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In a recent paper Bures proved a result concerning the
classification of tensor products of a family of semi-finite
W*-algebras and showed that it constituted a non-commutative
extension of the main part of Kakutani’s theorem on infinite
product measures, In this paper these results are extended,
first by removing the semi-finiteness restriction, and secondly
by completing the analogy with Kakutani’s Theorem,

In particular, it is shown in [1] that if (9%);.;, is a family of
semi-finite W*-algebras, then the incomplete tensor products determined
respectively by the families of normal states (g,) and (v,) are essenti-
ally the same (i.e., product isomorphic) if and only if X, [d(y;, v)]* <
~o, where d is a certain metric defined on the normal states (see
Definition 1.1 below). In fact d is a generalization of the metric
defined by Kakutani on sets of measures and when each .o/ is abelian
the above result yields the first part of the theorem proved in [4].

By removing the semi-finiteness condition from Bures’ product
formula ([1], Th. 2.5), which relates the distance d between product
states to the distances between their components, we are able to obtain
the same result for an arbitrary family of W*-algebras. This then
completes the classification of tensor products up to product isomorphism
as given in ([2], p. 15). Moreover we prove the product formula for
the case of infinite product states which gives the extension of the
second part of Kakutani’s Theorem.

1. Preliminaries. If .97 is a W*-algebra we let 3 denote the
set of all normal states on .o7. (We always consider a state s to be
normalized so that p(1) =1). If pel, and Te . is such that
w(TT*) =1, we define p,e3, by p(A) = (TAT*) for all Ac.o”
For e ¥, we let S(y) denote the support of .

Suppose that . and <7 are W*-algebras and that e, , ve ..
Then @ v denotes the unique element of X .., (where .o ® <% is
the W*-tensor product) such that

(1t QAR B) = [(A][vB)] for all Ae .o/ Be 7 .

A homomorphism between two W*-algebras will always mean a *-
preserving identity preserving, algebraic homomorphism.
By a representation ¢ of a W*-algebra .27 on a Hilbert space H
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we always mean a one-to-one homomorphism from .97 into .22(H) such
that ¢() is a von Neumann algebra on H. For 1€t ., we say that
the vector xe H induces p relative to ¢ if pu(4) = (¢(4A)x|x) for all
Ac o7

DEFINITION 1.1. Let . be a W*-algebra and let ¢ and veX...
We define:

Q¢ v) = {[4, =, y]: ¢ is a representation of &
on H, and «,ye H induce g, v re-
spectively relative to ¢.}

d(ﬂv ”) = inf {H.’)C - y“ [925! , ?/] € Q(/Ja D)'}
o, v) = sup {| @) |: [4, @, yl € Qe v).} .

The quantities d and o were introduced in [1] where it is shown
that d is a metric on 3., and that d and p are related by the formula

1.1) [d(pt, V)1 = 2[1 — po(pt, V)] .

The number d(z,v) can vary from 0 to V2 and is equal to 0
if and only if £ = vy. We consider the other extreme.

LEMMA 1.2. d(g, v) = V2 if and only if S(p)S() = 0.

Proof. Suppose that S()S() = 0. Choose any [¢, =, ¥] € Q(12, V).
A direct calculation shows that #(S(¢)x = « and ¢(S(»))y = y, so that
(x|y) = 0. It follows that o(y, ») = 0, and from (1.1) d(g,v) = V2.

Conversely, suppose that d(, v) = 12 so that po(¢, ) = 0. Choose
any [¢, %, y] € Q(¢, v). It is a well known fact that ¢(S(#)) = the uniform
closure of the set {(¢(-%))'x}, and similary for ¢(S{v)) with y replacing
2. Therefore, to show that S(#)S(v) = 0 it is enough to show that

(Ax2|By) =0

for all A’, B'e (¢(7))’. Clearly it is sufficient to consider the case
where A’ and B’ are unitaries. But then a direct calculation shows
that

[¢, A'w, Byl € Q(tt, V), so that
[(A2|By)| = o(¢t,v) =0 .

2. The product formula for p. In this section we prove in
general the product formula for o which was obtained in ([1], Th. 2.5)
for semi-finite algebras. The key step is Lemma 2.1 which is similar
in statement and proof to ([1], Lemma 1.6). However by dealing with
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only one element of the algebra we are able to avoid the use of a
trace.

LEMMA 2.1. Let &7 be a W*-algebra. Suppose that pel ., and
Te 7" is such that p(T% = 1. Then,

ot tr) = ((T) .

Proof. Choose any [¢, @, ¥] € Q(¢t, tt;). A direct calculation shows
that [¢, @, (T)w] also € Q(¢, ). Therefore

(2.1) ot ) = || s(T)w) | = i(T) .

On the other hand, since ¥ and #(7)x induce the same state re-
lative to ¢ it is a standard result that y = U'¢(T)x for some partial
isometry U’ in (¢(.87)) (see [3], Chapt. 1, §4, Lemma 3). Therefore

@Y = (x| U'¢(T))]
= [(U"™*¢(T) " $(T) ") |
= [16(T) "l
= i(T) .
Taking the supremum over all [, , y] € Q(¢, v) we obtain that

o, tr) = ((T)
which together with (2.1) completes the proof.

We now consider two W*-algebras .o and .&4. For =1 or 2
let #¢; and v; be elements of 3, .. We want to prove the following:

(2°2) ,0(/.{1 ® Hay Yy ® ”2) = [10(/’!1’ ”L)][p()uz’ v?)] .

LEMMA 2.2. Suppose that for j =1 or 2, p; = (Vi)r; for some
T;e.ozt. Then (2.2) holds.

Proof. . Q@ tty = V)7, @ (V2)r, Which is easily seen to be equal to
(v, @ vo)r@r,. The result now follows from a direct calculation, using
Lemma 2.1.

LEMMA 2.3. For any 0=0=1, let v;= (1 —0)y; +op,;, j=1
or 2. Then

@) 1ot @ty v, @v.) — (1, @ oy VI Q V1) | < k0,

(b) otk vs) — p(ty, Vi) | = ko',
where k is a constant independent of 0.

Proof. From ([1], Proposition 1.8 (A))



510 DAVID PROMISLOW

adX, Q vy, v, Q v3)
=dP, Qv [1 - 0, v, + d(v, Q 1))

< 20,
Similarly, d(v, ® v,, vi Q@ v;) < 20"* so by the triangle inequality
A, Q@ vy, v Q v3) < 40°7,

and (a) follows from ([1], Proposition 1.9 (B)). Part (b) follows in a
similar manner.

THEOREM 2.4. Formula (2.2) holds in general.

Proof. For any 0 < d < 1, let v; be defined as in Lemma 2.3.
Then for = > 1/0, pt;(4) < nvj(A) for all Ae .o+, By Sakai’s Radon-
Nikodym Theorem ([3], Chapt. 1, §4, Th. 5), y; = (vj),; for some
T;e .57*. From Lemma 2.3

(0, @ tsy v, Q v2) — [o(tts, YDIlO(ttss ¥2)]) = 0 .

By taking ¢ sufficiently small and applying Lemma 2.3, we have that
for any ¢ >0

((0(/"1 ® Yoy YV, ® Vz) - [lo(ﬂu ”1)][(0()“2: ”2)]) <e€

which completes the proof.

REMARK. We can of course remove the normalizing condition and
define d and p for any positive, normal linear funetionals, as was done
in [1]. Since a vector z induces the functional g if and only if the
vector k'*x induces k¢, we have that o(ky, v) = k'o(y, v) for all k > 0.
Moreover we can still define ¢ & v and the mapping (#, v) to (1 Q v)
is bilinear. It follows that Theorem 2.4 will hold for positive, normal,

linear functionals.

3. Application to infinite temsor products. In ([1], Th. 4.1),
the main result of that paper, the only need of the semi-finiteness re-
striction was to invoke the product formula. We can now appeal to
Theorem 2.4 to conclude that this result holds in general. We will
however present an alternate proof here, which at the same time extends
the product formula to the case of infinite product states.

We begin by reviewing some basic definitions. See [2] for a
complete discussion of the following concepts.

Let I be an arbitrary indexing set and let (.94),;.; be a family of

W*-algebras.
A product for this family is an object (&7 (@,);c;), Where &7 is
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a W*-algebra and for each 7¢I «; is a one-to-one homomorphism from
. into .7 satisfying:

(@) a(.7) and a;(.~7,) commute pointwise for ¢ == j

(b) {a;(.o7;): 1€ I} generates .o as a W *-algebra.

We say that the products (.7, («;)) and (<7, (8;)) are product is-
omorphic if there exists an isomorphism ¢ from . onto <& such
that ¢a; = B, for all v I.

Let 4 = A((.57;)) denote the set of all families (#t,);c; where (¢
3., for all iel. We say that p is a product state of the product
(-7, (ay) if e, and for some (z;) € 4 (necessarily unique),

PTier @i(A) = Tlicr t:(A2)

for all finite FcI and all 4;e.%4. We denote such a state by
Qe e

DEeFINITION 38.1. For any (1) € 4 we define a product, denoted by
®iel('%v /«ll), as fOllOWS.

For each 7¢I, let .4 be represented as a von Neumann algebra
on a Hilbert space H; such that ;e H; induces p;. Let

H = Q;e.(H;, ;)

be von Neumann’s incomplete tensor product of (H,) with respect to
the C,-sequence (v;) [5]. For any kel and A,c H, let A, denote the
unique element of <~ (H) such that A4,(Qv:;) = Qy; where ¥, = Ay,
and y! =y, for ¢ = k. Let .7 be the von Neumann algebra on H
generated by the .o%. Then the product ®;.,(.%7%, #;) is defined to be
the algebra .07, together with the injections «; given by a;(4)) = A,
for all A;ec.o7.

See [2] for an alternative method of defining @(.%%, ;) and a
justification of the above definition. It is shown that the product
constructed as above is unique up to product isomorphism ([2], Th.
4.7).

Note that the product state ®p; exists on ®(.o4, #;). In fact in
the construction above it is induced by the vector ®z;. It will follow
from the results in this section that the converse holds. That is, if a
product constructed as above from an element of 4 admits ®u; as a
product state, then this product is product isomorphic to @(.o7, ).

If T is a finite set it is well known that the (.97, 1;) are all
product isomorphic for any choice of (%,) € 4, and the resulting product
is simply &);.;.%%, the usual W*-tensor product of a finite family.

DEFINITION 3.2. Let (.9, («;)) be a product for the family (%) ;-
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Let ¢ be any represention of .& and let xe€2,. Then for any non-
void Jc I we let .77 = the W*-algebra generated by

{a;(A):1ed, A e 4},

and we let ¢7, ¢’ denote respectively the restrictions of ¢, ¢ to &7,

LEMMA 3.3. Let 7 = the algebra Qi (7, ;). Let pt= Q.
and let v be any element of 3.. Then there exists J I with finite
compliment such that o(p’, v’) > 0.

Proof. Suppose to the contrary that o(y’/,v’) =0 for all JcI
with finite compliment. Let (H,), (x;) and H be as in Definition 3.1.
It is well known that we can choose an orthonormal basis of H with
the property that every basis element 2’ is of the form );.,xi, where
for all but a finite number of el z, = x;. See ([5], Lemma 4.14).
Fix such a basis element o’ and let J = {i e I: «’ = x;}. Obviously o’
induces ¢’ on .&77. Then by our assumption and Lemma 1.2,

ISE)a ||P = #'(SE") = 0.

Since v(S(v’)) = v/(S(¥’)) =1 we have S(v) < S(»’), and therefore
Sz’ = 0.

Since this is true for all 2’ in some basis of H we have S{¥) = 0,
a contradiction.

REMARK. We next recall some elementary facts about infinite
products of numbers. If (r;);.; is family of nonnegative numbers,
Il:c; 7 is said to converge if and only if for some Jc I with finite
compliment, lim, (IT;.r7;) as F runs over the finite subsets of J exists
as a positive number. The value of [[:;.;r; is then defined to be
limy [I;cr7; as F runs over the finite subsets of I. It follows that
Il:c: 7 converges if and only if >}, [1 — r;| < .

THEOREM 3.4. Suppose that the product state v = X;.;V; exists
on Qe (7, ;). Let pt = Qiesttsc Then [lier 0, Vi) converges, and
oty v) = Tlic: o(tts, v3) -

Proof. Choose any [, x, y] € Q(¢, v) and let F be any finite subset
of I. It is evident that [¢7, x, y] € Q(¢¢", v") so that p(¢”, v¥) = |(x|y)|.
Taking the supremum over all elements of Q(y, v) we obtain

3.1) o, v) < p(eef, v7) .
It is obvious that ¢ = @;cptt; and V7 = Qier¥: on Qicr%. L0 by
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Theorem 2.4 which extends to any finite number of factors by an
obvious induction and the associativety properties of tensor products,
we obtain that

AO(F‘F’ ”F) = HieF p(ﬁir ”i) .
Then from (3.1) we have
3.2) o, v) < inf {I1;.» 0(, v;): F' a finite subset of I} .

Now by Lemma 3.2 choose Jc I with finite compliment such that
o(¢’yv?’) > 0. By applying the above argument to the algebra
Ric (-7, ;) we see from (3.2) that

(3.3) 0 <inf{Il:.r o(ts; v,): F a finite subset of J} .

Since the value of o is <1, (38.3) shows that TI[;.;o{¢: v;) converges
and (3.2) shows that

(3.4) ot V) = Ilies o(t, v5) -

We now prove the other direction. Let % be any positive number
<1 and choose a sequence (k,) of positive numbers <1 such that
Op-ik.= k. Let I, = {i el d(y,,v;) > 0}. From the convergence of
IT o(#;, v;) and formula (1.1) we see that I, is at most countable. Let
v be an injection from I, into the positive integers, and let ¢g(?) = k.,
forie I, g(1) = 1forieI — I,. Then choose for each 7¢I an element
[6: @i ] of Q(t;, v;) such that [(x:|w)| = 9(i)[o(ti vi)]. (This is
certainly possible by the definition of ¢ and the fact that p;, = v; for
1€l — I). By multiplying the vectors by suitable scalars of absolute
value 1 we may assume

(3.5) 1= (@:]y:) = 9@t vl -

Evidently [I:c;9(t) converges and its value is = [[ . k. =%k. So
from (3.5) [l:e:(x;|y;) converges and

(3.6) Tic: @ily:) = k TLie: 0(ts i) -

We have then that >;.;|1 — (%;]|¥:;) | < o which shows that for the
family of Hilbert spaces (H;), where H; is the underlying space of ¢,
(x;) and (y;) are equivalent C,-sequences ([5], Definition 3.3.2). There
exists therefore a vector in &;.,(H;, ;) of the form ®y; and this
obviously induces the state v. Using (3.6),

ot v) = [(Q: [ Qua) | = I (@i lys) = k1T o, v2) -

Since & was chosen arbitrarily we have that

o, v) = I1 p(t: vi)
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which together with (3.4) completes the proof.

COROLLARY 3.5. Let (.%7;) be a family of W*-algebras and let
(#;) and (v;)eAd. Then the following conditions on (1) and (v, are
equivalent:

(a) Ziel [d(ﬂu vi)]z < oo;

b)) Rier( 7, ) and Qi (5%, v;) are product isomorphic;

(€) iy exists as a product state on Q;. (.7, ().

Moreover if any of these conditions hold,

oty ¥) = Tlier 0(t, i), a convergent product .

Proof. By Theorem 3.4 and formula (1.1), (c) implies (a). It
follows easily from the second part of the proof of Theorem 3.4 that
(a) implies (b). This is also proved in ([1], Lemma 3.6). It is im-
mediate that (c) implies (a) and the final statement is immediate from
Theorem 3.4.
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