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An existence theorem for the 0 operator is used here to
prove some results on weighted approximation of entire func-
tions, Theorem 2 shows that if ¢ is a convex function on
¢ = R such that the Hilbert space of all entire functions

S with | | f|2e™¢d1 < 4o (d1 Lebesgue measure) contains the
polynomials, then the polynomials are dense in this Hilbert

space, Two approximation theorems are also given which
are related to the theory of quasi-analytic functions,

The method used here is the analogue for €" of the method used
by Hormander in [7] (see also [6]) to prove approximation theorems for
analytic functions in domains of holomorphy. We apply an existence
theorem for the 0 operator, Theorem 4.4.1 of [7], to prove our Theo-
rem 1, which gives essentially a modification of the results proved in
Lemma 4.3.1 and Theorem 4.4.4 of [7]. Our proof is somewhat sim-
pler than the corresponding proofs in [7] because we are working on
€~ rather than an arbitrary domain of holomorphy, which makes several
technical details easier. The rest of the paper then deals with appli-
cations of Theorem 1 to weighted approximation of entire functions.

We point out that most of the results proved in this paper can
be proved by other methods. For example, Theorems 2 and 5 can be
deduced from results in [3]. However, the theorems in this paper are
much simpler than the corresponding results of [3]. The methods used
here also demonstrate that Hormander’s L? estimates for the d operator
are non-trivial even in one variable, as has already been pointed out
by Kiselman [10].

1. Application of the 0 existence theorem. We recall briefly
some of the results of Hormander as presented in [7]. Throughout
the following ¢ denotes a plurisubharmonic function on €* = €z ... 2&
(n times, € = complex numbers), and L*g}{=L*C" ¢)) denotes the
Hilbert space of functions on €* which are square integrable with
respect to the measure e—*dr, where dx is the Lebesgue measure.
Similarly, L2 ,(g) is the space of differential forms of type (p, q) with

[ coefficients from L*g). The collection of all entire functions fe L¥g)
is denoted 2(¢). A function feL*p) is n A(g) if and only if of =
D71 (0f/0%;)dz; is the zero (0,1) form (with derivatives taken in the
sense of distributions).

We shall use a special case of Theorem 4.4.1 of [7].
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THEOREM. Let ¢ be a strictly plurisubharmonic function of class
C* such that

S (@9/02,07)w,B, 2 0 3] |w;
Gek=1 =1

where c(2) 1S a positive continuous function and z = (2, +++, ZQ, w =
(Wyy +++, w,) €€ For every g = 31, 9.dZz;€ L% (¢) such that dog = 0
and

[ lgteiear < +e(iaf = S 10:F)
there exists w e L¥(¢) such that ou = g and

S |l Petdn < g g e—/ed .

Actually, we need a slightly stronger version of the theorem in
which the hypothesis that ¢ € C* is relaxed. The weight functions we
wish to apply the theorem to are of the form ¢(z) + log (1 + |2/
(lzf = 32, |2;]* for z = (2, «+-, 2,) € €"), where ¢ does not belong to
the class C>. However, as pointed out by Hormander in [8], the theorem
is easily extended to this case by the same technique used in the proof
of Theorem 4.4.2 of [7]. Also from this proof, we see that for weight
functions of this form, we can take ¢(z) = (1 + |z

THEOREM 1. Let ¢, < ¢, < ¢ < « -+ be plurisubharmonic functions
on € let ¢ = lim,, .. ¢;, and suppose that S exp (—@)dN < + oo for

every compact set K. Then the closure of LKJ‘;-°=1 W(p; + log (1 + |z)
in the Hilbert space L* (¢ + log (1 + |2}%) contains A(p).

Proof. Let «y, «,, +++ be a sequence of C~ functions with compact
support such that «,(2) =1 for |2]| < 2,0 a, <1, and

> TS KA+ 2D,

o,
o7

(For example, let y € C~ have compact support, 0 <y =<1 and %) =1
for |z] < 1. Then put «,(z) = x(@z/n).) Let feW(g). Then fa, is a
good approximation to f, but it is not analytic, so we modify it as
usual. That is, put g, = d(fa,) = foa,. We will use the above exist-
ence theorem to solve the equation du, = g, so that the analytic func-
tion a, = fa, — u, belongs to U;U(g; + log (1 + |z[)) and converges
to f in the Hilbert space 2U(¢ + log (1 + |z[%).

Let v¥;(2) = ¢;() + log (1 + |2]%), and let 4 be defined in the same
way with ¢, replaced by ¢. Then define
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In, j) = S 19, (L + |2[)%eidn = S 19, (L + |2 Pe*idx ,

and let I(n)be defined in the same way with +; replaced by ¥. Now
I(n) = S | FPIBa, FL + |2e—tdn < KS |f [fe—bd) = ¢, and &, — 0 as

fz{zn

n — oo, since | | f|P¢%dN < + . Moreover, g, has compact support
and the ¢, increase monotonely to ¢. Therefore, lim;.,. I(n, j) = I(n)
by the dominated convergence theorem, so there is an integer 7 = j(n)
such that I(n, j(n)) < 2¢,. Then by the above theorem (and remarks)
applied with the weight function (V) there exists w, such that
ou, = ¢, and

S |, PePidn < 2, G = i) .

If a, = fa, — U, then a,cY; A;). Moreover,
| 1 pevan < S |, Peidn, < 2, G = §(n)
so %, — 0 in L¥¥). Also fa,— f in L*v), so that a,— f as asserted.

REMARKS. 1. It is not necessarily true that 2((¢) is dense in
(g + log (1 + |#2%)). For example, take, in one variable

$(z) = —log 1+ [zP)

so that 2(g) is the constants and (¢ + log (1 + {2[%)) is the polynomials
of degree <1. However, we know of no nontrivial example in which
A(g) is not dense in W(p + log (1 + |z[})). Also, we know of no ex-
ample in which {; %(4;) fails to be dense in the Hilbert space A(g).

2. Note that to prove A(¢) is dense in (g + log (1 + |z[9), it
suffices to prove that the reproducing kernel K(z, w) for this latter
Hilbert space belongs to 2((¢), (as a function of one variable with the
other held fixed). This is the case in every nontrivial example we
know. However, we have been unable to prove this estimate for any
reasonably general class of weight functions.

3. As is well known, we note that questions of polynomial ap-
proximation are frivial when ¢(z) = ¢(|2)) is a function only of the
distance from the origin.

COROLLARY. (n = 1) Suppose Se‘"’ldk < + oo, and let
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SA(g) = {f e W(g): 1 + [z])f e L¥g)} .
Then the closure of U; A(g;) in A(g) contains SW(g).

Proof. If fe SA(¢), then zfe A($) and then by Theorem 1 there
are functions a, is U; (g, + log (1 + [2|?)) which converge to zf in
A(g + log (1 + |2[*). It is then easy to check that the functions
b.(2) = (a.(2) — a,(0))/z belong to U; A(g;) and converge to f in A(g).

2. Convex weight functions. In case the plurisubharmonic
weight function ¢ is a convex function on €" = R*, we can completely
settle the question of when the polynomials are dense in 2(¢). Recall
that for a convex function ¢ on R™ = €, the conjugate convex func-
tion to ¢, ¢*, is defined by

¢*(w) = sup {Re <z, wy — ¢(2): 2€ €7},

where

{zy wp = 3255 2z, we ",
1

THEOREM 2. Let ¢ be convex on €.

(i) If 1eUg), then ¢*(w) is finite on a meighborhood of the
origin wn €~

(ii) If ¢* is finite on a meighborhood of the origin in €", then
the polynomials are dense in ().

The proof of (ii) of Theorem 2 is essentially an application of
Theorem 1, where the ¢; are finite maximums of suitable tangent
planes to the surface y = ¢(z), and part (i) is just a fact about con-
vex functions. Before proving Theorem 2, we shall collect some
elementary facts about convex functions which will be needed in the
proof.

DEFINITION. (a) .£(¢) = {#/(2): () < ¢(z) for all ze €}, where
Z(2) = Re{z, w) + A for some we €* and some constant A.

(b) F(g) = {we € ¢*(w) < +oo}.

(¢) F¢) = interior of F(g).

Note that F'(¢), F'°(¢) are convex, though possibly empty.

ProposITION 1. If K is a compact subset of F°(¢) of distance
greater than ¢ > 0 from the complement of F°(¢), then
$(2) = h(z, K) + 6]z] — A

where
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h(z, K) = Sup {Re (z, w): we K}

is the support function of K and A = A(K, J) s a constant.

Proof. Let K’ denote the set of all points of €” which are of
distance at most 0 from K. Then K’ is a compact subset of F°(¢).
Now ¢* is continuous on F'°(¢) (see, e.g., [4]), and thus bounded on
K’', say A =sup{¢*(w): we K'}. Let ze@". Choose uecC€", |u|= 0,
such that {z, u) = d|z|. For each we K, the vector w + uwe K. Thus
A= ¢*(w + u) = Redz, w + uy — ¢(2) = Rez, w) — ¢(2) + 6|z|. This
holds for all we K, so A = h(z, K) — ¢(2) + 0|z|, which is equivalent
to the desired inequality.

PROPOSITION 2. Let F(¢) be as above. If F°(3) ts empty, then F
18 contained in a (real) 2n — 1 dimensional hyperplane. Moreover,
6 is constant on lines perpendicular to this hyperplane.

Proof. The set F where ¢* is finite is clearly convex, since

¢*(aw, + (1 — ywy) = ag*(w,) + (1 — a)g™(w,)

for 0 <a <1, and any convex set in R*™ = € with empty interior is
contained in some (not necessarily unique) hyperplane. Suppose such
a hyperplane is

H={we€":Relz”, wy + A= 0} where 2"e@" AcR.

Now, ¢(z) = sup {#/(2): ve Z(¢)} (see, e.g., [4], or apply the Hahn-
Banach theorem). Let <€ 27(¢). Then /() = Re<z, w> + ¢ for some
constant ¢ and some we €*, and

Relz, w> + ¢ £ ¢(2) .

This implies that ¢*(w) < + <, hence that we H. Therefore, #(z) is
constant on all one (real) dimensional lines orthogonal to H, and ¢(2),
as the upper envelope of all the se <°(g), is also constant on such
lines.

ProrosiTiON 3. Suppose that F°(¢) contains the origin. Then
there is a compact subset K of €" and a number ¢ > 0 such that

$(02) — 6(z) = (6 — 1)|z]
for all 6 > 1 and all z¢ K.

Proof. We will prove this by obtaining a lower bound on (3/0t)¢(¢z)
for large real numbers t. Let ¢ > 0 be such that the closed ball of
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radius 4¢, and center at the origin is contained in F'°(¢). If K denotes
the closed ball of radius 2¢ and center at the origin, then h{z, K) =
2¢lz| so from Proposition 1,

#(z) = 2¢lz| — A.

Consider for ze €, |z| = 1, and for te R, the convex function of ¢,

9@t) = 9.(t) = ¢(t2) .

Let dg/dt denote the left hand derivative of g(¢). Since the difference
quotients of a convex function are nondecreasing,

dg

Fra sup {(g& + 4t) — gt))/dt: 4t < 0} .

For large positive ¢, g(t) = 2¢t|z| — A and consequently dg/dt > ¢. De-
fine, for r > 0, E(r) = {z€ €~ |z| = 1:dg/dt(r) > €}. What we have
just proved above is that U.., F(r) = {#ze € |z] = 1}. But dg/d¢, as
a function of z, is lower semicontinuous, because it is the upper en-
velope of a family of continuous funections. This implies that each
E(r) is open. Since the sets F(r) increase with increasing », it follows
from the compactness of {ze €": |z| = 1} that for some », > 0, E(r,) =
{ze @ |2| = 1}. Then if |z2| =7, and 6 > 1,

$(02) — 8(2) = 6(012|(z/|2]) — ¢(1z1(z/1z]))

- S idj—dt > e(0]2] — |2]) = s(0 — Dz,

as asserted.

Proof of Theorem 2 (i). Assume, by way of contradiction, that
#*(w) is not finite on a neighborhood of the origin in €*. Then, since
F(g) is convex, there is a z € €" such that Re {z, w) < 0 for all we F(g).
After perhaps a linear change of variable, we may suppose that z =
1,0,0,.--,0), so that Rew, =0 for all w = (w,,---, w,) € F(¢). But,
#(z) is the upper envelope of the functions «(z) € <(g), and each such
/(z) has the form /(z) = Re<z, w) + ¢ where we F(¢). Therefore, each

/(z) is nonincreasing in the variable Re z,, and so the same is true of
#{(z). This clearly implies that Se“f’d?w = <4 oo, which contradicts the
assumption that 1e(¢). Thus, (i) is proved.

Proof of Theorem 2 (ii). If F'°(¢) contains the origin, then we may
choose ¢ > 0 such that <& = {w:2|w| < ¢} is contained in F°(g). If
f(z) = exp {z, w), with w e ¢, then it is easy to verify that the power
series of f converges to f in 9U(¢). Therefore, (i) will follow from
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assertions (a)-(d) below. The proofs of (a), (b), and (d) are routine,
and (c) follows from Theorem 1.

(a) Let ¢ denote an open subset of F°(¢). Then for each we &,
exp (i<z, w)) € A(p) and the closure of the linear span of all such ex-
ponential functions contains exp (3<z, w)) for all we F°(g).

(b) The closure of the linear span of the exponentials exp (4{z, w)),
with w e F°(¢) contains all entire functions of exponential type f(z) of
the form

£e) = | exp Gz wHdp(u)

where z¢ is a Borel measure of compact support, whose support is
contained in {Jw:we F°(@)} = 1F°(g).

(¢) The closure in () of the entire functions of exponential type
described in (b) contains all f € 2(¢) such that f(6z) € A(¢) for some real
number 4 > 1.

(dy If feA(p) and » <1, then f(rz) e A(p) and lim,_,— f(rz) = f(z)
in 2A(g).

We first prove (a) and (b). Let ge(g) be orthogonal to all
exp (3<z, w)), with we ¢* The estimate of Proposition 1 allows us to
prove easily that

Gw) = | 76 exp (12, w)) exp (@)

is conjugate analytic for we F°g¢). By hypothesis, G vanishes for
we ¢ so G vanishes on F'°(g) since F°(¢) is connected (even convex).
Part (a) then follows by the Hahn-Banach theorem. The proof of (b)
is essentially the same. If f(2) is of the form given there, then

| 7@ exp (—p@1r@ = | G = 0,

the interchange in order of integration being justified by Fubini’s
theorem and the inequality of Proposition 1.

We will use Theorem 1 to prove (c). Let + <1 and v (z) = V.(z) =
#(rz). We want to choose ¢, < ¢, < --- with sup; ¢; = 4 in such a
way that UJ; (s, + log (1 + |2]%)) is a subset of the class of functions
described in (b). To do this, let ~,(z), 4(z), --- be a sequence of func-
tions in .~ (¥) such that sup {4(z):5 = 1,2, -+-} = ¥(z), and then define
$;(2) = max {4(z), ---, 4(z)}. (To see that such functions ~, exist, note
that each e &7 (V) is of the form ~(2) = Re {2z, w) — ¢ for some ce R,
wel" Set B={(w,c)eC" X R: 7/(z)e < (v)}. Then B has a count-
able dense subset (w,, ¢,) and

%(®) = Re <z, w,) — ¢,
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is a suitable sequence.) It then follows from Theorem 1 that the
closure of U;A(g; + log (1 + |2)) in AW + log (1 + |2])) contains
A(v). By Proposition 3, ¥(z) + log (1 + [2°) = ¢(2), except poss1bly
on a compact subset of € and, consequently, convergence in

A + log (1 + 1zP)

implies convergence in A(g).
To complete the proof of (c), it remains to show that each

feU(p; + log (1 + |z/%)

is of the form prescribed in (b). Let +; =¢; +log (1 + |2). By
construction of the ¢,, there are points w,, +--, w; € € and constants
¢y +++, ¢; such that ¢; is the maximum of Re {z, w,) — ¢, k =1,2,+++,j
In particular, it follows easily that

V(@) = sup {¥;(z + u): |u| < 1} = ¥;(2) + Const.

But for f e A(¥;) we have, since f is analytic

flz) =

i a0,

where k, is the volume of the unit ball in €». Thus

S [0 176+ wlexp (=356 + 0 + e+ w)irw)

1
= k.,

74(2) S L 1+ 0) | exp (— (e + W) .

Applying Schwarz’s inequality to this last integral, and then extending
the domain of integration to all of €", we find

LR < IF] - exp (39(2) ,
where |f| is the norm in 2(v;). Therefore,
| /()| = Const. || f || exp (3¥:(2)) .

Now each /(2) < ¥(2) = ¢(r2) where r < 1, so each w; occurring in
the representation of 4(z) necessarily belongs to F°(g). Also,

log (1 + [2]") = O(e[z])

for every ¢ > 0. Thus, v;(z) < h(z, K) + 0(1) for some compact subset
K(=K;) of F°(¢). Thus,

| f(2) | = O(exp (3R (2, K))) = O(exp (h(z, 2K))) .
It then follows that f(2) is of the form in part (b) (see, e.g., Martineau
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[12, p. 150], or Hormander [7, p. 98], or for the case n = 1, [1, p.74]).
This completes the proof of (c¢). .

Lastly, we prove (d). Let fe(g). We will use the fact that.
if f; — f pointwise and || f;|| — || f|l, then f; — f in 2(p) (see, e.g., [5,.
p. 209]). Clearly lim,_,- f(rz) = f(2) pointwise. Also

i) = [ 1502 [ exp (—p@)ir@ = —- [ 1) 2 exp (—s(e/m)dr) -

1,,271,
Outside the compact set of Proposition 3, ¢(z/r) decreases monotonely
to ¢(z), while on the compact set, #(z/r) converges uniformly to ¢(z)..
Thus, || f(r?)]|? converges to

[ 17G)* exp (~snare = 1171
This completes the proof of Theorem 2, (ii).

When ¢* is just finite on an open set, we can make the following
adjustment of Theorem 2.

THEOREM 3. Let ¢ be conver on C", and let F°(¢) denote the in-
terior of the set on which ¢*(w) < + oo,

(1) If f») = exp (&, w)) € W(¢), them 2w e F°(¢), and

(i1) If F%g) is mot empty, then the collection of fumctions f(z) =
exp (z, wy) with 2we F°() have dense linear span im 9(g).

Proof. If w,e € and 4,(2) = 4(2) — Re <z, w,, then the mapping
f(®) — f(z) - exp (37, w,») is an isometric isomorphism of 2(g,) onto (g)
which carries exporential functions onto exponential functions. Also,
the set on which ¢; is finite is the translate by —w, of the set on
which ¢* is finite. The above theorem then follows from Theorem 2,
or more correctly, from assertions (a)-(d) of the proof of Theorem 2
applied to the space A(g,) with ¢, defined using an element w, € F°(g).

We can also prove Theorems 2 and 3 for norms other than the:
L? norm.

DEFINITION. (a) 97%(g) = { f entire: [|f]l, = (g | [Pe=tdn ) < 4 oo
(b) UA=(¢) = {f entire: fRle** —0 as |[z|— +ec}, and ||f]l. =
sup {| f(z) |e*?: 2 C}.

THEOREM 4. If ¢ is convex on €™ and if ¢* 1s finite on a netgh-
borhood of the origin, then the polymomials are dense in the Banach.
spaces VP (@), 1 £ p < + oo,



532 B. A. TAYLOR

Proof. We prove this only for finite p, the case p = o being
essentially the same. As in (d) of the proof of Theorem 2, we have
S(rz) — f(z) in Ar(g) as r—1-. Fix r <1 and choose r < p < o' <
0" < 1. Then exactly as proved in (¢) of Theorem 2,

o2 = 1151l ex0 (662)

where ¢(z) = sup {¢(z + ): |u| = 1}. By Proposition 3,
$(r2) < ¢(02) + 0(1) = $(0'2) — (0" — P)lz] + 0(1) .

Hence f(rz) € W((2/p)¢(0" 2) = WH(2/p)p(0’ 2)). Apply Theorem 2 to obtain
polynomials p;(z) converging to f(rz) in this Hilbert space. Then these
polynomials also converge to f(rz) in A?(¢). For, we have pointwise
convergence and the bound, derived as above,

|9,(2) | < Const. exp (%5@' 9) -

‘Whence, by Proposition 3,
("2 < 60”2 + 0(1) < 9(x) — 1 — p")|z] +0Q),

and therefore S |p;(z) — f(rz) |Pe~*d\ converges to zero by the dominated
convergence theorem.

3. Weight functions of the form v(r) + u(x). We study in
this section weight function of the form ¢(z) = v(#) + u(x), where

z= (zly "',Zn),’l" = (sz|x ccy |zn|)y

and 2 = (Rez, ---,Rez,) = (%, -+, 2,). In order to guarantee that
# be plurisubharmonic, we assume that the following conditions are
satisfied.

(i) u(x) is convex;

(ii) w(r) is a convex function of log r (i.e., v(e™, «+-, €™ is
convex);

To insure that %¥(¢) contains the polynomials, we assume

(i) vy = AXSr,log(1 + r) for each A >0 and », + «+- + 7,
sufficiently large.

In order that the space %{(¢) contains some exponential functions
with frequencies near zero, we also assume

(iv) wu() =o(x,]+ +-- + |2,]) — C for some 0 >0 and some con-
stant C.

Lastly, we assume a technical condition which is needed in our
proof.



ON WEIGHTED POLYNOMIAL APPROXIMATION OF ENTIRE FUNCTIONS 533

(v) wo(r, --+,r,) is nondecreasing in each variable r,.

From (iv) it follows that u*(t) = sup, ¢,z ,+ - -+ + %, — u(x)) Where
&= (X, -+, %,), &; real, is finite on some neighborhood of the origin
in R~

DEFINITION. E(u) = {exp (2, t,)): w*(t) is finite on a neighborhood
of ¢, in R"}.

The following theorem is useful in proving that certain spaces of
quasi-analytic functions are analytically uniform [15].

THEOREM 5. If ¢(z) = v(r) + u(x) satisfies (1)—-(iv) above, then the
linear span of the exponential functions in Eu) is demse in U?(g),
l1=p=s +oo.

Proof. The proof is quite similar to that of Theorems 2 and 4,
so we shall only outline the steps for the case p = 2. The functions
¢; may be chosen as follows. Let w;{(x) be an increasing sequence of
convex functions such that wu;(z) < u(®), u;(x) — u(x), and

u;(@) = 0, ] + -+ + [@a])

for each 7 > 0. Such a sequence may be constructed as in the proof
of (¢) of Theorem 2. Let v;(r) be an increasing sequence of convex
functions of log r (as described in (ii) above) such that v;(r) < v(r),
;(r) — v(r) and

o) = O(3ylog (L + 7)) for each j>0.

Such a sequence may be constructed by passing to the convex function
v(e™, - - -, e™), and proceeding as before to construct v;(em, - -e™), which
thus defines v;. Then ¢;(z) = u;(r) + v;(x) is plurisubharmonic and
GG e, i P

Now exactly as in the proof of (d) of Theorem 2, f(rz) — f(2) as
r—1 for each feA(g). Therefore,

V=U U Algs(r2)

is dense in UA(p), by Theorem 1. Consequently, it suffices to prove that
every f e V is a limit, in 2(g), of linear combinations of the exp ({z, t)).
Each f e V satisfies an estimate of the form

3.1) @] = AL + 7. 4 <+ + 7r,)" exp (3h(z, K))

for some constants A, B, where h(x, K) is the support function of some
compact subset K of the interior of the set of all ¥y = (¥, +++, ¥.), ¥;
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real, such that

(3.2) w*(y) = sup (Y, + <o+ + Yu20 — u(®) < + oo .

Further, each f satisfying (8.1) is the limit in 9{(¢) of functions of the
form

3.3 1) = | e=9®are)

where g is an L* function with compact support contained in the in-
terior of the set of all y satisfying (3.2). This may be seen for example,
by multiplying each f satisfying (3.3) by functions

7.0 = | eon@ane .

where

1
8271.

XS(t) = X(t/&) ’

and 0 < x(¢) is a C~ function on R™ with compact support such that
S L@dNE) = 1, to obtain a function F.(2) = f(2)X.() which, for ¢ small,
still satisfies (3.1) and which is in L* on the imaginary subspace of €*,
As e— 0%, F,— f in 2(¢), and the Paley-Weiner Theorem implies that
F. is of the form in (3.3). Lastly, it is easy to prove that each f of the
form (3.3) is a limit in A(g) of linear combinations of the exp ((z, t)).
This completes the proof. ’

In view of Theorem 5, to study when the polynomials are dense
in A(g) for ¢ as above, it suffices to find when the exp ({z, t>) can be
approximated by polynomials. The answer to this question is given
by the following theorem, which is in fact equivalent to the Denjoy-
Carleman theorem on quasi-analytic functions.

THEOREM 6. If ¢(z) = v(r) + u(x) satisfies ()-(v) of this section,
then the functions in E(u) can be approzimated by polymomials in
A(g), 1 < p < +o0, if and only if

oo
A S V) g~ 4o
(3.4) L T =t
for every r = (ry, +--,7,). Consequently, the polynomials are dense
n W(g),l <p <+ if and only if (3.4) holds.

Proof. We first show that if (3.4) fails, then the polynomials
cannot be dense in A?(¢). We shall prove this only for the case p =
-+ oo, as the other cases may be easily deduced from this by arguments
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analogous to those used previously to pass from one value of p to all
other values of p. Thus, assume that for some » %= (0, «+-, 0)

e p(sr) -
SO ——1+Szds<+ .

It is no loss of generality to suppose that exp ((z, ) € A=(¢), since if
not, we can replace » by er for some small ¢ > 0. We claim that
exp ({z, ry) cannot be approximated by polynomials in A~(¢). For,
assume that P, is a sequence of polynomials converging to exp ((z, 1)
in A=(¢). Then for some constant C > 0,

|P,(z)| < Certish-o

In particular, if { =a + i is a complex number and F, () = P,(r0),
then F, is a polynomial in { and

log | F,(ib) | < v(Jb|r) + w(0) + log C.

For the polynomials ¥,, we have the well-known majorization given
by Poisson’s formula,

log | Fu(a + ib)| < L S"L” 8 log |F.(it)dr, (@ > 0) .
T Jee @ + (b — 7)°

In particular, for ¢ > 0, we have

log | F\(@)| = u(0) + log C + a S“ ___;;(f“)rz ir .

However,

S"“’ VT gr 0 as a-— 4o
oo CLZ + ,Z-Z

if (3.4) fails. Therefore, since the P, are assumed to converge to
exp (Kz, ) in A=(¢), we have for a > 0

alr, ry = lim log | F,(a) | =< o(a) + Const ,
n—>to0
which implies <{r, »> = 0 and therefore » = 0, a contradiction. Thus,
exp {z, > cannot be a limit of polynomials in =(g).

We now prove the sufficiency of (3.4), again only for p = <=, as
the other cases are similar. To simplify the notation and computations,
let us assume we are in the case of two complex variables. Define <~
to be the open set in R? on which u*(t, t,) is finite. Then let F be
the set of all (¢, ¢,) in & for which P(z, z,)e"" 172 ig a limit of poly-
nomials in ¥=(g) for all polynomials P. It is easy to check that F' is
a (relatively) closed subset of <. Therefore, if F is also an open



536 B. A. TAYLOR

subset we have F = 7, since ¢ is convex, hence connected, and this
is what we had to prove. ‘

To prove that F' is open, we first prove the following apparently
weaker assertion.

™) If u*@,t) < +o for |t| < 2¢, |t,| < 2¢ then F' contains

{CRARIARGCA AR

The proof of (*) is based on the Denjoy-Carleman theorem. Let
L be a continuous linear functional on 2A~(¢) which annihilates all
polynomials. By the Hahn-Banach theorem, it is enough to prove that

Lzrzretitirey = 0 for |t <e, |t <e.
Define for such %, ¢,
S, &) = L(e'r1tien) |
Then f is infinitely differentiable and

at"atm Jraa o 8 = L(ﬁi‘Z?e’l’l“Z’Z),

so it suffices to prove that f(¢, t) = 0. Now

| pre —f, 0)) | L(zretvr) | < C||zretn ]

since L is continuous. However,

lz?etml § er* 0 sup T;’LB_"(“’O)
r

and the sequence of constants

b, = sup rre"?

1

determine a quasi-analytic class since (3.4) holds with » = (1, 0) (see,
g., [11]). Also,

" £0,0)=0,n=0,1,2 -

at”
so f(t,, 0) =0, Itll <e&.

Now we also assert that (¢, 0) e F. For, from the above argument
with »(r,, 0) replaced by Zwv(r,, 0) and u(x) replaced by ¢|x,|, it follows
that there is a sequence of polynomials in 2z, which converges to

e, [t < e,

in the Banach space A~(3v(r, 0) + ¢|x,[) of entire functions of one
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variable. In particular, there are polynomials P, such that
t12: 1 1/20(7r1,0) 4|
| P,(2) — eh1| < —g!/otrp0telaal |
n

Then

4P Py(2)) — 2ret| < T2 puiairy,04elay]
n

< COHSt- el/Zv(o,'rz)+1/2u(7‘1,0)+u(z]_,x2)
Toon

< COHSt. eV(rprzHu(xpxz) s
- n

since v(r,, 7,) is nondecreasing in each variable. Therefore,
P,(z)zp — zpe™

and consequently

gt—:f(tn 0) = L(zyer) = 0, [t,| < e.

Then also

an+m

—f(t,,0) =0
at;‘at;"f( 1 0)
so (t, 0) € F' as asserted.

We now proceed as earlier and apply the Denjoy-Carleman Theo-
rem. Thus

' ;?:; f(tl’ tz) = C||z;"e‘1’1+t2=2 ”

=< Ce*"vi2) qup (rye"""2)
r

and hence for fixed ¢, f(t, t,) = 9(t,) belongs to a quasi-analytic class.
As verified above

am
Wﬂt“ 0)=0,m=20,1,2, .-
80 f(t, t) = 0, |t,| < e, |t.] <&, which completes the proof of (*).

It remains to prove that F' is open. Let (¢,¢,) € F. Choose ¢ >0
so small that (¢, + s, t, + s) e for |s,| <2 |s,| <2 Then let
A(xy, ©,) = w(x, x,) — tx, — t.2,. We have that @*(s,s,) < 4+ for
|s,| < 2¢,|s,| < 2¢e. Applying (*) with the weight function v(r, ;) +
#(x, %), we obtain the existence of polynomials P, converging to
et in Y=(v(r, r,) + %(x, x,)). But the norm of
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P ehrritiere . glivtsueit(faten)z

in the space with weight v(r, 7)) + u(x, 2,) is equal to the norm of
P, — e’1t%22 in the space with weight v(r, r,) + @(2, «,). Therefore
glarsvztiataz g g limit of polynomials in 2=(g) for all |s,| < ¢, |s.] < e.
It is easy to deduce from this that

z‘lﬂz;ne(tﬂ-sl)zﬁ-(tz+82)22

is also a limit of polynomials so that (¢, + s, ¢, + s;) € F. This com-
pletes the proof.

4. Examples. We conclude with some simple examples. Consider
the weight functions ¢(z) = |2|° + |y |’ where z; = x; + 2y, |x| = > |25,
and |y| = X [y;|. Then

(A) The polynomials are dense in 2€?(g) if s=1,t=1, or if s<1
and ¢ < 1.

(B) The polynomials are not dense in °(g) if s=1, ¢ <lors<1,
t = 1.

The first part of (A) is a consequence of Theorem 2, and (B) fol-
lows from Theorem 6, which shows that the exponential functions
cannot be approximated by polynomials even in the space with a larger
weight function |xz|* + 7’. The other part of (A) is a consequence of
a Phragmen-Lindelof theorem. For, if, say s <t < 1, then it follows
from a Phragmen-Lindelof theorem that each f € 2*(¢) satisfies

@] = Coxp (tlal + -2 + 12])) -

However, |2,| + ««+ + |z, S ||+ |y = |&° + |y|* for |[y| = 1. From
these estimates, it follows easily that the Taylor series for f(6z) con-
verges to f(0z) in 2A(s) for each # < 1. It is also clear that f(6z) —
f(z) in Ar(¢) as § — 1, so the polynomials are dense, as asserted.

Lastly, we give an example where the topology is much weaker
than a norm topology but in which polynomial approximation still fails.
It is easy to construct such examples using Theorem 6. For instance,
let

Z = {f(x + iy) entire: || f|. = sup | f(z) exp (—|2|"*** — |x[**)]
< 4o for each 0 < e < 4}.
Then . is a Fréchet space with the topology determined by the semi-

norms, || ||, and it follows from Theorem 6 that ¢* cannot be appro-
ximated in % by polynomials.
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A result similar to Theorem 1 has been proved by J. P. Ferrier
{Approximation with bounds of holomorphic functions of several com-
plex variables, to appear in Ann. Inst. Fourier, Grenoble). In addi-
tion, two independent proofs of Theorem 2 have been given in the
dissertations of D. Wohlgelenter (Yeshiva University) and J. Metzger
(University of Michigan).
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