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Let I' be a subgroup of the real line R with the discrete
topology, and let G be its compact dual group. This paper
shows the existence of a (montrivial) simply invariant sub-
space of L2(G) which is not of the form ¢H%*R) provided I’
contains at least two rationally independent elements. The
proof relies heavily on the existence of a nontrivial local
projective representation of the two-dimensional torus,

Helson and Lowdenslager [4] showed the existence of a simply
invariant subspace not of the form @H?*(G) in case [’ contains an in-
finite set of rationally linearly independent elements. We use the
correspondence introduced in [4] between simply invariant subspaces
and cocycles but in contrast to [4] we use nontrivial local projective
multipliers to show that the appropriate cohomology group is nontrivial.

The connection between invariant subspaces and cocycles is discussed
in §2 and in §3 we will give a quotient group argument which allows
us to reduce the general problem to its specialization on the two-dimen-
sional torus. Sections 4 and 5 relate the notion of projective repre-
sentation with a cocycle and it is shown that a nontrivial projective
representation gives rise to a cocycle whose corresponding subspace is
not of the form @H?*G).

2. Preliminaries. Let G be an arbitrary locally compact Abelian
group dual to /" and let 4 be a continuous one-parameter subgroup of
G which we also denote by {e;|t in R}. Haar measure in G will be
denoted by dx and will be normalized to have total mass one in case
G is compact. As usual, a.e. (xr) means for all but a set of Haar
measure zero. A (Borel) function @ on G is said to be wumnitary in
case ®(z) has modulus one a.e. (z).

DEFINITION. A function 4 on 4 x G is said to be a cocycle on G
in case:

2.1) Afe,, ) is a unitary function for each e, in 4,
(2.2) Ale, + e,, x) = A(e,, v)A(e,, © — e,) for all ¢, e, in 4

and a.e. (x}, and
(2.3) 4 is strongly continuous in the sense that Afe,, )f
is a continuous function from R into L* = ILXG) for f in LA
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Cocyeles of the form
(2.4) Ale, ) = p@)/p(x — e), all e, in 4, a.e. (x)

for some unitary function @ are called coboundaries. We will frequently
denote Afe, x) by A(t, x).

If » is in I” we let y; be the character on G defined by y,(x) =
x(\) for all z in G; the corresponding unitary representation V, of I”
is given by

(2.5) Vif(@) = 2a(@)f(w)

for all f in L*. Any bounded operator on L* which commutes with
all the V,(\) is necessarily a multiplication by a function in L=. Let
U, be the unitary representation of G defined by

(2.6) U@)fly) = fly — «

for all f in LA

For the remainder of this section we will let 77 be a subgroup of
the real line R. Let G be the compact Abelian group dual to the
discretely topologized I". A closed subspace .# of L? is said to be
simply tnvariant in case V,(\).# S _# if and only if x = 0. The
Hardy space H*® consists of those functions f in L? whose Fourier
transforms f(x) = Sx_z(m)f(x)dx vanish for A < 0. Subspaces of the

form . # = @H® = {@f: f in H?} where @ is a unitary function are
simply invariant and in the case where G is a circle all simply invariant
subspaces are of this form. '

In order to avoid the rather special circle group we will henceforth
suppose that 77 is dense in R. The characters ¢, defined by e,(\) =
exp (1tn) are distinct and provide a continuous one-parameter dense
subgroup 4 of G. A correspondence is exhibited in [3, 4] between
simply invariant subspaces . (suitably normalized) and cocycles A
in such a way that _#" = @H?* if and only if A is the coboundary (2.4).
We therefore wish to construct cocycles which are not coboundaries.

If A4 is a coboundary then A can be extended from 4 x G to G X G
so that (2.4) remains valid with ¢ replaced by an arbitrary ¥ in G and
conversely. Moreover, the multiplication operator A(y, ) is the strong
operator limit of a sequence A(t,, ) where e, tends to y in G; this
observation will be useful later. Equivalently, A is a coboundary if
and only if the unitary representation U(f) = A(t, )U,(t) can be ex-
tended from 4 to a (strongly continuous) unitary representation of G.
A cocycle was constructed in [4] (in case [” is suitably large) for
which the unitary representation did not extend to G. However, it is
conceivable that U(t) might extend to a (local) projective representation
of G; this idea is turned around and will be used to extract cocycles
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from projective representations.

There is a superficial answer to our problem in case /' is not all
of R for then there are trivial cocycles which are not coboundaries.
For example, let A(t, ©) = exp (—it\) for some fixed real A not in .
If v were in I" then A would be the coboundary with unitary function
% but with A not in I” there is no unitary function @ such that
exp (—1it\) = @(@)/o(x — ¢). Conversely, if A is a cocycle which is
constant a.e. (x) for each ¢ (the null set depending upon £), then
A(t, ¥) = exp (—itr), a.e. () for some fixed v in R. We will call
cocycles of this form comstant cocycles. Consequently the nontrivial
problem [3, p.149] is to find cocycles which are not products of con-
stant cocycles and coboundaries.

The cocycles defined in [3] were measurable functions on 4 X G
but we will have no need for cocycles to be product measurable. Any-
way, one can pass from one version to another [3, p.145], [2]. Also
we have departed from [3] by making an insignificant sign change in
our definition of cocycle.

3. Reduction to the torus., Suppose that ", & I are subgroups
of the discrete real line and let G, and G be their compact dual groups.
To each cocycle 4, on G, we will associate a cocycle 4 on G in such
a way that if A is the product of a constant cocycle and a coboundary
then so is 4,. Since the two-dimensional torus 7T is dual to the group
of lattice points Z* and Z*® is isomorphic to a subgroup I", & I" of any
group /' & R with at least two independent elements it will be suffi-
cient to construct a coeycle on T? which is not the product of a con-
stant cocycle and a coboundary.

Define a closed subgroup H = {z in G|y;(x) = 1 for all A in I} of
G so that G, can be identified with G/H. Let = be the usual quotient
map from G onto G/H and let ¢, and ¢, be the previously defined one-
parameter groups 4 and 4, in G and G,. One can verify (e, = ¢, by
noting that ¢, is the restriction of e, from 4 to .

If A, is a cocycle on G, we define a cocycle A on G by

3.1) Ale,y x) = Ay(s, T(x))

for all (e, ») in 4 x G.

For each ¢ in R the measurable function A(e,, ) on G is certainly
unitary because 77'(S) is a null set in G whenever S is a null set in
G/H. The cocycle identity (2.2) is easy enough to verify with the aid
of m(e,) = ¢, so all that remains is the strong continuity.

Let the Haar measures dx and dx, in G and G/H both be nor-
malized to have total mass one. There is a normalization for the Haar
measure d¢ on H such that
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(3.2) SG f@)dw = L,H (Lf(x + §)de e,

for all f in LYG).
Let f be in L*G) and put

o@) = | 1S + 9rds

where %, = 7(x). A straight-forward computation with (3.2) shows that
Afe,, )f moves continuously in L*G) as t varies because Ae, )V ¢
moves continuously in L*G/H).

THEOREM. If A is the product of a constant cocycle and a co-
boundary then so is A,.

Proof. For some constant cocyecle C and some unitary function @
on ¢ we have

CRH)AR, 2) = P@)/P(x — e,)

for each real ¢t and almost all z.
It is advantageous to normalize by choosing A\ in R such that

sz(ac)cp(x)dx does not vanish and putting ¥ = y;». The cocycle B =
x1,;CA is really the coboundary.

3.3) B(t, ) = ¥(@)/v(x — e)

and we have B, = y,CA,. Consequently it is sufficient to show that
B, is a coboundary and we will do this by arguing that v must be
constant on cosets of H.

Since B(t, ®) = B,(t, m(x)) it follows that B(t, ) = B({t, x + h) for
all real ¢t and all (z,h) in G x H. Now the coboundary B can be ex-
tended to G x G and, in fact, B(y, ) is a limit in L*G) of a seguence
B(t,, ) wheree, goes to y in G. Therefore, passing to a subsequence
if necessary, B(,,x) tends to B(y,x) for almost all 2 and we can
conclude

(3.4) B(y,x) = By, x + h)

for all ¥ in G, h in H and almost all z in G.
From (3.3) (valid now for ¢t replaced by any element in G) and
(3.4) we have

(3.5) Y@ + &) = Bh, 0)¥(@ + & — h)

for every ¢ in H and almost all z in G. Integrating this last expres-
sion with respect to Haar measure dé on H we find
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| v+ 9z = B | v+ 9dz.
K /3

Now S Y(x + &)d¢ does not vanish since ¥r(x)dzx is not zero (consider
(3.2)) :fnd so we may conclude B(h, x) = 1Gfor all # in H and almost
all z in G.

It follows from (3.5) that + is constant on cosets of H and so we
can define a unitary function v, on G/H by +(w(x)) = v(x). Clearly
B, is a coboundary determined by +,. That completes the proof.

4. Projective representations and projective cocycles. Let G
be a locally compact Abelian group. A strongly continuous function
U from G into the unitary operators on some Hilbert space is said to
be a projective representation if

(4.1) U@)Uly) = o@, y) Ulw + y)

for some function @ of modulus one and if U(0) =1. We say that o
is the multiplier of the representation and it is not difficult to show
that it satisfies the identity w(x, y)w(x + ¥, 2) = 0y, 2w(x, ¥y + 2) and
the normalizing condition w(zx, 0) = @(0, ) = 1. Moreover, ® is con-
tinuous on G x G. Conversely, given a function @ with these pro-
perties one can construct a projective representation U, with multiplier
w. Indeed, define U, on L* by

(4.2) U,()f(y) = o,y — 2)f(y — 2) .
The projective representation U, is of the form
(4.3) U,x) = Au(x, ) Ux)

where A,(x, ¥y) = w(x, y — x) is a function of modulus one on G x G.
The (projective) group property of U, implies that

(4.4) o, YA + ¥, 2) = A(x, DAY, 2 — )

and the strong continuity of U, implies that A4,/%x, ) is a strongly
continuous operator valued function in z.

Observe that A, differs from the ordinary cocycle (§2) in two
respects; first, 4, is a function on G X G instead of merely on 4 x G,
and, secondly, (4.4) replaces (2.2). We say that A, is a prejective
cocycle.

We say that w is trivial if

(4.5) o(x, y) = pX)pY)/pE + ¥)

for some continuous function p of modulus one on G. In this case any
projective representation U with multiplier @ can be made into an
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ordinary representation merely by multiplying U(x) by p(x). The pro-
duct of two multipliers is again a multiplier and two multipliers whose
quotient is trivial are said to be equivalent.

If @ and o are eguivalent multipliers so that

(4.6) (@, Yo, y) = p@)pHy)/p@ + y)
then a direct computation will give
(4.7) Ay, )/ A, y) = pENPW)/PY — @)

where #(y) = 1/p(y). In particular if w is trivial then A4, is p times
a coboundary and conversely.

Now suppose that G has a continuous one-parameter subgroup
A= {e,ltc R} and let A, be a projective cocycle on G with U, the
corresponding projective representation as given by (4.3). We wish
to extract an ordinary cocycle 4 from A, in such a way that 4 will
not be the product of a constant cocycle and a coboundary if @ is a
nontrivial multiplier.

Restrict U, to 4 so that it is a projective representation of the
reals. It follows that (see the last paragraph of this section) U, is
equivalent to an ordinary representation U given by

(4-8) U(et) = p(et) Um(et)
where
(4.9) w(e, e,) = ple)ple.)/ple. + e.)

for some continuous function p on 4 and for all e¢,e,c 4. Observe
that U satisfies the Weyl commutation relation

(4.10) Ule) Vo) = 2u(—e) Vi(\) Ule,)

because U, does.
Consequently the operator Ulfe,) U,(—e,) commutes with all the
V() so that

(4.11) Ule,) = Ale,, )Uer), e, 4,

for some ordinary cocycle A.
From (4.8) and (4.11) we see that

4.12) Ales, x) = ple)Aules, @)

for all ¢,e 4 and a.e. (x).

We say that A is the cocycle induced by A4,; it is uniquely de-
termined up to a constant cocycle factor. If A is the product of a
constant cocycle ¢*? and a coboundary ®(x)/®(x — ¢ then (4.12) and
(4.7) imply that w is trivial.
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This analysis will have to be refined to yield the desired result
on the torus 7* for T° has no nontrivial multipliers. However, there
are in(n — 1) + 1 inequivalent local multipliers on 7" or R" as shown
by Bargmann [1] and local multipliers are sufficient for our purposes.
Notice, in particular, that R has no nontrivial local projective repre-
sentations.

5. Local multipliers and cocycles on 7% A local projective
multiplier @ on the torus 7 is a continuous function on some neigh-
borhood .+~ x .4~ of the identity in 7® x T* which satisfies the same
functional equation and normalizing condition as a multiplier whenever
z,y and x + y belong to .#7 Unfortunately (4.3) cannot be used to
define a local projective representation U,, or, equivalently, a local
projective cocycle A,. We must resort to an ad hoc construction of
U, starting from a specific nontrivial local projective multiplier .
We can then extract a cocycle from U, in much the same manner as
in §4 and it is a matter of detail to prove that A is not the product
of a constant cocycle and a coboundary.

Let T° be realized as the square [—7, #] X [—7x, 7] with the op-
posite edges identified and let _#~ be the open neighborhood (-7, 7) x
(—m, w) of the identity. For a one-parameter subgroup 4 we will
take the familiar winding line with irrational slope a.

Define w on .+~ x _4~ by

w{x, y) = exp i((®, — ax)y, — (¥, — ay,)w,)

(5.1) )
= exp 1(T,Y; — Yulty)

where @ = (%, %), ¥ = (¥, ¥,) With —7w < w;, y; <. This is the cano-
nical example of a nontrivial local projective multiplier on 7Z [1].
Since the complement of .7~ is a null set we can regard w(x, )
as a unitary function on 7° for each fixed x e .47 Now put 4,(z, ¥) =
w(x,y — ) whenever x€ .4~ and ye.#" + x. Then A,(z, ) is a
unitary function on T? for each fixed x € .4~ (the exceptional null set
depends upon x). For xze._#" we define the unitary operator U,(z) by

(.2) U,(2) = A@, )Uyx) .

It is easily verified that U, is a strongly continuous operator valued
function on 77

We will now extract a cocycle A from A, even though A,(x, )
is not defined for all . The discussion parallels that of §4 and will
only be given in outline.

Let 4, denote the connected segment of /4N .7  (relative to the
ordinary real line topology on 4) which contains the identity and
choose a proper segment /4, of 4, such that 0ec 4, & 4, + 4, < 4,.
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For =z, y € 4,, U, satisfies (4.1) so that U, is a local projective re-
presentation of the reals. Consequently U, is equivalent to a local
ordinary representation U; this means that equations (4.8) and (4.9)
hold for some continuous function » on 4, (say) and for all ¢, e, € 4,.
The local representation U can be extended to a representation U
(keeping the same notation) of 4 [5, Th. 63] which must satisfy the
Weyl commutation relation (4.10). Exactly as before we have Ule,) =
Ale,, )U,(e,), e, € 4, for some ordinary cocycle 4. We say that A is
the cocycle induced by A,; notice that

(5.3 Ale,, ) = ple) Au(e, @)

holds only for e, c 4,, a.e. (x).
We will now show that A is not the product of a constant cocycle
C and a coboundary. If, on the contrary, A is such a product, then

(5.4) Ale, @) = Dle)(P@)/P(x — &)

holds for all ¢, e 4,, a.e. () where we have relabeled the continuous
function C/p on 4, by p. In terms of the unitary operators U, and
Uw) = (@( )/e( — v)U(v), ye T* equation (5.4) becomes U,(e) =
Dle) Ule,) for all e, e 4,

We wish to extend » from 4, to 4N .+~ in such a way that (5.4)
remains valid. A continuity argument will then enable us to extend
p from AN _#" to .+ and this will imply that @ is trivial.

To extend p from A, to AN .+ letyedn 4" so that ye MA, =
{Me, e, c A} for some integer M > 0. Thus ¢, = yMe 4, and suppose,
for the moment, that ne,c .4~ for all w < M. Then

Uy) = U(Me,) = (Ule))™
= (p(e) U (e))™
= [(p(e))” TI¥=! w(e,, (M — k)e)] Un(y)

and we can define p(y) to be the value of the expression in the brackets
which obviously is independent of the representation y = Me,.

This definition of p(y) is valid whenever (M — k)e, is in the domain
of w(e,, ), i.e., whenever ne,c .4~ for all 0 <n < M. For each M
there are only finitely many y ¢ M4, such that ne, ¢ _#" for some 0 <
n < M. For these exceptional values we can define p(y) by continuity
(relative to the usual real line topology on 4) so that

(6.5 Uly) = py) U(y)

holds for all ye 4 N _#; or, equivalently, so that (5.4) holds for all e,
in AN A

To extend p from AN _#" to .4~ we need only note that 4N _#~
is dense in 4. Let ye 4" and choose a sequence y,€ 4N .+~ which
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converges to y. Hence p(y,)I = U(y,) U,(—v,) tends strongly to
Uy) U,(—v)

and this limit must be of the form p(y)I. Alternately, U(y) U,(—v)
is a multiple of the identity for each ¥ in _#~ because it commutes
with all bounded operators when y varies over a dense subset of
AN 4. We have now constructed a continuous function p on _#~
such that (5.5) holds for all ¥ in .#7 Since U, is a nontrivial local
projective representation of _#~ this is a contradiction. Hence the
induced cocycle A cannot be the product of a constant cocycle and a
coboundary. That completes the proof.

An interesting question remains. If A is a cocycle on T*® can one
find a local projective cocycle A, which induces A? An affirmative
answer should enable one to settle some of the open function theoretic
questions on T

The author gratefully acknowledges useful conversations with
Professors F. Forelli, J. E. Gilbert and H. Helson.
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