup.

Proof. (i) = (iii). Suppose G has a nonidentity finite normal sub-
group H. Set
a= > xe K[G].
e H
Since H is normal in G, y'Hy = H for all ye G and thus y~‘ay = «.

Hence « is central in K[G] and clearly « == 0.
If ye H then yH = H so yax = a. This yields

o = (ﬂ%{x)a = |H|a

and hence (@ — |H|)ee = 0. Since H # (1) we have clearly a — | H|" 5
0. Set

A= (a — |H)K[G], B=aKI[G].

Since « is central these are both nonzero ideals. Moreover, clearly
AB =0 so K[G] is not prime, a contradiction. Hence H does not
exist.

(iii) = (ii). By Lemma 2.3, 4(G) has no nonidentity elements of
finite order and then by Lemma 2.2, 4(G) is torsion free abelian.

(iiy=(i). Let A and B be ideals in K[G] with AB=0. By
Theorem 1.4 we have 6(4)0(B) = 0 and hence by Lemma 2.4 either
0(A) = 0 or 0(B) = 0. The result follows from Lemma 1.5.

3. Semiprime rings. Let B be a ring. An ideal P of R is
said to be prime if R/P is a prime ring. Thus P is prime if and only
if for all ideals 4, BS R we have AB< P implies A= P or BE P.
R is said to be semiprime if the intersection of all prime ideals of R
is 0. In particular, R is semiprime if and only if it is a subdirect
product of prime rings.

LevMA 3.1. Ring R is semiprime if and only tf R contains no
nonzero ideal with square 0.
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Proof. Suppose R contains a nonzero ideal A of square 0. If P
is any prime ideal in R then A-A=0Z P so AS P. Hence A is
contained in the intersection of all such prime ideals and R is not
semiprime.

Now suppose that E contains no nonzero ideal of sequare 0. Let
ae R, a+0. We define a sequence T = {a,, &y, *--, &, -»+} or non-
zero elements of R inductively as follows. First @, = «. Second given
«, #= 0 then the ideal Ra,R does not have square 0. Thus for some
B.€ R we have a,B,«, + 0. Set a,,, = «,8,a,. Since 0¢ T it follows
that T is disjoint from some ideal of R namely 0. By Zorn’s lemma
there exists an ideal P of R maximal with respect to PN T = Q.
We show that P is prime. Let A and B be ideals of R with A £ P,
B&Z P. Then P+ A and P + B properly contain P so by the maxim-
ality of P, it follows that for some 4, we have ;e P+ A, a;e P+ B.
If m = max (¢, j) then clearly a,e P+ A, a,€ P+ B so

Qs = OUpfBuln€(P+ A)(P+ B)S P+ AB.

Since «,,,¢ P we have ABZ P and P is prime. Since o = o, ¢ P
the result follows.

An element e R is said to be nilpotent if a* = 0 for some posi-
tive integer n. An ideal I of R is nil if all elements of I are nilpotent.

THEOREM 3.2. (Pascual Jordan). Suppose that K is a subfield
of the complex numbers which is closed under complexr conjugation.
Then KI[G] contains mo nonzero mil ideal.

Proof. Let * denote complex conjugation and extend * to a map

of KI[(G] to itself by
a = kao—a* = k¥,
TEG zed

Clearly (¢*)* = « and (aB)* = B*a*. In addition, the coefficient of
1eG in aa™ is X..; | k.|* and thus aa® = 0 if and only if @ = 0.

Let I be a nil ideal in K[G] and let a« e . Since [ is an ideal
we have aa* eI and hence for some n =1, (aa*)"= 0. Let n be
minimal with this property. Suppose that » > 1 and set 8 = (aa™)"".
Clearly 8* = 8 so we have B8* = (aa™)™* = 0 since 2n — 2 = n. Thus
B = 0 by the above, contradicting the minimality of n. This shows
that n = 1, aa* = 0 and hence a« = 0. Thus I = 0.

We remark that K[G] has no nonzero nil ideals if K is any field
of characteristic 0 (see [9], Th. II). However, the above is quite suf-
ficient for our purposes.
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THEOREM 3.38. Let K be a field of characteristic 0. Then K[G]
s semiprime.

Proof. Suppose K[G] is not semiprime. Then by Lemma 3.1,
K|[G] contains a nonzero ideal A with A*=0. Let a = > k€A,
a # 0 and let F be a subfield of K generated over the rationals by
ki ks +++, k,. Then F[G] < K[G] and AN F[G] is a nonzero ideal of
F[G] of square zero. Thus it clearly suffices to assume that K = F
or equivalently that K is finitely generated over the rationals. This
implies that K is contained in the complex numbers C and we fix an
imbedding. Then K[G] = C[G] and AC is a nonzero ideal of C[G]
with square zero. This is a contradiction by Theorem 3.2 and the
result follows.

We now consider fields of characteristic p > 0. Let R be a ring.
We set [R, R] equal to the set of all finite sums of Lie products

[(X, 48] = ap — pa
with a, ge R.

LEMMA 8.4. Let E be an algebra over a field K of characteristic
>0 and let k and n be positive integers. If a, a, <+, ,c K then

(, +a,+ v +a ) =a? + a2 + oo + a2+
for some Rel|E, E].

Proof. Observe that
@+a+- s ta)' =af +a + -+t +

where B is the sum of all words a;a;, « -+ i with at least two dis-
tinet subscripts occurring. If words @, and ®, are cyclic permutations
of each other, that is, if

W, = O Ry o0 Ay

a)zza,,;~a '“a,-pkail-”a

Eaad B! ij—1

then w, — @, = ¥0 — o0v e [E, E] where

Y=, e and 0= Q0 o0e Qi

*i—1
Hence modulo [E, E] all cyclic permutations of a word @ are equal.
For convenience we let the cyeclic group Z ; act on the set of these
words by performing the cyclic shifts. Then the number of formally
distinct permutations of a word ® occurring in B is the size of a

nontrivial orbit of Z , and hence is divisible by ». Since K has char-
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acteristic p, the result follows.

THEOREM 3.5. (Passman [9], Connell [4]). Let K be a field of
characteristic p > 0 and let G have no elements of order p. Then
K[G] has no nonzero nil ideals.

Proof. If @« = Zk,xec K[G] we set 7(a) = k,, the coefficient of 1.
7 is clearly a K-linear map of K[G] onto K. Now [K][G], K[G]] is
spanned over K by all Lie products of the form [, y] with 2, yeG.
Furthermore, if z([z, y]) = 0 then certainly ¥ = ¢~ and then

[, 9] =z~ — ' =0,

a contradiction. Hence 7([K[G], K[G]}) = 0.

Let I be a nontrivial nil ideal in K[G] and let « = Zk,xe I — {0}.
Then for some 2, k,+ 0. Since I is an ideal z~'ael and clearly
(@) = k, # 0. Thus we may assume that () = 0. Say

a=Fkl+kx,+ < + k2,

where ke K, k, = 0 and the z; are distinct nonidentity elements of G.
Since a™ = 0 for some m > 0 it follows that a?** = 0 for some integer
k> 0. By Lemma 3.4

0 = a?* = (k,1)?" + (ly)?* + o+ + (k,2)" + 8
where ge[K[G], K[G]]. Since 0 = 7(0) = 7(8) and
(k1)) = k" - 0

we conclude that for some 7 = 2,8, +-+, n, z‘((kixz-)f’") # 0. Thus z; = 1,
22" =1 and G has an element of order p, a contradiction.

The converse to Theorem 3.5 is decidedly false. Namely, there
are many examples of groups G with elements of order » such that
K[G] has no nontrivial nil ideals. (See, for example, [9] and [10].)

THEOREM 3.6. (Passman [9]). Let K be a field of characteristic
p > 0. The following are equivalent.

(i) KI[G] ts semiprime.

(ii) 4(G) has nmo elements of order p.

(ili) G has mo finite normal subgroups with order divisible by

Proof. (i)= (iii) Suppose G has a finite normal subgroup H
with p}| H|. Set

a=23,.zxe K[G].
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As in the proof of Theorem 2.5 we see that a % 0, « is central in
KI[G} and o®* = |H|la. Now p||H| and K has characteristic » so
|H =0 in K. Thus if A= aK|[G], then A is a nonzero ideal of
K[G] and A*= 0. By Lemma 3.1 K[G] is not semiprime, a contra-
diction. Hence H does not exist.

(iii) = (ii). This follows from Lemma 2.3.

(ii)=(i). Let A be an ideal in K[G] with 4> = 0. Then by
Theorem 1.4, 8(A) is an ideal in K[4] with 6(A)* = 0. Now 4 has no
elements of order p so by Theorem 3.5, 6(4) = 0. Hence by Lemma 1.5
we have 4 = 0 and K[G] is semiprime by Lemma 3.1.

An ideal A is said to be nilpotent if A = A-A4-..- -4 =0 for
some integer n = 1. If A is such a nonzero ideal, then certainly a
suitable power of A is a nonzero ideal of square zero. Thus if K has
characteristic p > 0 then by Lemma 3.1 and Theorem 3.6 we see that
K[G] has a nonzero nilpotent ideal if and only if 4(G) contains an
element of order ip. It is shown in [11] that K[G] has a unique
maximal nilpotent ideal if and only if 4(G) contains just finitely many
elements whose order is a power of p.

4. Examples. Let K[{,(, +--] be the polynomial ring over K
in the noncommuting indeterminates (, &, +--. An algebra E over
K is said to satisfy a polynomial identity if there exists

f(Cn Czy cccy Cn)EK[CM Cm "‘] ’
f+# 0 with
f(au Ay =2y an) =0

for all a,«, -+, a,¢ E. For example, any commutative algebra

satisfies f({, &) = (& — &L
The standard polynomial of degree w» is defined by

[Cl! Cz; M) Cn] :gg' (~1)”Co<1><:v(2) e Ca(n) .

Here S, is the symmetric group of degree n and (—1)° is 1 or —1
according as o is an even or an odd permutation.

LEMMA 4.1. Let E be a commutative algebra over a field K and
let E, denote the ring of n X n matrices over K. Then E, satisfies
the standard polynomial identity of degree n® + 1.

Proof. Now E, has a basis {8, B +++, B2} over E of size n’.
Since K is central in E, and since [{,, &, +++, {ueei] is linear in each
variable it clearly suffices to verify that

[Bila Bizv ct Bi,,,2+]] =0.
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However, since here there are only #* distinct ©; we must have two
of the above variables equal. The result now follows since it is obvious
from the form of the standard polynomial, that if two variables are
equal then the polynomial vanishes.

It is in fact true that FE, satisfies the standard polynomial identity
of degree 2n (see [2]) and by using this stronger result we could
strengthen the next theorem.

THEOREM 4.2. (Kaplansky [8], Amitsur [1]). Let G have an
abelian subgroup A with [G: Al = n < . Then K|[G] satisfies the
standard polynomial tdentity of degree n* -+ 1.

Proof. Let x,a, ---,x, be a set of right coset representatives
of Ain G. Let FE= K[A] and V = K[G]. Then clearly V is a left
E-module with basis {z,, 2., ---, 2,}. Now V is also a right K[G]-
module and as such it is faithful. Since right and left multiplication
commute as operators on V, it follows that K[G] is a set of E-linear
transformations on a m-dimensional free F-module V. Thus K[G]| & E,
and the result follows from Lemma 4.1.

We will see later that a reasonable converse to the above holds.
However we consider some examples now to show that a converse need
not hold in all situations.

LEMMA 4.3. Let E be an algebra over K and suppose that
[E, E]* = 0. Then E satisfies the standard polymnomial identity of
degree 2n.

Proof. Let a,, a,, +--, a0y, € E and consider

[alr Ay o0, aZn] = Z (_l)aaa(l)aﬂ(m cer oo »
a

Consider all such terms on the right hand side with
{o(V), 0@2)} = {i,, &}, {03), (D)} = {i5, 0}, - -+,
{o(2n — 1), 0(2n)} = {i34—1, 1.} Where of course
{iyy gy o0y ton} = {1, 2, ---, 20} .
Then the subsum 2’ of all these terms is easily seen to be equal to

= &lay, ag e, o] -0 e, @, 1= 0

“2n ton

since [E, E}* = 0. Thus the result clearly follows.

LEMMA 4.4. Let K be a field of characteristic p >0 and let G
be a group with |G'| = p and G central in G. Then K[G] satisfies
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the standard polynomial identity of degree 2p.

Proof. Since |G’'| = p, G’ = {z) is cyclic. We show first that
[K[G], K[G]] & 1 ~ 2)K[G] .

Now [K][G], K[G]] is spanned over K by elements of the form [z, y]
with z, ye G. For z, yec G we have

[, 9] = 2y — yx = (1 — yxy ey
=l —2ey=Q1-21+z+ - + 2y

for some ¢ >0 since yaxy'z'eG = <z). Thus [z, y]le (1 — 2 K[G]
and this fact follows.

Now K has characteristic p and 22 =1 so 1 —2)?=1—2"= 0.
Since z is central in G we have ((1 — 2)K[G])” = 0 and the result
follows from Lemma 4.3.

THEOREM 4.5. Let K be a field of characteristic p > 0. Then
there exists a sequence of finite p-groups P, P,y «++, P, «++ and an
infinite p-group P. such that

(i) For all v=1,2,+.., 00, K[P,] satisfies the standard poly-
nomial identity of degree 2p.

(ii) P, has no abelian subgroup of indexr < p".

(iii) P. has no abelian subgroup of finite index.

Proof. Let @ be a nonabelian group of order »°. Then Z, the
center of @, has order p, @/Z is abelian of type (p, p) and @ = Z.
Let @Q,, Q;, @, -+- be copies of Q with centers Z,, Z,, Z,, --- and say
Z; = {z;). For each integer n set

G, =Q X @y X +++ X Q,
and set

Gw:lesz...xan...,

We have clearly G, =Z(G,)=Z, X Z, X ---. Now let N, be the
subgroup of Z(G,) generated by the elements 2,27, 2,278, 2274 -+-. Then
N, is a central and hence a normal subgroup of G, and we set

P,=G,N,, P.=G./N..

Clearly P; < Z(G,)/N, and the latter group has order ». Thus |P;/| <
p and P is central so (i) follows by Lemma 4.4. We observe now
that Z(P,) = Z(G,)/N,. For suppose % = zx,---€ @G, — Z(G,). Then
for some 4, x; ¢ Z; and hence there exists ;e @; which does not cen-
tralize x;. Then y,e G, and
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(@, ¥;) = a7y ey, = oYY .

is a nonidentity element of Z;,. Since clearly Z; N N, = {1)> we see
that the images of x and of y, do not commute in P,. This yields
[P,: Z(P,)] = p™ and [P.: Z(P.)] = .

Suppose A is an abelian subgroup of P, of finite index p* and set
B = AZ(P,). Then B is abelian of index < p' and B is normal in P,
since B2 Z(P,) = P.. Now P,/B is clearly elementary abelian and we
can choose w,, w,, +++, w,€ P, with P, = (B, w,, wy, +++, w,>. If yeP,
then y~'w,y = w;(w;, y) € w;P]. Hence since |P/| = p we see that w;,
has at most p conjugates in P, and [P,:C, (w;)] <p. Thus by
Lemma 1.1 if

W= BN Cp(w) N Cp(w) N +++ N Cp (w,)

then [P: W] < p'p-p- -++ «p = p*. Now B is abelian so W centr-
alizes B and all the w,; and hence W = Z(P,). Since [P.: Z(P.)] = o,
(iii) follows and since [P,: Z(P,)] = »*™ we have ¢ = n and (ii) follows.
This completes the proof.

5. Second reduction. We now obtain a refinement of the re-
duction of §1 which is applicable to studying polynomial identities.

LEMMA 5.1. Let G be a group and suppose that G can be written
as G = UHx,; a finite union of cosets. Then G = U'H;x;; where the
union 1s restricted to those H; with [G: H;] < co.

Proof. Let & = {¢|[G: H;] < =} and let § = {i|[G: H;] = =}.
By Lemma 1.2, & = @. Let W= ., H;. Then [G: W] < « by
Lemma 1.1 and each coset H;x;; with ¢ .5 is a finite union of cosets
of W. Thus

U'Hx:; = U Hiwyy = U Wy,
1€

a finite union of cosets of W. If G - U'Hx;; then G U Wy, and
some coset Wy is missing. Then

Wy & (U Wy U <L,§ Hﬁii)
and since Wy N Wy, is empty we have WygUie%Hlx“. Thus all
cosets of W are contained in finite unions of cosets of those H; with
1€ %. Since [G: W] < oo this yields a representation of G as a finite
union of cosets of those H; with 7€ ®. This contradicts Lemma 1.2
and thus G = U’'H;x;.

LEMMA 5.2. Let G %= UH, 0n., @ finite union of cosets. Let
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Oy Qlgy ** %y Ay Bry Bas =+ Bu € K[G]
and suppose that for all x€ G — UH,gn, we have
axBy + A, + o0 + B, =0.
Then there exists ye G with
0(a)'B, + 0(@)!By + +++ + 0(a,)’B, = 0.

Proof. Let W be the intersection of the centralizers. of all ele-
ments in Supp d(a;) for 1=1,2, -+-,s. By Lemma 1.1, [G: W] =t <
o, Clearly if xe W then x centralizes 6(a)), 6(a,), -+, 0(cx,). Let
{u;} be a set of coset representatives for W in G. Let us suppose by
way of contradiction that for ¢ = 1,2, ---, ¢

v = 0(@)"iB, + 0(a) B, + oo + O(a) B, # 0

and let v, e Supp ;.
Write a; = 0(a;) + ) where Supp a; N 4 = @ and then write the
finite sums

a; = 2y Y€ 4
Bi = bz

If y; is conjugate to some v;z;* in G choose h;;,€ G with A7y ki =
ViR5"
Let 2€ G and suppose that ¢ UH,.9... Then we must have

0= 27'awB + 7 AxB; + < -+ + 7,30,
= [0(a)*B, + 0(a)*B; + + -+ + 0(a.)B.]
+ [, + By + <+« + ai®B,] .

Since {u;} is a full set of coset representatives of W in G we have
xe Wu; for some 4. Since W centralizes 6(a), f(a), « -+, 6(ct,) the
first expression above is equal to v;. Hence

0= i+ [aixlgl + a;xﬁz + oo A a:;a:BS] .

Now w; occurs in the support of v, and so this element must be can-
celled by something from the second term. Thus there exists v;, 2,
with »; = yiz, or

Y = 027" = hijWiki -
Thus 2 € Co(y:)hi;r. We have therefore shown that

a finite union of cosets. Now w;¢4 so [G: Cy(y;)] = . Since, by
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Lemma 5.1, we can delete subgroups of infinite index from the above
we have G = UH,0,.., a contradiction. The lemma is proved.

It is obvious from the above that we can handle linear identities
in K[G]. Thus we need the following.

LEMMA 5.8. Suppose E is an algebra over a field K which satis-
fies a nontrivial polynomial identity of degree n. Then E satisfies
the polynomial identity fe K[C,, C +--, £,] with

f(Cu Czy ) Cn) = Z;; aaCu(l)Ca(Z) et Ca(n)

067,'

where a, € K and they are not all zero.

Proof. A monomial in K[, , -+-] is an element of the form
£ i, o+ €, These of course form a basis for K[, {;, «++] over K.

Let g = g, &, +--) be the given polonomial of degree % satisfied
by E. Suppose some variable {; occurs in some but not all of the
monomials in the expression for g. Then ¢ = ¢’ + ¢” where {; occurs
in all the monomials of ¢’ and in none of ¢’’. Then ¢ = 0, degree ¢” < n
and ¢"(, &y o0y Ciy oo0) =9, Gy 20+, 0,--4) s0 g is also clearly a
polynomial identity for E. We continue in this manner reducing the
number of variables involved until we obtain a nonzero polynomial 4
of degree <m with the property that each variable {; which occurs
in & in fact occurs in each monomial. Since degree & < n we see that
h is a function of at most 7» variables. By changing notation if
necessary we may assume that he K[{,E,, +-+, ]

Let 57 be the set of all he K|[(,, &, ++-, {,], &+ 0 which are poly-
nomial identities for E of degree <u and for which all variables which
are involved in h occur in each monomial. We choose fe &~ to be a
function of the maximal number of variables possible. Say f is a fune-
tion of ¢ < n variables. We show now that f has the desired property.

Suppose that some monomial in f is not linear in say {,. Since
degree f < n and fe 57 this implies that f cannot be a function of
all {; so say {, is missing. Set

f, :f(C1 + Cn? Cz; "') "—f(Cu Czy "') —f(Cm Czy "') .

It follows easily that f’ = 0 and that f’ e 2% Furthermore f’ is a
function of ¢ + 1 variables, a contradiction. Hence all monomials in
f are linear in each variable and thus they all have degree t = n. If
t < n then say ¢, is missing and setting f” = {,f yields a contradic-
tion. Thus ¢t = n and f has the desired form.

6. Polynomial identity rings. Suppose A is an abelian sub-
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group of G with [G: A] < . Then every element of A has only a
finite number of conjugates in G and thus 4(G) 2 A and [G: 4] < .
Therefore, according to the observation of [12], a first step in finding
a converse to Theorem 4.2 is to show that [G: 4] is finite. That is
the goal of this section.

Let K[, &, «+-] be the polynomial ring over K in the noncommut-
ing indeterminates {,, ;, +++. A linear monomial is an element pe
KIC,, &,y +++] of the form p = (&, +++ ;. with all 4; distinet and with
r = 1. Thus g is linear in each variable.

LEMMA 6.1. The number of linear monomials in K[{, &, «++, Cal
is <(m + DL

Proof. The number of linear monomials in KIJ[{, {, +++, {n] of
degree m is of course m!. Now any other linear monomial is clearly
just an initial segment of one of these. This yields a bound of

m-m! < (m + 1)!.
We remark that a more precise upper bound here is e¢-m! =

2.718...)m!. We now come to the first main theorem of this paper.

THEOREM 6.2. Let K[G] satisfy a montrivial polynomial identity
of degree n. Then [G: 4] £ nl.

Proof. We assume by way of contradiction that [G: 4] > n! By
Lemma 5.3 we may assume that K[G] satisfies the polynomial identity

f(Cn Cz: te Cn) = CLCZ b Cn + UEZS a'aCa(nQa(Z) i Cﬂ(’n)

gFl
8o that clearly » >1. For j =1,2, --., n define
fj € K[ij CJ'+17 ‘et Cn]
by
Ff=1CL -+ {;_if; + terms not starting with {& -+ &y .

Then clearly f, = f, f, = {, and f; is a homogeneous multilinear poly-
nomial of degree » — j + 1. In particular, for all 7, ; occurs in each
monomial of f;. We clearly have

fi = &;fiv + terms no starting with ;.

For j = 2,8, .-+, nlet _#; denote the set of all linear monomials
in K[Z;, L1y ¢+, C,] and let _#; be empty. Then by Lemma 6.1 we
have for all j, | #| < | #|<n! We show now by induction on
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j=1,2,---, 5 that for any x;, 2;,,, ---, 2,€ G then either
.f:i(xjr Ljry * %%y xn) =0

or p(x;, ey, +++, ) €4 for some pe 7. Since f= f, is a polynomial
identity satisfied by K[G], the result for j = 1 is clear.
Suppose the result holds for some 57 < n. Fix

Tjrry Ljgey 200y T € G

and let x<¢ G play the role of the j-th variable. Let pe_z, . 2If
L%y Tjyay <+ o, x,) €4 we are done. Thus we may assume that

ﬂ(xﬂ-u Ljgay oy xn) € 4

for all pe _#,.,. Set _7; — 7y, = G-

Now let pte$; so that g involves the variable {;. Write p# =
1" where g and g are monomials in K[, {jyy =+, £,]. Then
pr@, ;0 o0, 2,) €4 if and only if

ve #’(xj"‘l’ Y x”)ﬁldl’l”«vj-ku ct xn)~1 = Ah#

a fixed coset of 4, since ¢ and £ do not involved {; and since 4 is
normal in G. Thus it follows that for all xe G — U,.x_ 4k, we have
@, iy, v, x,) €4 for all pe #; since 2= _#5., U ‘{;J-. Since the
inductive result holds for j we conclude that for allx e G — U, /Ahu
we have f;(x, ©;,,, +++, z,) = 0. Note that

IBil = | 421 £ nl

and [G: 4] > n! by assumption so G — U.eg 4h, is nonempty.
2
Write

fj(Cj’ Cj+1y trey Cn) = Cify-H + S'ry]rcjv,r

where 7),, 7, € K[{;i1, (iuyy +++, C,] and 7, is a linear monomial. Hence
7,€ _#;.,. Now by the above we have

0= l'x'f‘]'+1(wy+1v M) xn)
-+ Zﬂ?r(xjﬂv ey xn)mﬁ;(xjﬂv M) ’Ln)

for all xe G — Upueg 4h, # @. Hence by Lemma 5.2 there exists
ye G with ’

0= 6(1)yf‘j--{—1(xj+m tt Yy xn) + Zrﬁ(y]'r(xj—l-u ctty mn))y‘/];(xj*Fl! R mn) .

Clearly 0(1)* =1. Also %,(®jy, =+, 2,)€G — 4 since 7,€ _+#,,, and
hence 0(7.(x; .y, <<+, 2,)) = 0. Thus

0= 1'f;‘+1(xj+1r cee, ) = Jiri(@prqy ooy ®,)
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and the induction step is proved.

In particular, the inductive result holds for j = n. Here f,(,) =
L, and _#, = {{,}. Thus we conclude that for all xe G that either
# = 0 or xc 4, a contradiction since G = 4. Therefore the assumption
[G: 4] > n! is false and the theorem is proved.

7. Corollaries.

LEMMA 7.1. Let G a finitely generated group and let H be a
subgroup of finite index. Then H is finitely generated.

Proof. By adding inverses if necessary we can assume that G is
generated by z,, 2., +-+, £, as a semigroup. Let ¥, %, ++-, ¥, be a set
of right coset representatives for H in G. For each 4,75, Hy,x; is a
coset of H say Hy,x; = Hy;. Then there exists h;; ¢ H with

Yi%; = i «

Let H be the subgroup of H generated by {&;}, and set W= U Hy,.
Since h;;€ H we have (Hy,)x; = Hh;;y;, = Hy,, & W and hence Wu; =
W. Thus since the x; generate G as a semigroup we have WG = W
and hence clearly W = G. This yields easily H = H and the result
follows.

COROLLARY 7.2. Let G be a finitely generated group and suppose
that K[G] satisfies a polynomial identity. Then G has a mormal
abelian subgroup of finite index.

Proof. By Theorem 6.2, [G: 4] < o« and hence by the previous
lemma 4 is finitely generated. Hence by Lemma 2.2, [4:Z(4)] < «
so Z(4) is an abelian subgroup of G of finite index. Since Z(4) is
characteristic in 4, it is normal in G.

We remark that even if we know the degree of the polynomial
identity we cannot, in general, bound the index of the abelian sub-
group in the above as the finite examples of Theorem 4.5 indicate.
Furthermore, the example of the group P. shows that if G is not
finitely generated then G need not have an abelian subgroup of finite
index.

LEMMA 7.3. Let E = K, be the ring of m X m matrices over K.
Then E does not satisfy a polynomial identity of degree < 2m.

Proof. Suppose by way of contradiction that E satisfies a poly-
nomial identity of degree n < 2m. By Lemma 5.3 we may assume
that E satisfies
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f(Cn Czy 0y Cn) = C1C2 ter Cn + 2 a'GCU(l)Ca(z) b Cu(n) .

ogeS
aqéln

Let {e;;} denote the set of matrix units in F, that is e;; is the matrix
whose only nonzero entry is a 1 in the (¢, 7)-th position. Since n < 2m
we may set

G=en 6= en &= €y & = €3, (= €5, o+

Then {,C, -+ {, at these values is not zero but clearly for all ¢ = 1,
Cowlow + v+ Comy at these values is zero. Thus £ does not satisfy f, a.
contradiction.

Under certain circumstances we can improve the bound on [G: 4]
given in Theorem 6.2. The following result can be found in [12].
The proof here retains the basic flavor of the original, namely the
formation of a suitable ring of quotients, but it does not require the
use of deep ring theoretic machinery. Amazingly enough we apply
some elementary Galois theory.

THEOREM 7.4. (Smith [12]). Let K|G] be prime and suppose
that K[G] satisfies a polynomial identity of degree m. Then 4 is a
torsion free abelian group and [G: 4] £ n/2.

Proof. By Theorem 2.5, 4 is torsion free abelian and by Theorem
6.2, [G: 4] = k < . Hence by Lemma 2.4, no nonzero element of
K4} is a zero divisor in K[G] and in particular K[4] is an integral
domain. Set G = G/4. Then G acts faithfully by conjugation on 4
since if x ¢ G and « centralizes 4, then [G: C(x)] < «~ and xc 4. Thus
G acts faithfully by conjugation as ring automorphisms on K[4]. Let
Xy, %sy v, % DE @ complete set of coset representatives of 4 in G with
x, = 1.

Let Z denote the center of K[G]. As we observed in §1, Z&
K[4] and thus no nonzero element of Z is a zero divisor in K[G].
Since Z is central it is then trivial to form the ring of quotients
Z7'K|G]. This is the set of all formal fractions »~'a with ye Z — {0},
a € K[G] and with the usual identifications made.

Let L = Z7'K[4| = ZK|G] and let FF = Z7*Z< L. Clearly F is
a field and L is an integral domain. Suppose « e K[4], & = 0. Then
a(ama® - -« a"F) e Z — {0} since K[4] is commutative. Thus « is in-
vertible in L and L is a field. Now G acts on L and in fact we see
that G is a group of field automorphisms of L with fixed field precisely
F. The latter follows since if n~'we L is fixed by all elements of
G, then we Z and y~'ac F. Thus by Galois theory ([3], Th. 14)

L:F)=|G|=Fk.
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Since K[G] is free over K[4] of rank k, this shows that £ = Z-'K[G]
is a finite dimensional algebra over F' and dim, E = k.

We observe now that E is prime. Suppose 4 and B are ideals
of E with AB = 0. Let n'ac A, »;'8€ B. Then since 7, and 7, are
central we have clearly (K[G]laK[GIN(K[G]BK[G]) = 0 and since K[G]
is prime we conclude that either o = 0 or 8 = 0. Thus if B+ 0 we
can assume that @ = 0 and conclude that A = 0. This implies that
E is a full matrix ring over some division algebra over F. It is clear
that F' is the center of E so E is central simple over F. Thus if F
denotes the algebraic closure of F then F &, E = F,, the ring of
m X m matrices over F. Since

m? = dim; F,, = dim, E = k?

we see that m = k.

Now by Lemma 5.3 we can assume that K[G] satisfies a multi-
linear polynomial identity of degree n. Since Z is central it follows
that E also satisfies this identity viewed as a polynomial over F.
Then clearly F R, E = F', satisfies this identity viewed as a polynomial
over . Thus by Lemma 7.3, n > 2k or /2 = k. The result follows.

LEMMA 7.5. Suppose K[G] satisfies a polynomial identity f of
degree n. Let H be a subgroup of G. Then K[H] also satisfies f.
Furthermore if H is normal in G, then K[G/H] satisfies f.

Proof. The first statement is clear since K[H] < K[G]. Suppose
H is normal in G. Then the homomorphism G — G/H induces an
epimorphism K[G]— K[G/H] so the second result follows.

COROLLARY 7.6. Suppose G is finitely generated and K[G] satis-
fies a polynomial identity of degree n. Then [G: 4] < n/2.

Proof. By Theorem 6.2, [G: 4] < « and hence by Lemma 7.1, 4
is finitely generated. Thus by Lemma 2.2, 4’ is finite. Since 4/4" is
a finitely generated abelian group and 4’ is finite we conclude that
H, the set of all elements of finite order in 4, is in fact a finite sub-
group of 4. Clearly H is normal in G.

Set G = G/H and 4 = 4/H so that clearly 4 < 4(G). On the other
hand suppose # = Hxc 4(G). Then the conjugates of a are contained
in only finitely many cosets of H and since H is finite, x € 4. Thus
4= 4(G). Since 4 is clearly torsion free abelian we see that K[G] is
prime by Theorem 2.5. Furthermore by Lemma 7.5, K[G] satisfies a
polynomial identity of degree n. Hence by Theorem 7.4, [G: 4] < n/2
and since [G: 4] = [G: 4], the result follows.
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8. Finite groups. At this point we can no longer keep this
paper self contained. We will need Theorem 8.2 below which is a
result on finite groups. In characteristic 0, in a slightly different
form, this is due to Isaacs and Passman in [7]. Our proof will merely
translate the statement here to its original form in [7] and then quote
that result. The characteristic p > 0 case is shown to follow from
the characteristic 0 one, but the proof requires a certain amount of
character theory. The reader who is not familiar with these techni-
ques should just skip the proof. The remainder of this paper will
again be self contained.

LEMMA 8.1. Let G be a finite group and suppose that K{G] satis-
fies a polynomial identity of degree m. Let K, denote the prime
subfield of K and let K, be the algebraic closure of K,. Then K[G]
satisfies a polynomial identity of degree n and all irreducible repre-
sentations of K,[G] have degree < n/2.

Proof. Let f be the given polynomial identity for K[G] of degree
n and write f= Ya,f; where the f; are polynomials over K, and the
a; € K are linearly independent over K,. If we evaluate f at elements
of K,[G] then each f; evaluated is in K [G]. Since the a; are also
linearly independent over K,[G] we conclude that each f; is an identity
for K,[G]. Clearly for some %, f; has degree n.

Thus K,[G] satisfies a polynomial identity of degree » and thus
by Lemma 5.3 it satisfies a multilinear polynomial ¢ of degree n.
Clearly g is also an identity for K,[G]. Since K, is algebraically closed,
an irreducible representation of K,[G] of degree m yields a homomor-
phism of IZ'O[G] onto (Ko)m, the ring of m x m matrices over K,. This
ring must therefore also satisfy ¢ so by Lemma 7.3, n = 2m and
n/2 = m.

THEOREM 8.2. There exists a finite valued function J with the
Jollowing property. Let G be a finite group and let K[G] satisfy a
polynomial identity of degree n. Suppose that either K has charac-
teristic 0 or K has characteristic p > 0 and p Y |G| where G’ is the
commutator subgroup of G. Then G has an abelian subgroup A with
[G: A] < J(n).

Proof. Let @ denote the algebraic closure of the rational num-
bers. If K has characteristic 0 then by Lemma 8.1 we conclude that
all irreducible representations of Q[G] have degree < n/2. Hence the
result follows from Theorem 5.3 of [7].

Now let K have characteristic p. Since p}|G’| by assumption,
it follows easily that G = HP where H is a normal p-complement and
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P is an abelian Sylow p-subgroup. We consider the irreducible Q-
characters of G. Let ¥ be such a character of G and let # be an
irreducible constituent of y,, the restriction of y to H. Let T denote
the inertia group of @ in G so that G 2 T2 H. By Satz V. 17.11.b
of [5], x = {¢ where { is an irreducible character of 7 which is a
constituent of ®”. Now |T/H| is prime to | H| so that Satz V. 17.12.c
of [5] yields " = I \;(1)nn; where 7 is an irreducible character of T
with 7, = @ and the A, are irreducible characters of T/H. Since T/H
is abelian all ), have degree 1 and by Satz V. 17.12.b of [5] we must
have £ = »» for some X = A;. Hence

CH:vHXH:WH:@-
This shows that
1) = Q) = [G: TIEQ) = [G: Tle@d) .

Now by Hauptsatz V. 17.3.g of [5] we have yn = eXip® where ¢ =
[G: T] and {x;} is a complete set of coset representations of T in G.
Thus evaluating at 1 yields tp(1) = y(1) = et®(1) s0 e =1 and ¥, =
St

Let * denote a fixed homomorphism from the multiplicative group
of |G|-th roots of unity in @ onto the group of |G|-th roots of unity
in GF (p), the algebraic closure of GF(p). If x€ G then y(x) is a sum
of |G|-th roots of unity and hence we can speak of y*, a function
from G to C?F/(p). The map x — x* is then essentially the map of
§V. 12 of [5] and x* is the character of some representation of

ﬁ(p)[G]. Clearly
) = Z ()" = Z (@) .

Since p t | H| it follows from Hauptsatz V. 12.9 of [5] that the (@")*
are all characters of distinct, irreducible, G-conjugate representations

of é\ﬁ’(p)[H . Thus Hauptsatz V. 17.3 of [5] implies easily that y*

is the character of an irreducible representation of GF(p)[G].
Now KJ[G] satisfies a polynomial identity of degree n and hence
by Lemma 8.1 we see that

degree ¥ = degree y* < n/2.

We have therefore shown that all irreducible Q[G] representations
have degree < n/2. The result now follows from Theorem 5.3 of [7].

We remark that the function J is actually the function associated
with Jordan’s theorem on finite complex linear groups.
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9. Semiprime polynomial identity rings. In this final section
we consider semiprime group rings which satisfy a polynomial identity.

LEMMA 9.1. Let G be a finitely generated group and let m be an
integer. Then there exist only finitely many subgroups H of G with
[G: H] £ m.

Proof. Let H be a subgroup of G with [G: H] =t < m. Then G
permutes the ¢ right cosets of H by right multiplication and this
yields a homomorphism @:G— S, < S,, where S, is the symmetric
group on m letters. It is clear that the kernel of @ is contained in
H so that H = @~*(W) for some subgroup W of S,,. Now there are only
finitely many choices for W and furthermore there are only finitely
many @ since @ is determined by the images of the finite number of
generators of G. Thus there are only finitely many possibilities for
H.

LEMMA 9.2. Let G be an arbitrary group and let m be an in-
teger. Then G has an abelian subgroup with index at most m if and
only if every finitely generated subgroup of G has such an abelian
subgroup.

Proof. If A is abelian with [G: A] < m then for any subgroup
H of G we have

m=[G:Al=[GNH:ANH] = [H: An H] .

Hence AN H is an abelian subgroup of H with index at most m.

Conversely, let us assume that every finitely generated subgroup
of G has an abelian subgroup of index at most m. For each finite
subset a of G let G, = {a)> be the group generated by the elements
in «. Let m, be the minimum index of abelian subgroups of G,. By
assumption 1 < m, < m for each a. Choose a, such that m, = m,, is
the largest of the m,’s and set G, = G,,.

Let A, A,, -+, A, be the abelian subgroup of G, with [G;: 4;] =
m,. By Lemma 9.1 there are only finitely many of these. We show
that for some 7 = 1, 2, --«, » both [G: C(4,)] £ m, and C(4,) is abelian.
This will, of course, yield the result. Suppose this is not the case.
Then for each % choose a; to consist of two noncommuting elements
of C(A4;) if the latter is nonabelian or choose a; to consist of m, + 1
elements in distinet right cosets of C(4,) if [G: C(4,)] > m,. Let

a=aUa U--Ua,.

This is a finite set so let 4, be an abelian subgroup of G, with
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[Ga: AL] = My -
Now
my = M, = [Go: A =[G, N Gyt AN Gy
= [Gy: AN Gy .

On the other hand A, N G, is an abelian subgroup of G, and
m = m, = [Gy: AN Gol

so we must have [G,: 4, N G,] = m, by definition of m,. Thus m, = m,
and 4,.N G, = A; for some . Say A.N G, = A,
Since A, is abelian we have A, < C; (A4). On the other hand

[Ga: Ce (AD] = [Ga N Go: Cg (A) N G

= [Gy: 4] = my = M,

since 4, is clearly its own centralizer in G,. Thus 4, = C; (4,). Now
a, < G,. Hence if Cy(4,) were nonabelian then «;, would contain
noncommuting elements in C; (4,) = A,. Since A, is abelian, this is
not the case. On the other hand, if [|G: Cs(4)] > m, then G, would
contain m, + 1 elements in different right cosets of C,(4,) and hence
in different right cosets of

Ga N CG(Al) = CGa(Al) = A,.

But [G.: A,] = m, so we have a contradiction here and the result
follows.

LemmA 9.3. Let G be a finitely generated group and let K be
any field. Suppose that K[G] satisfies o polynomial identity. Then
G is residually finite, that is NN = {1)> where N runs over all
normal subgroups of G of finite index.

Proof. By Corollary 7.2, G has a normal abelian subgroup A4
with [G: A] < . Moreover A is finitely generated by Lemma T7.1.
For each integer m set A, = {x™|xzec A}. Then A4, is a characteristic
subgroup of A and hence a normal subgroup of G. Since A is finitely
generated we have clearly [A: 4,] < « and -, 4, = <.

We now come to the second main theorem of this paper. Let J’
be the finite valued function on the set of integers given by
J'(n) = (nhJ(n)

where J is the function of Theorem 8.2. The following result in char-
acteristic 0 is due to Isaacs and Passman in {7].



482 D. S. PASSMAN

THEOREM 9.4. Let K[G] be a semiprime group ring which satis-
Jies a polynomial identity of degree n. Then G has an abelian sub-
group A with [G: A] = J'(n).

Proof. Set m = J(n). By Theorem 6.2 [G: 4(G)] < n! and thus
it suffices to show that 4 = 4(G) has an abelian subgroup A with
[4: A] < m. Note that since K[G] is semiprime either K has charac-
teristic 0 or by Theorem 3.6 K has characteristic »p > 0 and 4 has no
elements of order p.

Suppose by way of contradiction that 4 does not have an abelian
subgroup of index <m. Then by Lemma 9.2 there exists a finitely
generated subgroup H of 4 which has no abelian subgroup of index
<m. Now H has only finitely many subgroups of index =m by
Lemma 9.1 and say these are L,, L,, ---, L,. By assumption each is
nonabelian so we can choose z; ¢ L., z; = 1. Now by Lemma 9.3, H
is residually finite and thus for each ¢ we can choose N; normal in H
with [H: N;] < « and 2;¢ N;. Let N= NN;. Then N is normal in
H, [H: N] < by Lemma 1.1 and %;¢ N for all 4.

By Lemma 7.5 K[H/N] satisfies a polynomial identity of degree
n. We consider H = H/N. If K has characteristic 0 then A has an
abelian subgroup B with [H: B} < J(n) < m by Theorem 8.2. Suppose
K has characteristic p > 0. Then by Lemma 2.2, H' is a finite p'-
group. Since H' = H'N/N we conclude that H’ is also a p’-group
and thus by Theorem 8.2, H has an abelian subgroup B of index <m
in this case too.

Let B be the complete inverse image of B in H. Then H2 B2 N
and B/N = B. Since [H: B] = [H: B] £ m we have B = L; for some 1.
Thus L;/N = B/N is abelian and this is a contradiction since x; ¢ L}, x; =1
and z;¢ N. The result follows.

We remark in closing that the study of group rings satisfying
polynomial identities is far from complete. We have seen in Theorem
4.2, Corollary 7.2 and Theorem 9.4 that if either G is finitely generated
or if K[G] is semiprime, then K[G] satisfies a polynomial identity if
and only if G has an abelian subgroup of finite index. While the
examples of Theorem 4.5 are suggestive, it is still too early to venture
a guess at the answer in the remaining cases.
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