Pacific
Journal of

Mathematics

IN THIS ISSUE—

E. M. Alfsen and B. Hirsberg, On dominated extensions in linear subspaces of 6c (X

Joby Milo Anthony, Topologies for quotient fields of commutative integral domains . .

V. Balakrishnan, G. Sankaranarayanan and C. Suyambulingom, Ordered cycle lengths in a random
permutation

Victor Allen Belfi, Nontangential homotopy equivalences

Jane Maxwell Day, Compact semigroups with square roots . .

Norman Henry Eggert, Jr., Quasi regular groups of finite commutative nilpotent algebras

Paul Erd6s and Ernst Gabor Straus, Some number theoretic results

George Rudolph Gordh, Jr., Monotone decompositions of irreducible Hausdor

Darald Joe Hartfiel, The matrix equation AXB = X

James Howard Hedlund, Expansive automorphisms of Banach spaces. 11

I. Martin (Irving) Isaacs, The p-parts of character degrees in p-solvable groups

Donald Glen Johnson, Rings of quotients of ®-algebras.

Norman Lloyd Johnson, Transition planes constructed from semifield planes .

Anne Bramble Searle Koehler, Quasi-projective and quasi-injective modules

James J. Kuzmanovich, Completions of Dedekind prime rings as second endomorphismrings .. .......

B. T. Y. Kwee, On generalized translated quasi-Cesaro summability .

Yves A. Lequain, Differential simplicity and complete integral closure .

Mordechai Lewin, On nonnegative Matrices . ................ouuuuuuuiuuuiuiu i iiiiiiaanenans 753
Kevin Mor McCrimmon, Speciality of quadratic Jordan algebras 761
Hussain Sayid Nur, Singular perturbations of differential equations in abstract spaces . .. 775
D. K. Oates, A non-compact Krein-Milman theorem . 781
Lavon Barry Page, Operators that commute with a unilateral shift on an invariant subspace . . .. 787
Helga Schirmer, Properties of fixed point sets on dendrites 795
Saharon Shelah, On the number of non-almost isomorphic models of T in a power . . 811
Robert Moffatt Stephenson Jr., Minimal first countable Hausdorff spaces 819
Masamichi Takesaki, The quotient algebra of a finite von Neumann algebra .. 827
Benjamin Baxter Wells, Jr., Interpolation in C(S2)

Vol. 36, No. 3 BadMonth, 1971




PACIFIC JOURNAL OF MATHEMATICS

EDITORS
H. SAMELSON J. DUGUNDJI
Stanford University Department of Mathematics
Stanford, California 94305 University of Southern California
Los Angeles, California 90007
C. R. HoBBY RICHARD ARENS
University of Washington University of California
Seattle, Washington 98105 Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WoLE K. YOsHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY

CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF TOKYO

UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH

MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON

NEW MEXICO STATE UNIVERSITY * * *

OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY NAVAL WEAPONS CENTER

UNIVERSITY OF SOUTHERN CALIFORNIA

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Under-
line Greek letters in red, German in green, and script in blue. The first paragraph or two
must be capable of being used separately as a synopsis of the entire paper. The editorial
“we” must not be used in the synopsis, and items of the bibliography should not be cited
there unless absolutely necessary, in which case they must be identified by author and Journal,
rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of
the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All
other communications to the editors should be addressed to the managing editor, Richard Arens,
University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in
multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the
price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to
individual faculty members of supporting institutions and to individual members of the American
Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17,
Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.



PACIFIC JOURNAL OF MATHEMATICS
Vol. 36, No. 3, 1971

ON DOMINATED EXTENSIONS IN LINEAR
SUBSPACES OF Z4(X)

E. M. ALFSEN AND B. HIRSBERG

The main result is the following: Given a closed linear
subspace A of Z¢(X) where X is compact Hausdorff and A
contains constants and separates points, and let F'-be a com-
pact subset of the Choquet boundary ¢,X with the property
that the restriction to F' of every A-orthogonal boundary
measure remains orthogonal. If aycA|r and ay =< ¥ |r for
some strictly positive A-superharmonic function ¥, then ao
can be extended to a function a€ A such that a < ¥ on all
of X, It is shown how this result is related to various
known dominated extension-and peak set-theorems for linear
spaces and algebras. In particular, it is shown how it gen-
eralizes the Bishop-Rudin-Carleson Theorem,

The aim of this paper is to study extensions within a given linear
subspace A of € X)) of functions defined on a compact subset of the
Choquet boundary 0,X, in such a way that the extended function
remains dominated by a given A-superharmonic function ¥'. (Precise
definitions follow). Our main result is the possibility of such extensions
for all functions in A|, provided F satisfies the crucial requirement
that the restriction to F' of every orthogonal boundary measure shall
remain orthogonal (Theorem 4.5). Taking ¥ = 1 in this theorem we
obtain that F' has the norm preserving extension property (Corollary
4.6). This was first stated by Bjork [5] for a real linear subspace A
of Zx(X) and for a metrizable X. A geometric proof of the latter
result was given by Bai Andersen [3]. In fact, he derived it from a
general property of split faces of compact convex sets, which he proved
by a modification of an inductive construction devised by Pelezynski
for the study of simultaneous extensions within Z(X) [12]. Our
treatment of the more general extension property proceeds along the
same lines as Bai Andersen’s work. It depends strongly upon the
geometry of the state space of A, and Bai Andersen’s construction is
applied at an essential point in the proof. Note however, that this
is no mere translation of real arguments. The presence of complex
orthogonal measures seems to present a basically new situation. Ap-
plying arguments similar to those indicated above, we obtain a general
peak set-and peak point criterion (Theorem 5.4 and Corollary 5.5) of
which the latter has been proved for real spaces by Bjork [6]. In
§ 6 (Theorem 6.1) it is shown how the Bishop-Rudin-Carleson Theorem
follows from the general extension theorem mentioned above. In §7
we assume that A is a sup-norm algebra over X and study the inter-
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568 E. M. ALFSEN AND B. HIRSBERG

relationship between our conditions on F and a condition introduced
by Gamelin and Glicksberg [9], [10]. Finally we should like point out
that some related investigations have been carried out recently by
Briém [7]. However, his methods are rather different. The geometry
of the state space is not invoked, but instead he applies in an essential
way a measurable selection theorem of Rao [14].

We want to thank Bal Andersen for many stimulating discussions
of the problems of the present paper. Also we are indebted to A. M.
Davie for the counterexample at the end of §7.

1. Preliminaries and notation. In this note X shall denote a
compact Hausdorff space and A a closed, linear subspace of & (X),
which separates the points of X and contains the constant funections.

The state space of A, i.e.

={peA*|p(1) = ||p|l = 1},

is convex and compact in the w*-topology. Since A separates the
points of X, we have a homeomorphic embedding @ of X into S, de-
fined by

O(x)(a) = a(x), all acA.

Similary we have an embedding ¥ of A into the space A/(S) of
all complex valued w*-continuous affine functions on S; namely

T(a)(p) = pla), all peS.

By taking real parts of the functions ¥(a) we obtain the linear
space of those real valued w*-continuous affine functions on S, which
can be extended to real valued w*-continuous linear functionals on A%,
and this space Ag(S, A*) is dense in the space Ag(S) of all real valued
affine w*-continuous functions on S, [1, Cor. I. 1.5].

We shall denote by M(X), resp. M(S), the Banach space of all
complex Radon measures on X, resp. S; by M+(X)resp. M*(S) the cone
of positive (real) measures, and by M;(X) resp. M;(S) the w*-compact
convex set of probability measures. The set of extreme points of S
will be denoted by 4.S, and the Choguet boundary of X with respect
to A is defined as the set

X ={zeX|0(x)es,S}.

From [13, p. 38] it follows that 4,S c &(X) so that ® maps 0,X
homeomorphically onto 4,S.

A measure pe M(S) is said to be a boundary measure on S if
the total variation |¢| is a maximal measure in Choquet’s ordering of
positive measures [1, ch. I, §3], [13, p. 24]. A boundary measure
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is supported by 4,8 [1, Prop. I. 4.6]. For a metrizable X (and S) a
measure /e M(S) is a boundary measure if and only if |2|(S\0.S) = 0.
We shall denote by M(3,S) the set of boundary measures on S (abuse
of language). Observe that if ¢ e M(3,S), then the real and imaginary
parts of ¢ are both boundary measures. The set of boundary measures
on X is defined by

M(0,X) = {#re M(X)| Pt € M(3.5)}

where @y denotes the transport of the measure ¢ on X to a measure
on S. For a metrizable X a measure ¢ on X belongs to M(0,X) if
and only if |p|(X\0,X) = 0.

For every e M;(S) we shall use the symbol »(¢) to denote the
barycenter of p, i.e., the unique point in S such that a(r(y)) = n(a)
for all @ € A(S). The Choquet-Bishop de Leeuw Theorem states that
each point in S is the barycenter of a maximal (boundary) probability
measure [1, Th. 1. 4.8]. Accordingly we shall denote by M;(9,S) the
nonempty set of maximal (boundary) probability measures on S with
barycenter peS. For xe X we define M;(0,X) to be the set of all
pre MH(X) such that ope My ,,(0.S). Equivalently, M;(0,X) consists
of all pe M(0,X) such that

afz) = Sad/t all acd,

i.e., ¢ represents x with respect to A. Also we denote by M;(X)
the set of probability measures on all of X which represents z in
this way. Similary we denote by M;(S) the set of probability mea-
sures on S with barycenter p. The annihilator of A in M(X) is the

set

L={preMX)|ma) =0 all aecA}.
Finally we shall use the symbol <#(X) to denote the class of all
.complex valued bounded Borel functions on X.

2. A dominated extension theorem. We start by proving a
general dominated extension theorem, which may be of some inde-
pendant interest. In this connection we give the following:

DeErFINITION 2.1. &7 is the class of all f e & (X) such that
(2.1) u(f)=0 all pecA+.
Clearly A ¢ o7,

THEOREM 2.2. Let F be a closed subset of X for which Al =
{alzlae A} is closed in G (F); let a,e Alp and let 9: X — R* U {co} be
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a strictly positive l.s.c. function such that |a,(x)| < @(x) for all xe F.
Now, if there exists a function @, 7 such that

(2.2) Tolr = @5 |@(@)| < P(v) all zeX
then there exists a function in A with the same properties.
Proof. Without lack of generality we can assume that ¢ is a

bounded function with values in R*, and we assume for contradiction
that

(2.3) a¢ Gl ={alrlaeG},
where
(2.4) G ={acAlla(z)| < P()} .

Since @ is l.s.c., G is an open subset of A. Since A|, is closed
in L F'), we may apply the Open Mapping Theorem to the restriction
map Ry A— Al|.. Hence G|, is an open subset of A|,. Furthermore
G| is convex and circled. By the Hahn-Banach Theorem we can find
a measure Y € M(X) with suppy c F such that

(2.5) v(a) = 1= [vb)| all beGl.
Now we consider % (X) equipped with the norm
_ |f(=)]
(2.6) I1£1l, = sup {W seX},

and observe that this norm is topologically equivalent with the cus-
tomary, uniform norm. The dual of (Z«(X), ||—||,) is seen to be M(X)
equipped with the norm |[|¢|l, = [[® - ||, where (@ - )(f) = p(@f) for
all f e & (X).

It follows from (2.5) that the linear functional & on (4, || — ||}
defined by

(2.7) £a) = v(Rya) all acA,

is bounded with norm |||, £1. Now we extend & with preservation
of @-norm to a bounded linear functional on (&,(X), || —|.). This
gives a measure e M(X), such that

(2.8) fa) = p(a) all aed, [[p-pll =]l =1.
It follows from (2.2) and (2.8) that
(2.9) @) | = (P - p)(P7'a) | < 1.

From (2.7) and (2.8) it follows that # — ve 4*, and since @,€ .
we shall have
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(2.10) lg dod;ei = H ciodvl — S adv=1.
X X P
This contradicts (2.9) and the proof is complete.

3. Applications of the geometry of the state space., We shall
consider compact subsets F of 0,X satisfying one or the other of the
following two requirements:

(A1) preM@O,X)N A+t = pulc A*
(A.2) peMo X)NA*=pu(Fy=0.

We assume first (A.1). We also agree to write S, = co(@(F)),
and we observe that there is a canonical embedding ¥, of A[, into
AC(SF)’ defined by

(3.1) i(a)p) = p(a), all peS;

where a€ 4; a|, = a,. In fact, it follows by the integral form of the
Krein-Milman Theorem that p can be expressed as the barycenter of
a probability measure on @(F), and hence that the particular choice
of a is immaterial.

For every a,c A|; we define

3.2) a@f2) =§ adpt, weX, e Mi@,X),
F

and

(3.3) W) = | Tila)ds, peS, 1 eMiG.S),
F

and we note that these definitions are legitimate by virtue of (A.1).
We also note that p,(S;) = p,(@(F)) for all pe S and p, € M;(3.S) [3,
Lem. 1].

Clearly @, is an extension of a, to a function defined on all of X;
and if we think of @ as an imbedding of X into S, then @, will in
turn be an extension of @, to a function defined on all S. More
specifically, for every p, e M;(0,X) the transported measure @y, is in
M;.,(0.S) and so

a(0(X)) = g Tila)d(@p) = | V() o odpr, = | adp

which entails

{3.4) Gyo D =a@,.

Lemma 3.1, If F satisfies (A1) and a,€ Alp, then a,c 7.
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Proof. Let A = |la,||- and define
a, = Re¥y(a) + N, a,=Im¥(a) + .
Then a,, a, € Ag(Sr)" and for any pe S and p, e M;(3,S)

p) = S U (a)dp, = § adpt, + i § aadlfty, — Mit(Se) — INL(SE) -

At this point we shall appeal to the geometric theory of compact
convex sets. We recall that a face @ of S is said to be split if the
complementary face @' (=the union of all faces disjoint from Q) is
convex (hence a face) and every element of S can be expressed by a
unigue convex combination of an element of @ and an element of Q.
It is known ([1, Th. II. 6.12], [1, Th. II. 6.18], see also [2, Th. 3.5])
that for a closed face @ of S the following statements are equivalent:

(i) If a real measure ¢ e M(3,S) annihilates all continuous affine
functions, then p|, has the same property.

(ii) @ is a split face.

(iii) The u.s.c. concave upper envelope ﬁ\Q of the function bX,
which is equal to b on @ and 0 on S\Q, is affine for every be AL(Q)".

It follows from the requirement (A.1) that S, is a split face of S,
and hence that

— T _/\ N o~
ay(p) = aXs (D) + 1a.Xs,(P) — AN{s,(P) — A5, (D)

where all the functions on the right hand side are u.s.c. and affine.
In particular @, is a Borel function, and it follows from (3.4) that @,
is a Borel function as well. Since the barycentric calculus applies to:
real valued u.s.c. affine functions on S [1, Cor. I 1.4], we shall have:

(3:5) ap) = | @dp, pes, peM;(S) .
S
Let pte A+ be arbitrary and decompose
(3'6) ﬂ = ; aifui ’

where a, e R*, a, e — R+, o€ iR*, a, e (— )R and p, e MH(X) for ¢ =
1,2,3,4. Let p;eS be the barycenter @, and let o, e M;(3.S) for
i=1,273 4.

Since 0,8 S @(X) we can transport o; back to X by the map @,
and it follows that the measures p; — @ ‘o, are (real) orthogonal
measures for 7+ = 1, 2, 3, 4.

Writing

T = 24, a; 070,
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we obtain 7e M(0,X) and ¢ — e A*. In fact for every ac A,
Jadie — o) = | v@a@@ - 0) = Sa | v@a@p —a)=0.

Since £ e A+, we shall also have 7 € A* and then 7|, ¢ A* by virtue
of (A.1). Hence by (3.3), (3.4), (3.5):

} Tt = SX 3o 0dpy = SS Fd(Op) = ; a SS 24

= Sad(p) = S | oo, = | Tola)i(or)

Il

S adr = 0.

e

Hence @,< .97 and the proof is complete.

We next turn to the less restrictive requirement (A.2). It follows
by a slight modification of the proof of [1, Th. II. 6.12], that the
requirement (A.2) implies that S; is a parallel face of S and hence
that the function ¥, is affine [15, Th. 12].

For every xe X we define

3.7 Telw) = | 1dpe, pe Mi0.X)

and we note that this definition is legitimate by virtue of (A.2). For
xe X and p, e M;(0,X) we shall have:

75,0@) = | 1d0p) = | 14 = 2:(0)
which entails
(3.8) Xspo®@ = XAr -

Applying (3.8) and proceeding as in the proof of Lemma 3.1, we
can prove

LemMA 3.2. If F satisfies (A.2), then Y€ &

4., Extensions dominated by A-superharmonic functions. We
now proceed to the main theorem, but first we give some definitions.

DEFINITION 4.1. A function ¥': X — R U {o} is said to be A-super-

harmontic if it satisfies
(i) ¥ ls.c.

(i) T@) = g Tdp,, all ze X and 1, € M*(X).
X
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DEFINITION 4.2. Let F be a compact subset of X. F has the
almost norm preserving extension property, if for each ¢ > 0 and
a,€ A|, there exists a function a e A such that

4.1) aly = @ |lally = llallr + €.

If ¢ can be taken to be zero in (4.1), then F has the norm pre-
serving extemsion property.

We shall need a criterion for the almost norm preserving exten-
sion property, which is due to Gamelin [9, p. 281] and Glicksberg
[10, p. 420] (cf. also Curtis [8]). For the sake of completeness we
present a short proof.

LemMMA 4.3. A closed subset F of X has the almost norm pre-
serving extension property if for each o€ A*:

(4.2) inf oy + vl = |lolinell -
veldip)+

Proof. The almost norm preserving extension property is tanta-
maunt to the equality of the uniform norm on A}, and the extension
NOrIm:

Haollexs, = inf{[lallx|ac A, alz = a} .

In this norm Al is isometrically isomorphic to the quotient space
A/F* where F* ={acAla=0 on F}; and we are to prove that the
canonical imbedding p: A/F*— A|, is an isometry from the quotient
norm to the uniform norm. By duality (i.e., by Hahn-Banach) we
may as well prove that the transposed map o* is an isometry. Rep-
resenting the occuring functionals by measures, we can translate this
statement into

(4.3) inf [[g+oll= inf [[g+v], all peMF).
sgeal ve(dlmt

To prove that (4.2) implies (4.5), we consider measures /¢ € M(F'),
o€ A" and an arbitrary € > 0. Also we can choose y,€(A|;)* such
that

lols = wll= inf [lol, — vl +es|lo]X\F|[+¢.
ve (4l

Then

e —oll =g = olell + llolnell = 1122 = 2ll = 10 — 0l
Fllolell = It =2l —e = ,GERE,L e =2l =<,

which completes the proof.
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We remark for later purposes that for ¢ e M(F):

(4.4) sup{HFaod#H]laollFél,aoeAlF}: inf g — vl .

vel(dlp)t

ProrosiTiON 4.4. If F is a compact subset of 0,X satisfying (A.1),
then F has the almost norm preserving extension property.

Proof. By Lemma 4.3 and the above remark (4.4), it suffices fo
prove that for every ogc A*:

sup { ||, ado]| |llaslle = 1, ave AL} = o lnell -

Let e A*, and a,€ A, with ||a,||r £ 1. Applying Lemma 3.1
we obtain

0 = o(@) = SFaodo ¥ S _ado,

F\2

such that

|, ado| = || ado| <ol
F X\F
which completes the proof.

If F is a compact subset of 0,X satisfying (A.1), then A|; is a
closed subspace of Z(F'). In fact, A|; is isometrically isomorphic to
AJF*,

We are now able to state and prove the main theorem. The proof
of this theorem is essentially based upon Theorem 2.1 and the technique
developed by Bai Andersen [3].

THEOREM 4.5. Let F be a compact subset of 0,X satisfying (A.1),
..
pre Mo, X)yNn A+ = pl,e A+,

Let a,e Al and let + be a strictly positive A-superharmonic func-
tion on X such that |ay(x)| < v(x) for all xe F. Then there exists a
SJunction ae A such that

(1 ) a]F = Qg

(ii) la(@)| = Vv(@) all ze X.

Proof. Without loss of generality we may assume ¥ to be bounded.
Since F satisfies the requirement (A.1), Al; is closed and @, €

Thus by Theorem 2.2 we can extend q, to a function aje A such
that |a)(z)| < @(x) for all x e X, whenever ® is a bounded l.s.c. func-
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tion on X such that |@,(x)] < @(x) for all x e X.

Applying this to the function @, = 2+, we can extend a, to a
function a,e A such that |a,(x)| < 2¥(x) for all xe X.

Now define

P, = 29 N [2%(y — 27 a,])] ©

The function ¢, is strictly positive on all of X. For xc¢ F we
have 9,(x) = 2++(x), and hence for an arbitrary z ¢ X:

o) = || adp] < | lade < | 2 - 27 1adap,

)

=2(| yau — 27| |aan) = 2(ve) — 27| adp.
= 2y (@) — 27 |ay(@)) -

Hence |@y(x)| < p.(x) all ze X.
By Theorem 2.2 we can choose a,c A such that

la,| < Py Qlr = a .

Assume for induction that extensions a,, .-+, a,€ A have been
constructed such that

0, <2 A[2(v - 5270 )) | = e =2 n,
and define
Py = 24 A [2”“@ -3 2—’[aT|>] .

The function @,., is strictly positive by induetion hypothesis. For
x e F we shall have

2 (@) — 327 a@)|) = 2 (¥ (@) — 327%(@) ) = 29(@)
such that @,.,(x) = 2y(x). Hence for an arbitrary xe X:

= { vap < 29(v - B 2710 )an,

)

a@)| = || adp,

< 27| vdn - 27| ade
= 27y (@) - 327 a,@)]) .

Hence |@y(x)| < @,..(x) for all xe X.
Again by Theorem 2.1 we can choose a,., € A such that

{Onsi| < Pty Cnialr = Qg -
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Continuing in this way we obtain a sequence {a,});., & A such
that forn =1,2, ---

(1) auly =t

(ii) (x) — 3.2 a(x)] > 0, all ze X,

(iii) [[an|| = 28up 4ex Y(@)-

By (iii) the sequence >\7., 27"a, is uniformly convergent and a =
S 27a,e A. Clearly al, = a, and it follows from (ii) that |a(x)| <
() for all x ¢ X. This completes the proof.

Taking + = 1 in Theorem 4.5 we obtain the following:

COROLLARY 4.6. Let F be a compact subset of 0,X satisfying
(A1), i.e.

reM@.X)N A= plpe A,

then F has the morm preserving extension property.

REMARK. In the proof of Theorem 4.5 we have actually proved
slightly more than was stated. The A-superharmonicity of the func-
tion - was used just once, namely in the verification that |@(x)| <
Ppi(x) for m =1,2, .-+ and all xe X. However if z is a point of X
such that

e M:(3,X) = p(F) =0,

then by definition @,(x) = 0, and there is nothing to verify.
Hence, Theorem 4.5 subsists if 4: X — R* U {co} 45 allowed to be
a l.s.c. function such that

v = | vap
Jor all points x e X for which p(F) =+ 0 for some p,c M;(0,X).

5. A peak set theorem. In this section we shall deal with
compact subsets F' of 9,X satisfying the requirement (A.2). For such
an F we define the function ¥, as in (3.7).

ProrosiTioN 5.1. If Fis a compact subset of 0,X satisfying (A.2),
then the A-comwvex hull of F is equal to the set of all xe X such that

Proof. By definition, the A-convex hull of F is the set
(5.1) F* ={gzeX||a@)| < [lall,, all aeA}.

We first assume that ¥,(x) = 1 i.e., g, (F) =1 for p,e M;(0,X).
Then we obtain for every ac A,
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i
3
[

@) = || ade] = | tala < yal,
iJy F

such that xe F~.

Next assume that %,(x) < 1. This implies that @(x) ¢ S,. Hence
we can separate @(x) and S, by a w*-continuous linear functional on
A* i.e., there exists a function a € A and an ac R such that

Re ¥ (a)(®@(»)) > o > Re ¥(a)(S;) = 0,
and hence again
Rea(x) >a > Rea(F)=0.
Now, for sufficiently large o ¢ R*, the function a + ¢ ¢ A satisfies
la(z) + 36| >0 +a>laly) + 4] all yeF.
In fact, it suffices to take

5>“/2+62—a6
2(a — p)

’

where
B=max{Rea(y|yec F} <ea, v=max{Ima(y)l|lyecF}.

Hence
la + 6l < la(x) + o]

i.e., 2z ¢ F*, which completes the proof.

LEvMMA 5.2. Let F be a compact subset of 0,X satisfying (A.2),
for which Al, is closed in FJF). Let « be a strictly positive A-
superharmonic function on X such that 1 < () for all x e F.

Then there exists a fumnction ac A such that

(5.2) al, =1, Ja@)| < (@) all zeX

Proof. Since ¥, is an element of .o and A|; is assumed to be
closed in Z(F') we can use Theorem 2.2 with a,€ A|;, ¢, = 1. Now
using the same technique as in the proof of Theorem 4.5 we obtain
a function a € A satisfying (5.2).

LEMMA 5.3. Let F be a compact subset of 0,X satisfyiny (A.2),
and let G be a compact subset of X\F". Then there exists an A-
superharmonic function + on X such that:

(1) (@) =1 for all xe F"

(ii) |y(@)| <1 for all xeG

(i) 0 < (@) =1 for all ze X.
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Proof. We write S; = ¢co(@(G)) and claim that S, N S; = @.

To prove this, we assume for contradiction that there exists a
D, €Sr NSz, and we recall that ¥, is u.s.c. and affine (since S; is a
parallel face) and that ¥, is related to 7, by formula (3.8). Now
we obtain

1 = Fsp(p) = max ¥s,(p) = max ¥s,(p) = max ¥,(p) .
peSqg peO(G) pPeEG

By Proposition 5.1, this contradicts the hypothesis G N F» = @&,
and the claim is proved.
Now there exists a number 0 such that

max 2Sp(p) < 5 < 1 3
PeESGE
and hence we can define two disjoint convex subsets of A* x R by
the formulas:
(5.3) F,={p a)|peS, acRk, 0 < a=x¥s,(n)}
(5.4) F,={(p,a)|peS; aeR, 6= a}.

The set F, is compact and the set F, is closed. Hence we can
use Hahn-Banach separation to obtain a function be A such that

Ls:(p) < Rey(0)(p), all peG,
and
Rey(b)(p) <d <1, all peS,.
The function + = Re (b) A 1 is A-superharmonic and satisfies (i),
(ii) and (iii).
THEOREM 5.4. Let X be a metrizable compact Hoausdorff space
and let F be a compact subset of 0,X which satisfies (A.2) i.e.
preM@EX)NAt=uF)=0,

and for which Aly is closed. Then there exists a function ac A such
that

(5.5) alpa =1, |a@)| <1 all zeX\F",
i.e. the A-convex hull of F is a peak set.

Proof. By metrizability F* is a Gs-set, and we can write X\F" =
U, K, where K, is closed.

Now we use Lemma 5.3 to obtain strictly positive A-superharmonic
functions +, on X such that

J(x) =1 for all xzeF?, ~,(x) <1 forall zeK, n=12 ---
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and +,(x) <1 for all xe X. It follows from Lemma 5.2 that there
exist functions a,€ A such that a,|, =1 and |a,(x)| < +,.(x) for all
x e X. Now the function

a = i 27"a,
satisfies (5.5) and the proof is complete.

REMARK. Actually the conclusion of Theorem 5.4 subsists under
more general assumptions. The metrizability of X was only invoked
to make F" a Gj-set. In particular we shall have the following:

COROLLARY 5.5. Let ©€0,X be a Gs-point satisfying (A.2), i.e.
e M@.X) N A" = () = 0,

then x is a peak point for A.

Finally we remark that if X is a metrizable compact Hausdorff
space and F is a compact subset of 0,X satisfying the stronger con-
dition (A.1l) then the A-convex hull of F s a peak set.

6. Relations to the Bishop-Rudin-Carleson Theorem. In the
present chapter we shall consider a compact subset F' of X satisfying
the requirement

(B) peA =pl,=0.

Clearly (B) is more restrictive than (A.l), and a fortiort than
(A.2). Note also that (B) implies F' C 0,X since M;(X) = {¢,} for all
xe k.

If ¢ F and g, e M;(X), then ¢, — yt, e A*. Now the requirement
(B) implies (¢, — t.)|» = 0, such that p,(F) = 0. By the definition
(3.2) we shall have a@,(x) = 0. Hence

(6.1) @y = Ay * Ay -

Transferring to the state space and making use of (3.8), we observe
that the function 7, takes the value zero on @(X\F). Geometrically,
this means that the canonical embedding @: X — S maps F into the
(compact) split face Sp = co(P(F)), and X\F into the complementary
(G;-) face S% (¢f. [2, Cor. 1.2]).

It follows from (6.1) that ¥, = %, and by Proposition 5.1 we obtain
F = F. Moreover, it follows from Proposition 4.4 that 4|, is a closed
subspace of 7 (F), and it follows from (B) that (4|,)* = (0). Hence
Alp = F(F). Also it follows from the results of chapter 5 that if
F is a G,, then it is a peak set.
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In other words: If F satisfies (B) then it is an interpolation set;
and if in addition it is a G, then it is a peak-imterpolation set.

Finally we note that we may apply Theorem 4.5 in the form
stated in the Remark at the end of §4, to obtain:

THEOREM 6.1. (Bishop-Rudin-Carleson) Let F be a compact sub-
set of X satisfying (B), i.e.

HeAr=pl,=0;

let f,e G(F), and let : X — R* U {co} be a strictly positive l.s.c.
Sfunction such that | f(x)| < 4(x) for all xe€ F. Then there exists an
ac A such that aly = f, and |a(x)] < ¥(x) for all ze X.

REMARK. Theorem 6.1 is the most general form of the Bishop-
Rudin-Carleson Theorem. Originally Bishop stated and proved this
theorem for a continuous function + and strict inequality sign [4].
Appealing to the inductive construction of Petezynski [12], Semadeni
improved it to the form stated above [16]. (Cf. also Michael-Pelczynski
[11, p. 569]).

7. The sup-norm algebra case. In this section we shall assume
that A is a sup-norm algebra, and we shall consider two new require-
ments on a compact subset F' of 0,X:

(G.1) peAt =ple A+
(G.2) pHeA = plae At

Clearly (B) implies (G.1) and (G.2), and each one of these implies
(A.1). In fact, (G.2) implies (A.1) since ¢ |zn = tt|, for every ¢ e M(3,X).
This result in turn is elementary, but not entirely obvious, so we
shall sketch a short proof: Note first that F* = @7(S;), so that F
can be thought of as the intersection of X with the ordinary closed
convex hull of F in S. (This is standard for real function spaces,
and the complex case is taken care of by the same argument as in
the proof of Proposition 5.1.). Hence the problem is reduced to show
the general implication:

Supp (¥) < co(Q) = Supp (v) € Q,

where v is a boundary measure and @ is a closed subset of S. By an
elementary theorem v is also a boundary measure on ¢o(Q). (An explicite
proof is given in [3, Lem. 1].) Hence v is supported by the closure
of the extreme points of ¢o(Q). By Milman’s Theorem Supp (v) C Q,
and the implication is proved.

In [9] and [10] Gamelin and Glicksberg have dealt with the re-
quirement (G.1), and from their works we shall adopt the following:
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DEFINITION 7.1. Let F be a compact subset of X and let ¢ > 0.
Al, is said to have the property E, if the following conditions holds:

Given fe Al, with |[f|l <1 and a compact subset G of X\F,
there exists an extension ge A of f such that

lglly < max{l, ¢, |g)| <t all zeG.

The extension constant e(A, F) of F associated with Al, is defined
by the formula:

(7.1) e(A, Fy =inf {t| A|. has property E.}.

If A, has property E, for no ¢, then we define e(4, F') = <.
The connection between the extension constant and the require-
ment (G.1) is expressed in the following:

THEOREM 7.2. (Gamelin-Glicksberg). Let F be a compact subset
of X. Then the following conditions are equivalent:

(1) peA —=plredr

(ii) e(4, F) =0

(iii) F is an intersection of peak sets for A.

Proof. See [9] and [10].

ProroOSITION 7.3. Let A be a sup-norm algebra over X and let F
be a compact subset of 0,X satisfying the requirement (A.1). Also let
G be a compact subset of X\F" and let ¢ > 0. Then there exvists a
Junction ac A such that

(i) a(x) =1 for all xe F™

(ii) Ja(w)] < e for all xe G

(i) Jlelly = 1.

Proof. Choose ++ as in Lemma 5.3 and let a,€ A|;, a, = 1. Using
Theorem 4.5 we obtain a function b e A such that

blr =1, [b(x)] < (x) for all zeX.

Cleary b(x) = 1 for all xe¢ F* and |b(x)| < 1 for all xcG. Now
choose a natural number % such that ({|b{ls)* < ¢ and define a = b*. The
proof is complete.

We are now able to clarify the connection between (A.1l) and the
extension constant of F.

THEOREM 7.4. Let A be a sup-norm algebra over X and let F be
a compact subset of 0,X. Then e(4, F*) =0 of and only if F satisfies
(A1) d.e.
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preM@o,X)N At =pl,c A,

Proof. By virtue of Theorem 7.2 and the fact that gl = ¢|r
for every pe M(0,X), if follows that e(4, F*) = 0 implies (A.1).

Now assume (A.1) and let a,€ A|a With [|a,|[za = ||a,]||lr < 1. Let
G be a compact subset of X\F” and let ¢ > 0. We choose b€ 4 such
that [|b|lx = l|a||r and b|r = a,|, according to Corollary (4.6), and we
choose h € A according to Proposition (7.3) i.e.

hlen=1, |Mx)| <e for all zeG

and ||k||y = 1. Then we define a =h-becA. Now, a is a norm
preserving extension of a, and |a(x)| < e for all xc€G. Hence A|ya
has property E. for all ¢ > 0, and so we have proved that e(4, F*) =0.

Thus we see how the requirements (A.l), (G.1) and (G.2) are re-
lated for sup norm algebras. (A.1) and (G.2) are always equivalent
for every compact subset F of 4,X, and if in addition F is A-convex,
then they are equivalent to (G.1). This is not always the case even
if A is an algebra and F satisfies (A.l), as can be seen from the
following example

EXAMPLE 7.5. (The “Tomato Can Algebra”).

Let X ¢ R X C be defined as {(t, 2)|t[0,1],(z| < 1}; let A be the
sup-norm algebra consisting all functions f e E(X) such that f(0, 2)
1s analytic for |z] < 1; and let F = {(0,2)||z| = 1}. Then F satisfies
(A1) and F*» ={(0,2)]]z| < 1}.

Proof. We first note that
0, X ={t2)]tel0,1],|2]| <1 or t=0,|z|=1}.

Hence the Shilov boundary 4,4 = 9,X is all of X, and it also
follows that X is the maximal ideal space M, of A.

If G is a compact subset of X\{(0, 2)||z] < 1}, then G is a peak
interpolation set for 4 and 4|, = €¢(G). Hence if #e A* then p¢|, = 0.
In other words supp (1) < {0, 2)||z| < 1} for all pe A-.

Now assume pe M@,X)N A*. Then p|, =pecAt. Hence F
satisfies (A.l) but trivially F”* = {(0,2)||2] < 1}; and the proof is
complete.

This example shows also that (A.1) and (G.1) need not be equivalent
even if we consider A as a sup-norm algebra over the maximal ideal
space or the Shilov boundary.

Finally we remark that if X is a compact subset of C and
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A= R(X)|;y, i.e., if A is the uniform closure of the rational functions
on X considered as a function algebra over the topological boundary
0X, then the two conditions (A.1) and (G.1) are equivalent since F' = F»
for every compact subset F of 0,X. In fact for a point z,€ 0X\F we
choose f = (1/z — z)c A, where z,¢ X and

|2, — 2'01 = 3inf |z — 2],

and obtain | f(z,)| = 2 sup | f(z)].
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TOPOLOGIES FOR QUOTIENT FIELDS OF
COMMUTATIVE INTEGRAL DOMAINS

JoBY MIiLO ANTHONY

In this paper topologies for the quotient field K of a
commutative integral domain A are investigated. The topo-
logies for K are defined so that convergence in K is stronger
than convergence in A whenever A is a topological ring.

In particular, the Mikusinski field of operators is the
quotient field of many commutative integral domains which
are also topological rings. Each of these rings leads to a
topological convergence notion in the Mikusinski field, which
is stronger than the convergence notion introduced originally
by Mikusinski., (The latter has recently been shown to be
nontopological.)

In general, the algebraic and topological structures con-
sidered are not necessarily compatible; however, the question
of compatibility is investigated. Necessary and sufficient
conditions are given for the topology on A to be the restric-
tion to A of the topology defined on K. In a theorem of S.
Warner, necessary and sufficient conditions have been given
for the neighborhood filter of zero in A to be a fundamental
system of neighborhoods of zero for a topology on K. More-
over K, with this topology, is a topological field with A topo-
logically embedded in K as an open set, For rings satisfying
the conditions of this theorem, the topology for K which is
defined in this paper is shown to reduce to that specified by
Warner.

Let C; denote the set of all infinitely differentiable, complex
valued functions of a real variable with the support of each function
contained in some right half-line. Endowed with the operations of
addition and convolution, C5 becomes a commutative ring which has
no divisors of zero. The quotient field of the ring C7 will be denoted
by the symbol M. It is isomorphic to the field of Mikusinski opera-
tors [8]. If Cy is assigned the topology .77 *, in which a sequence
(a,|m € Z*) converges if the supports of the elements «, are uniformly
bounded on the left and the derivative sequences (@}’ |n e Z*) converge
uniformly on compact sets for all ke Z+ U {0}, then (Cg, 77*) is a
topological ring.

Mikusinski has introduced a convergence concept for M which is
equivalent to the following definition. If (a,|n € Z") is a sequence in
M, then (a,|n e Z*) converges if there exists a nonzero pe C7 such
that (pa,|ne Z*) is a sequence in C; which converges in the space
(Cg, 7% [6, pg. 144]. T. K. Boehme has shown that this convergence

585
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is nontopological in the sense that there is no topology for M in which
sequential convergence is given by Mikusinski’s definition [2]. E. F.
Wagner has defined an analogous convergence concept for nets and

filters and has shown that this leads to a limit space structure on M
which is also nontopological [9].

It seems natural to ask how Mikusinski convergence can be modified
so that it becomes topological. R. A. Struble has introduced such a
modification [7], which has the property that the restriction of the
resulting topology to the right-sided Schwartz distributions, which are
embedded algebraically in M, is the topology which is ordinarily as-
sociated with them. The topology introduced by Struble is also defined
by a convergence concept for sequences and appears to be unwieldy.

S. Warner has given necessary and sufficient conditions for a
topological ring which has no zero divisors to be openly embeddable
in a topological division ring [10, Theorem 5]. It is easy to see that
the ring (Cg, 7 *) does not satisfy these conditions. Consequently,
there is no topology on M which makes M a topological field with Cg
topologically embedded as an open set. Using some recent results of
Boehme, we will prove an even stronger result concerning M; namely,
there is no topology on M such that C; is topologically embedded in
M and multiplication in M is continuous. Essentially this means that
M cannot be topologized in a “nice” way and efforts to “extend” the
topology of Cy to M must be channelled in other directions.

In this paper we present a method for topologizing the quotient
field of any commutative ring which has no zero divisors, using any
topology which may be assigned to the ring. If the ring satisfies the
conditions given by Warner in [10], then the topology which we will
define has the property that the quotient field with this topology is
a topological field with the ring topologically embedded as an open
set. In general, however, the field topology will reflect only part of
the algebraic and the topological structure of the ring and will not
necessarily be compatible with the field structure. Although the
ensuing development is applicable to very general algebraic and topo-
logical settings, it is strongly motivated by the unsatisfactory situa-

tion afforded by the Mikusinski operators. The field M will frequently
be used as an example.

Throughout this paper, the symbol A will denote a commutative
ring which has no zero divisors and K will denote the quotient field
of A. We will use the symbol A* to represent the set of nonzero
elements of A. A topology on a set will be a collection of open sets
and a neighborhood will be a set containing an open set. We will
always assume that there is a topology associated with the set of
elements of A and this topology will be denoted by .. The topology
7 is not necessarily compatible with the algebraic structure of A.
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Whenever we consider a ring of functions in which ring multiplication
is the convolution of functions, multiplication will be represented by
the symbol, *. For terminology concerning nets and filters, the reader
should refer to [5] and [3].

The following development will be divided into two sections. In
the first section we will deal with the definition and characterizations
of a topology for the set of elements of the quotient field K. The
second section will examine some specific properties of this topology
relative to the algebraic and topological structures of A.

1. The definition and characterizations of the topology. Be-
fore defining a topology for the quotient field of an arbitrary commu-
tative integral domain, let us examine the specific problem of extending
the topology .7 * of Cg to M.

LEMMA 1. Let 7' be any topology on M with the following
properties.

(1) ' Cg>9* (The restriction of 7" to C% s finer than
T *.)

(ii) For each nonzero pec C3, the mapping &,: x+— px of M into
M is continuous.
Then sequential convergence in (M, .7') is stronger than Mikusinski
convergence.

Proof. Let (a,|/neZ*) be a sequence in M and let ae M such

that (a;|ne Z+)~Z>a. (The net (a.|m e Z*) converges to ¢ in the
topology .77’.) A theorem of T. K. Boehme implies that any countable
collection of elements in Cy has a common multiple in Cy [1]. This
implies that there exists a nonzero element p in Cy such that pae
Cy and, for every n € Z*, pa, € Cg. Since multiplication by an element

of Cy is continuous in (M, .77), (pa,,lneZ+)i>pa. But 77|Cy >

7 * and therefore (pa,|n € Z*)—— pa. This implies that (a,|n € Z*)
Mikusinski-converges to a.

LemMMA 2. Let 7' be any topology on M with the following
properties.

(i) T*>979"|C¢

(ii) For each aec M, the mapping &, x+—ax of M into M is
continuous.
Then Mikusinski convergence of sequences is stronger than sequential
convergence in (M, 7).

Proof. Let (a,|meZ*) be a sequence in M and let ae M such
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that (a,|n € Z*) Mikusinski-converges to a. Then there exists a non-
zero element p in C;? such that (pa,|n € Z*) is a sequence in C7, pac

Cy and (pa,|n c Z*) —f—*—>pa. Since .7 * > 97'|Cy, (pa, | n € Z+) —5 pa.

But &, is continuous in (M, .#') and therefore (a,|n € Z*) — a.

In [2] Boehme has shown that there is no topology on M which
has the collection of Mikusinski-convergent sequences for its sequential
convergence class. Combining this result with Lemma 1 and Lemma
2, we obtain the following theorem.

THEOREM 1. There is no topology on M in which multiplication
is continuous and for which (Cg, 7 *) is topologically embedded in M.

We will now examine the more general situation of an arbitrary
commutative ring 4 with no zero divisors, and its associated quotient
field K. For each pe A*, define a mapping ¢, from A into K by
o) = afp, ce A. Denote the image of A under the mapping ¢, by
the symbol A4,. Let .7, be the finest topology on A, which renders
the mapping ¢, continuous. That is, 9, = {0, 4,0, = 0/p, 0 .7 }.
Since A has no zero divisors, «,/p = a,/p, a, a,¢ A, if and only if
a, = a,. Consequently, ¢, is a bijection. Therefore (4,, ./,) is homeo-
morphic to (4, 7). For each ac A, let .4 (a) be the F-neighbor-
hood filter of «w and if ac A4,, let .7,(a) be the .7 ,-neighborhood filter
of a. We note that K = U,crr 4,. If (a.|teM) is a net in K, let
M, = {{teMla,c 4,). Clearly if the net (a,|/t €M) is eventually in 4,,
then (a.|p¢teM,) is a subnet which is in A4,.

DerFINITION 1. Let (a,/¢t€ M) be a net in K and let ae K. Then

. K ) .
(a,| ¢t € M) is K-convergent to a, written (a,|/t € M) — a, if the follow-
ing condition is satisfied. Whenever ac A,, the net (a./pteM) is

eventually in the space A4, and (a,|/teM,) <% a.

The obvious generalization of Mikusinski convergence is the fol-
lowing. Let (a.|/teM) be a net in K and let ae K. Then (a,.|peM)
Mikusinski-converges to ¢ if and only if for some pe A*,a € A, (a,.lpreM)
is eventually in A4, and (a,|zteM,) —2 a. Clearly K-convergence is
stronger than Mikusinski convergence. We will now show that X-
convergence is topological. This could be done directly by proving
that the collection of K-convergent nets is the convergence class of
a topology on K; however, it is slightly more interesting to give an
analogous definition of K-convergence of filters, show that it is topo-
logical and then prove that it is equivalent to K-convergence of nets.
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DEFINITION 2. If % is a filter on K and ac K, then & is K-
convergent to a, written F#7a, if and only if whenever ac 4,, & is
finer than the .7,-neighborhood filter of a.

Clearly if &7.0 and & > &, then Zr.a. Moreover, if 47 (a) =
N :xo Z, then 47 (a)txa. Now for each a € K, the collection of filters
which K-converge to a is the collection of filters which are finer than
4 (a). Obviously .#"(a) is a candidate for the neighborhood filter of
a in some topology. In [3, pg. 19, Proposition 2], sufficient conditions
are given for a collection of filters on a set to uniquely determine a
topology 'in which the specified filters are the neighborhood filters.
The fact that these conditions are satisfied by the collection {_#"(a)|a €
K} constitutes the proof of Theorem 2; however, first we will prove
the following lemma.

LEMMA 8. For each a€ K, &Z(a)={N,(a)|aec 4, and N,(a) € _+,(a)
Jor some pe A*} is a subbase for the filter 4 (a).

Proof. Since every element of <Z(a) contains the point a, <% (a)
is a subbase for a filter on K. Let <#’(a) be the collection of all
finite intersections of elements of <Z(a) and let <#'(a) be the filter
generated by <#’(a). Then <Z”(a) is the coarsest filter containing
“(a). Now if F7.a, then & contains <#(a) and so Z"(a) < F.
Therefore <Z""(a) < .4"(a). On the other hand, if ac A,, then clearly
ZB""(a) > 4 5(a) which implies that &' (a)rxa. Consequently <#"(a) >
A (a).

THEOREM 2. There is a unique topology on K with the property
that a filter converges to a point if and only if it K-converges to that
same point.

Proof. Let a be a given element of K. Since _#"(a) is a filter,
every subset of K which contains a set of _#7(a) is an element of
4 (a) and, moreover, ./ (a) has the finite intersection property. By
Lemma 3 if N(a) e .+ "(a), then a € N(a) since every element of <Z(a)
contains a. Also as a result of Lemma 3, there exists a finite
intersection, [; N,(a), of elements of <Z(a), which is contained in
N(a). Hence there exist open sets O, € .7, such that O, (a) e 7 (a)
and O,.(a) © N,(a). Therefore N;0,(a) < N:N,,(@) = N(a). Moreover,
N:0,(a)e _+7(a). Let y be an arbitrary element of M; 0, (a). Since
the sets O,.(a) are open, they are elements of <Z(y). Consequently,
N: O,i(a) € .#7(y) and because N; O,,(a)  N(a), N(a) € 4" (y).

It remains to be shown that K-convergence of nets and K-con-
vergence of filters are equivalent. For a given net, its associated net
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filter is the collection of all sets which the net is “eventually in”. In
[5, pg. 83], it is shown that every filter is the net filter of some net.
Therefore it is sufficient to prove the following theorem.

THEOREM 3. Let (a.jpreM) be a net in K and let ac K. Then

(a.jpreM)—>a iof and only if its associated net filter, & (a,.| e M),
K-converges to a.

K . .
Proof. Suppose (a.|pteM)—>a. Then if acAd,, (a.|pteM) is
eventually in every .7 ,-neighborhood of ¢ which implies that

F(aulpreM) > A7 (a) .

Therefore & (a,| pt € M)z ca. Conversely, suppose .~ (a.| ¢t € M)Tia. Then
if acd,, 7 (a.|prteM) > _4,(a) which implies that (a.|f¢t e M) is even-
tually in every .7,-neighborhood of a. Therefore (a,|/te M) is even-

tually in A,, (@, eM,) —2a, and hence (a,|/t €M) X, a.

Since K-convergence is topological, the topology determined by K-
convergence will be denoted by .7%. Moreover, since K-convergence of
nets and K-convergence of filters are equivalent, we will use whichever
notion of K-convergence is most appropriate to a particular situation.

The following theorem gives a simple characterization of the topo-

logy %

THEOREM 4. T, s the coarsest topology on K for which the
collection ¥ = {0,|0,e .7, for some p € A*} is a collection of open sets.

Proof. Let O,¢.%” and suppose (a.|pteM) is a net in K which

K-converges to a€O, Then (a.|fteM)—=2q which implies that
(a.lpre M) is eventually in O,. Therefore O,c€.7%. Let .7’ be any
topology on K with the property that & <. 77’. If (a.|pteM) is a
net in K which .7 ’-converges to a, then (a.|¢eM) is eventually in
every .7,open-neighborhood of a. This implies that (a./prteM) is

eventually in 4,, (a,]/eM,) 2> a, and hence (.|t € M) — a. There-
fore 7% is coarser than 7.

Now we can make the following two observations. First, in view
of Theorem 4, the topology .7 could have been defined as that
topology on K which has the collection .&” as a subbase. From this
point of view, Definition 1 and Definition 2 characterize convergence
in this topology. Second, the algebraic characteristics of the ring A
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and the field K are not essential in defining .9%. In general, if
(=7, 7)< e &} is an arbitrary, indexed collection of topological
spaces, then we may define a topology on U, .. B, by taking the
collection &% = {0,|0,¢ .7, for some - c &} as a subbase. This
topology is the coarsest one in which all the injection maps i,: B, —
U, .- B, are open mappings. Convergence in this topology is chara-
cterized by definitions which are analogous to Definition 1 and Defini-
tion 2.

2. Properties of the topology. A few facts concerning the
relationship between (4, .77) and (K, 9%) are immediate consequences
of the characterizations of .7, which have already been given. For
instance, it follows from Lemma 3 that if (4, .97) is a Hausdorff space,
then (K, .7%) is a Hausdorff space, since distinet points of K are always
elements of a common A,-space and have disjoint neighborhoods in that
space. There are several observations that can be made as a result
of Theorem 4. Clearly if (A4, .9) is a discrete space, then (K, %)
is a discrete space. Also, it is obvious that for each pe A*, 7|4,
is finer than .Z,. Another result of Theorem 4 is that if 7% and
7@ are comparable topologies on A with .77 finer than .77 ¥, then
the corresponding topologies of K-convergence, 7, and 7%, have
the same relationship. It is easy to construct examples to show that
if 7 is strictly finer than .Z7%, then 7" may be strictly finer
than 7%. Two major questions which remain to be answered are;
“Under what conditions is (4, .7") topologically embedded in (K, 77%)?7,
and “What is the relationship between the topology .% and the al-
gebraic structure of K?”’ It is the purpose of this section to examine
these two questions.

TFor each pe A%, let £, be the mapping of A into A defined by

&, (x) = pz, x € A.

LEMMA 4. If for each pe A* the mapping &, is continuous, then
7~ s finer than Tx|A.

Proof. Since the mappings &,, p € A*, are continuous, if
(aﬂ [ re M) s a,

then for every p e A*, (a,p|¢te M) ——— ap. From the way in which A4
is algebraically embedded in K, it follows that the elements of A
are in every A,-space. Specifically, if pe A*, then for each e M, a,
is identified with «,p/p and « is identified with ap/p. Therefore

(a,p|t € M) = ap implies that (@] e M) 22, . But this is true for

K
every pc A* and so we have (a,|pteM)— a.
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In view of Lemma 4, we can make the following observation. If
(4, 77) is a topological ring (recall that A is always a commutative
ring which has no zero divisors), then K-convergence is a generaliza-
tion of ring convergence in the sense that every .Z-convergent net is
K-convergent. There may, however, be nets in A which do not con-
verge in (4, .7") but which are K-convergent. In fact, the following
example shows that this is the case when (4, 77) = (Cy, 77%).

EXAMPLE 1. .9 may be strictly finer than 7| A.

If (4, 97) =(Cy, %) and K = M, we will denote the topology
of K-convergence on M by Z;*. Then .7 * is finer than 7.*|Cy
because (Cy, .7 *) is a topological ring. Let (a,|n € Z*) be a sequence
in Cy with the following properties.

(i) For each ne Z*, the support of «, is contained in [0, 1/n].

(ii) For each » e Z*, max, |a,(t)| = 1.

Now if p is a nonzero element of C3, then (an*plneZ+)—£+0 which
implies that (a,|neZ*)-<20. Therefore (a,|neZ") 7, 0, but
(2,|m € Z) does not converge in .7 *.

THEOREM 5. 9 = 7x|A if and only if 7 has the following
property: If (a.|preM) is a net in A and e A, then (a,.p|preM) SN
ap for every pe A* if and only if (@.|peM) "> a.

Proof. Suppose .7 = Fx|A. Let (a.lpreM) be a net in A with
ac A such that for each pe A*, (a,p|preM) - ap. Now for each
pe A* a,=(a.p/p), teM, and a=(ap/p). Therefore (a,.p|p e M) ap
implies that (a,| ¢t € M)——2> a. Consequently (a,| ¢ € M)—E—»a, and since
T = %4, (.| pre M) =<5 a. On the other hand, if (a,| e M) - a
and . = J%| A, then for every pe A*, ((a,p/p) | preM) _Z2, (ap/p)
which implies that

(@plpep)—ap.

Conversely, suppose .7 has the specified property. Then for each
pe A*, the mapping &, is continuous. By Lemma 4, 9 > J7%|A.
Let (a.|¢te M) be a net in A and let « € 4 such that («,| ¢ e M) X, a.
Then for every pe A*, (a.p|pteM) —Z, ap and consequently

(a,lpre M) =~ . Therefore F;|4> .7 .



TOPOLOGIES FOR QUOTIENT FIELDS 593

COROLLARY a. If A has an identity e and if for every pec A*
the mapping &, is continuwous, then 7 = Tx|A.

Proof. Clearly the existence of an identity implies that the con-
dition given in Theorem 5 is satisfied.

COROLLARY b. Suppose that (4, .77) is a topological ring. If
there exists p' € A* such that p'.47-(0) < A4-(0), then 7~ = Tx|A.

Proof. Since multiplication is continuous in A, we have .77 (0) <
p'4(0). Therefore the given condition is equivalent to the require-
ment that p’.#_-(0) be a base for _#7-(0). Because (4, .77) is a topo-
logical ring, if (a,.| ¢ € M) —Z > «, then for every p e A*, (a,p|(t e M) =
ap. Let (a.|reM) be a net in A and let e A such that for every
pe A%, (a.p|pre M) —— ap. Since p't"-(0) < A7-(0), if N.-(0) € 47-(0),
it follows that »’N ,(0)e _#.-(0). Therefore (a.p" — ap’| € M) is even-
tually in p’N.(0) which implies that (a, — al¢ze M) is eventually in
N _(0). Consequently (a,.|t¢teM) s a.

COROLLARY ¢. If (A, . 77) is a compact, Hausdorff, topological
ring, then 9 = Tx|A.

Proof. Since (4, .77) is a topological ring, if (a.|pteM) —a,
then for every p e A*, (a.p|tt € M) —~ > ap. Let (a,|/zeM) be a net in

A and let ac A such that for every pe A*, (@.p|preM) s ap. Let
(B:In € 4) be an arbitrary subnet of (a,.|¢t e M). Since (4, .97) is com-
pact, there exists a subnet (4,|ve ") of (8:|ne4) and 6 ¢ A such that

(0,|vel-<56. If pe A*, then (5,p|vel’) —— dp. But (O,p|vel)
is a subnet of (a.p|peM) which, by assumption, converges to ap.

Therefore (8,p|v e I') < ap and since (4, .7") is Hausdorff, dp = ap
which implies that 6 = «. Now every subnet of (a,|¢ e M) has a sub-

net which converges to «. Consequently («,.| (e M) s a.

There are several important subsets of K which warrant special
. consideration, among which are A itself and the A,-spaces. Another
important subset of K is the intersection of all of the A,-spaces. It
is well known that the elements of K may be identified algebraically
as either quotients (equivalence classes of ordered pairs of elements of
A), or as partial homomorphisms of ideals of A into A whose domains
are maximal in the sense that the partial homomorphisms cannot be
extended to properly larger ideals [4]. In the latter situation, ,c . 4,
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is identifiable as the set of those partial homomorphisms defined on
all of A. This collection of mappings is denoted Hom, (4, 4). If
ac A, then ¢« may be identified with the homomorphism &,: 44— A
where &,(x) = ax,xec A. Hence Ac Hom, (A4, A). Now Hom, (A4, A4)
may be considered as a collection of functions which map a common
domain into a topological space. One way of topologizing such a
function space is to use the so-called “weak” topology, the topology
of pointwise convergence. Let .Z° denote this topology. It is not
difficult to see that o |Hom, (4, A) = & An immediate corollary
to Theorem 5 is that (4,.7) is topologically embedded in (K, %)
if and only if it is topologically embedded in (Hom, (4, 4), 7).

If A=Cy and K = M, Struble has shown that Hom, (4, A4) is
isomorphic to the collection of all right-sided Schwartz distributions
[7]. The usual topology assigned to distribution is a “weak” topology.
In this case it can be shown that these right-sided distributions are
embedded both algebraically and topologically in the Mikusinski operator
field.

In general, A and Hom, (A, A) do not need to be either open or
closed subsets of (K, .7%). In his paper on compact rings [10], Warner
considers the problem of openly embedding a topological ring, which
has no divisors of zero, in a division ring. The following theorem
shows that if (4, 77) is a topological ring, then a weakened version
of a condition used by Warner in [10, Theorem 5] is sufficient to

guarantee that both (4, .97) and (Hom, (4, A4}, &) are openly embedded
in (K, 9%).

THEOREM 6. Suppose that (A, .7 ) is a topological ring with the
additional property that for each N_(0)e .+ (0), there exists pec A*
such that pN-(0)e . +.-0). Then

(i) TJxlA=7

(ii) Ae g%

(iii) Hom, (4, A)e F%.

Proof.
(i) Let (a.lpreM) be a net in A with a€ A such that

(.plpeM) " ap

for every pe A*. Then (a.p —ap|peM) 2,0 for every pe A*. Let
N_(0)e _#2-(0) and choose p' € A* such that »'N_.(0)c _+#2(0). Then
(a.p" — ap’lreM) is eventually in p'N_(0) which implies that («, —

ajreM) is eventually in N.-(0). Therefore (a,|p e M) > a. Since
(4, .77) is a topological ring, if (a,|p¢ e M) -2 @, then for every p e A*,
(a.plpreM) <> ap. By Theorem 5, 7~ = 7;|A.
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(ii) Choose p’ € A* such that p’Ae _+2-(0). If xep'A, then there
exists ye A such that 2 = p’y and hence x + p’4A = p'y + p’A = p'A.
Therefore p’Ae._4.(x). Now since p'A is in the neighborhood filter
of each of its points, it is an open subset of (4, 7). Consequently
if e A, then p’Ac _+.(p'a). But a has the representation p’a/p’ in
K, and since p'A e 4. (p'a), by Lemma 3, p’A/p’ = Ac 4+ (a). Thus
A is in the Z;-neighborhood filter of each of its points and hence is
an open subset of (K, 7%).

(iii) We have shown in (ii) that it is possible to choose p’ € A*
such that p’A is an open subset of (4,.77). If aeHom, (4, A), then
there exists o e A such that a = a/p’. Now a + p’Ae _+.(a) and by
Lemma 3, (a+p'A)/p’ e 4" (a). However, (a+p'A)/p =alp + v'Alp =
a + A which is a subset of Hom, (4, A). Consequently Hom, (4, A) ¢
A4 (a). Now Hom, (4, A) is in the .Zx-neighborhood filter of each of
its points and hence is an open subset of (K, .Z%).

The remainder of this paper will be devoted to an examination
of the compatibility of the topology % with the algebraic structure
of K.

DEFINITION 3. For each ac K, let D(a) = {pc A*|ac A,}.

Note that D(a) U {0} is an ideal in A. It is, in fact, the domain
of @ when ¢ is identified as a partial homomorphism.

THEOREM 7. Let a and b be elements of K such that D(a + b) =
D(a) "t D(b). Then, if addition is continuous in (4, 7 ), the mapping
[ K x K— K defined by f(x,y) =+ ¥, (x,y) € K X K, is continuous
at the point (a, b).

Proof. Let _4#7(a + b) be the F-neighborhood filter of a + b and
let N(a + b) be an arbitrary element of _#7(a + b). By Lemma 3,
there exists a finite intersection, N; N, (a + b), of .7, -neighborhoods
of a + b contained in N(a + b). Since D(a + b) = D{(a) N D(b), both «
and b are elements of each A, -space. Moreover, addition is continuous
in each A,-space and hence, for each %, there exists N, (a) € .75 (a) and
N, (b) € .47,(b) such that f(N,(a) x N,,(b)) C N, (a+b). Therefore we
have f(N: N,,(a) x N: N, (b)) < N: N, (@ + b < N(a +b). If +7(a,b)
is the neighborhood filter of (@, b) in K x K, then a base for _#"(a, b)
is the collection of all sets of the form N(a) x N(b) where N(a)e .+ (a)
and N(b)e _#7(b). Now by Lemma 3 we have M; N, (a) x N N,,(b) ¢
A47(a, b). . Therefore f is continuous at (a, b).

COROLLARY. If addition is continuous in (A, .7 ), then addition
is continuous in (Hom, (A4, 4), ).
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Proof. If a and b are elements of Hom, (4, A4), then D(a) = D(b) -
D(a + b) = A*.

THEOREM 8. Let a and b be elements of K such that D(ab)  D(a) +
D®). (D(@) - Db) ={pcAlp=qr,qgeD{a) and r<c D®)}). Then, if
multiplication is continuous in (A4, 7 ), the mapping f: K X K— K
defined by f(z,y) = zy, (x, y) e K x K, 1s continuous at the point (a, b).

Proof. Let 7 (ab) be the . ;-neighborhood filter of ab and let
N(ab) be an arbitrary element of _#"(ab). By Lemma 3, there exists
a finite intersection, (), N, (ab), of .7, -neighborhoods of ab contained
in N(ab). Now, for each ¢, we have the following. Since D(ab)C
D(a) - D(b), there exist ¢, A* and r;e A* such that acA4,,bec4,,
and p; = q;r;. Therefore there exist ring elements «; and G, such
that ¢ = a;/q,, b = B;/r;, and ab = «;8;/q;v; = ;8;/p;. Moreover, there
exists N.-(a;8:) € 4 («;8;) such that N, (ab) = N.(«;8;)/p;. But mul-
tiplication is continuous in (4, .97), and therefore there exist N («;) ¢
A (a;) and N_(B;) e A47(B;) such that N_(«;) - N (B;) < N_«{a;58;).
Let N,(a) = N.(@)/g; and N, (b) = N(8)/r;. Then N, (a)e +;(a)
and N, (b)e_77.(b). Now we have

N (@) . N (8) _ N A(a;)-N-(8)
q; 7; q;7;

— N/(az) * N/ (181) C M@l_)_ = Np,(ab) .
Ds b L

Ny(a) - N, (0) =

That is, for each ¢, AN, (a) x N, (b)) € N, (ab). Therefore we have
SN: Ny(a) x N: N, (b)) € N N, (ab) © N(ab) and since [\ N, (a) ¥
N: N, (b)e _+"(a, d), f is continuous at the point (a, b).

COROLLARY. If multiplication is continuous in (A, 77) and A =
A2, them multiplication is continuwous in (Hom, (A, A), .&°).

Proof. 1If a and b are elements of Hom, (A4, A), then D(a) = D(b) =
D(ab) = A*. Since A = A* and A has no divisors of zero, A* = (A*).
Therefore D(a) - D(b) = (A*)* = A* = D(ab).

Theorems 7 and 8 give algebraic conditions which are sufficient for
addition and multiplication to be locally continuous operations in
(K, 9%). Since for every ac K, D(—a) = D(a), it is clear that if
additive inversion is continuous in (4,.7"), then it is also continuous
in (K, Z%). Combining this fact with the corollaries to Theorems 7
and 8 yields the interesting result that if (4, ) is a topological
ring and A = 4% then (Hom, (4, 4), &) is a topological ring.
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The following examples demonstrate that multiplication and multi-
plicative inversion are not necessarily continuous operations in (K, .7%).

Ezxample 2. Multiplication is not necessarily continuous in (K, .7%).

Let (4, 97) = (Cy, 7 *) and K = M. Choose a nonzero element
¢ of Cg such that ¢ has compact support. For each n e Z*, let m, =
sup, |¢™(¢)|. Consider the sequence (f, = s"/nm,|n € Z*), where s* is
the operator (homomorphism mapping Cj into itself) which maps a
funection in Cy to its nth derivative. If a is a nonzero element of
Cy, then for each n € Z*, f, has the representation (a'™/nm,)/«. Choose
a real number A > 1 and let &(¢) = ¢(At). Then

( £ [nm, [ NPT (AE) [,

neZ+)=\ z

2,1 (n) () Pl
M neZ"'/—HO.
nm,,

.
neZJr)HiO

since(

K
Hence (f,|ne Z*) - 0. If, however, + is any nonzero element of
Cy, then

( (¢ *;ﬁ)‘")

- neZ+)=(¢(n)*“/’lneZ+>-—’f;0,

nMm,

and since (Cy, .7 *) is a topological ring, by Lemma 4, it follows that

((95 )"

n eZ+> —50.
nm,

For each neZ*, let a, = (¢ * )™ /um, and let b, = (¢ *v)'. Let
a=0and b= (3*y)". Now (a,|neZ*)——a and (b,|n € Z*) — b;

K
however, (a,b,|n € Z*) = (f,IneZ*) » 0 = ab. Therefore multiplica-
tion is not continuous on M.

Example 3. Multiplicative inversion is not necessarily continuous
in (K, 7%).

Let (A4, 97)=(Cy, 7 *) and K= M. Consider the sequence
(1 —s/nineZ*). This is a sequence in M which clearly K-converges
to the multiplicative identity; however, Mikusifski has shown that
(1 — s/n)|neZ*) does not converge according to his definition [6,
pg. 147]. Therefore ((1 — s/n)~'|n e Z*) does not K-converge. Con-
sequently, multiplicative inversion is not continuous on M.

If addition is to be continuous in (K, %), then for each ac K,
the .7x-neighborhood filter of @ must be the translate to a of the
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7 x-neighborhood filter of zero. We will now discuss sufficient con-
ditions on (4, 97) for (K, 9%) to have this property.

Suppose that (4, ) is a topological ring. Then for each p € A%,
the mapping x> pz is a continuous mapping of A into itself. Con-
sequently, p.#.-(0) is a filter base for a filter which is finer than
A47(0). In general, if p and ¢ are distinct elements of A*, then
p4-(0) and q_+>-(0) are not equivalent filter bases; however, if for
every pair (p, q) of elements of A*, p.#-(0) and ¢_7--(0) are equivalent
filter bases, then for each p e A*, p_7#.-(0) and p*.#.(0) are equivalent
filter bases. In this case, given N_(0) e _#.-(0), there exists N’ (0)¢
A4(0) such that pN’-(0) © p*N.-(0) which implies that N-(0)c pN_(0).
Therefore pN_(0)e _#>-(0) and consequently, p.#.-(0) is a base for
A4(0). Conversely, if for each pe A*, p_7_-(0) is a base for _+_-(0),
then for every pair (p, q) of elements of A*, p_#2-(0) and q_#_-(0) are
equivalent filter bases.

LEmmA 5. Let (R, T) be any topological rimg. The following
conditions on (R, T) are equivalent.

(1) Griven an open neighborhood O of zero and a monzero element
p of R, then pO is an open set.

(2) Given a nonzero element p of R, then p_47(0) is a base for
A70).  (A70) is the T-neighborhood filter of zero.)

Proof.

(1) implies (2): Let p» be a nonzero element of R and let N,(0)¢
A47(0). Since (R, T) is a topological ring, the mapping x> px is a
continuous mapping of R into itself. Consequently, there exists an
open neighborhood O of zero such that]pO < N (0). By hypothesis,
pO is an open neighborhood of zero. Therefore p.77(0) is a base for
A72(0).

(2) implies (1): Let O be an open neighborhood of zero and let p
be a nonzero element of R. Let pa be an arbitrary element of pO.
Then O is a neighborhood of «. Consequently, there exists O’ e _#7(0)
such that O = a + O0’. By hypothesis, p.#7(0) is a base for _+7(0).
Therefore p(’ is a neighborhood of zero. Now 0O = pa + pO’ and
hence pO is an element of _#7(pa). Therefore pO is in the neigh-
borhood filter of each of its points which implies that pO is an open
set.

THEOREM 9. Suppose that (A, ) is a topological ring. If for
every pe A*, p.4-(0) is a base for +-(0), then 277(0) = _42(0) is a
base for 4°(0) and _+7(a) = a + _47(0) for every ac K.

Proof. By Lemma 3, for every ae K, & (a) = {N,(a)|laec A, and
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Ny(a)e +,(a) for some pe A*} is a subbase for _+#7(a). If N,(0)e
& (0), then there exists N.-(0)e.s" (0) such that N,0) = N.(0)/p.
Since p_7.-(0) is a base for _#2-(0), there exists N’-(0) e _+"-(0) such
that »N’.(0) € N-(0). Therefore N,0)= N_(0)/p 2 pN’(0)/p =
N’ (0). This implies that < (0) < 2¢7(0). On the other hand, if
N.(0)e 27(0) and pe A*, then pN-(0)e_s7(0). Now N_(0)=
PN -(0)/p which is an element of <#(0). This implies that .2 (0) <
“#(0). Therefore .27 (0) and <#(0) are equivalent subbases. However,
since .277(0) is a filter on A, it is a filter base on K. Consequently,
227(0) and £#(0) are bases for the filter _#7(0). For each ac K, let
2 (a) = a + 2£7(0). Clearly 24 (a) is a base for the filter a + _77(0).
If ac A, and N,(a) € 7,(a), then there exists ¢ ¢ 4 and N.(a) € 1 -(«)
such that ¢ = a/p and N,(a) = N_(a)/p. Since (4, ") is a topological
ring, there exists N_(0) such that N.(a) = a + N_(0). Moreover,
p.4.-(0) is a base for .#.-(0). Therefore there exists N.(0) e _+7-(0)
such that pN’-(0) ¢ N.-(0). Now we have

Ny(a) = No(a) _ a+ N.(0) e+ PN(0) _ a + N.(0) .
» p p

This implies that <& (a) < 22 7(a). Conversely, if a + N_(0) € 5 (a),
choose pe A* such that ac 4,. Now let e A such that a = a/p.
Since p_+.-(0) is a base for .#.(0), we have pN_(0)c._72-(0). This
implies that a + pN.(0) e +_(a). Consider

a+ N.(0) = LA pN-0) _ a+ pN-(0) .
/g D VY

This is an element of £Z(a) and consequently .25 (a) < <#(a). There-
fore <Z(a) is a filter base which is equivalent to 25 7(a). Since <% (a)
is a base for _#7(a) and 27 (a) is a base for a + _#7(0), we have
A7(a) = a + A47(0).

What we have now demonstrated is that if (A, 77) is a topological
ring which satisfies either of the conditions of Lemma 5, then (K, 7%)
is homogeneous in the sense that the .7 -neighborhood filter of any
point is the translate to that point of the .7 -neighborhood filter of
zero. Moreover, the neighborhood filter of zero in (4, .77) is a base
for the neighborhood filter of zero in (K, 77%). Also, since (4,.77)
satisfies one of the conditions of Lemma 5, by Theorem 6 it follows
that A is topologically embedded in (K, 7%) as an open set.

In [10, Theorem 5], Warner places the following conditions on a
topological ring which has no divisors of zero.

(1) Given an open neighborhood O of zero and a nonzero ring
element p, then pO and Op are open sets.

{2) The collection of ring elements which have an inverse relative
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to the circle composition (xoy = @ + ¥y — xy) is an open set, and the
mapping which sends an element of this open set to this inverse is
continuous.

He concludes that these conditions are both necessary and sufficient
for the ring to be algebraically embeddable in a division ring, where
the neighborhood filter of zero in the original ring is a fundamental
system of neighborhoods of zero for a topology on the division ring.
Moreover, the specified topology on the division ring is compatible
with the division ring structure and the original ring is topologically
embedded as an open set. Therefore, by Lemma 5 and Theorem 9,
we conclude that these conditions on (A4, .77) are necessary and suffi-
cient for (K, .7%) to be a topological field with A topologically em-
bedded as an open set. In the process of proving this theorem of
Warner’s, condition (2) is used only to establish the continuity of
multiplicative inversion in the division ring. Hence we conclude that
(K, .7%) is a topological ring with A topologically embedded as an
open set if and only if (4, .9 ) satisfies one of the conditions of
Lemma 5.

Several questions concerning the topology .77 are suggested by
this paper. For instance, what hypotheses are required for (K, .77%)
to be a topological field without A necessarily being an open set? By
Theorem 5, Corollary c, if (A, .7 ) is compact and Hausdorff, then it
is topologically embedded in (K, 9%). What further hypotheses, if
any, are needed to insure that (K, .77%) is at least a topological ring?
There is also, of course, the observation that the concept of K-con-
vergence provides a method for topologizing the Mikusinski field. In
fact, the various algebraic models which generate the Mikusinski field
Jead to several topologies of K-convergence on it. What properties
do they possess and how are they related?
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ORDERED CYCLE LENGTHS IN A RANDOM
PERMUTATION

V. BALAKRISHNAN, G. SANKARANARAYANAN AND C. SUYAMBULINGOM

Let x(t) denote the number of jumps occurring in the time
interval [0, £) and v,(t) = P{x(t) = k}. The generating function
of v;(t) is given by

exp {At[p(x) — 1]}, $(x) = kg D, é pe=1.

Lay off to the right of the origin successive intervals of length
2i7%,5=1,2, ---, Explicitly the end points are

t1(2)=0
1) = S 24k, § = 2,8, -, a> 0,
k=1

and

tulz) = S0 24/ke .

k=1

Following Shepp and Lloyd L,, the length of the rth longest
cycle and S,, the length of the rth shortest cycle have been
defined for our choice of %(¢) and ¢;,7 =1,2, ---. This paper
obtains the asymptotics for the mth moments of L, and S,
suitably normalized by a new technique of generating func-
tions, It is further shown that the results of Shepp and Lloyd
are particular cases of these more general results,

Here we consider a problem involving a random permutation which
isjclosely linked with the cycle structure of the permutation. Let S,
be the n! permutation operators on # numbered places. Let a(w) =
{a,(m), a(w), -+, a,(7)} be the cycle class of weS,. In this permuta-
tion 7, there are a, () cycles of length one, a,(7) cycles of length two,
etec. Usually the elements of S, are assigned a probability 1/=! each.
John Riordan has considered a model where he has assigned the pro-
bability

1.1 Pla, = a0, = Qg ++0, 0, = a,} = ]1;[1 a/nsifa;! if %jai = n,

= 0 otherwise ,

for the cycle class a(w), the a’s being nonnegative integers. Here a’s
would be independent if it were not for the condition 3} ja; = n. Shepp
and Lloyd has considered a sequence « = {«,, a,, +++} of mutually in-
dependent nonnegative integral valued random variables where for
j=1,2,-.. the random variable «; follows the Poisson distribution

603
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with mean 27/j, 0 < z < 1, z being same for all values of j. Accordingly

Pz{al = Oy Ky = Qg o '} =1 - z)zz;;ljaj ﬁ (1/j)aj/aj!;
1.2 g=t
a; >0, =1,2,«.- .,

From this it can be seen that the probability distribution of the ran-
dom variable v(a) = >\, ja; is

1.3 Pya) =n} =1 —-22",n=20,1,2, ...,
Also

Pla, = a, a; = a,, «++|v(@) = n} = I 1/5)%/a;!, > ja;, = n
1.4 j=1 =1
= 0 otherwise .

Thus Shepp and Lloyd were able to recover 1.1 assumed in the model.
In this paper, for the cycle class a(7r) we have assigned the probability

15 Pla=a,a,=a,- -,a,=a, =I10<2<1, éy’a,- =n
= 0 otherwise .

Here
1.6 I= 1']; v4;(2°[5%), ;jai =Ny Qpiy = Qpig = *++ =0, (J lﬂ'aj =n)
Jj= gj= =

where v,,(27/j%) is the coefficient of 2%/ in exp {\M(z7/79)[s(x) — 11},

1.7 s() = S pt  and ki po=1.
k=1 =1
On detailed computation
1.8 (29]7%) = =1 /i® (pR7[74) " (DR ()" =+«
vl = e S Tl e

In the special case when A =1,p,=1,p,=p,= +-- =0 and a =1,
exp {Mz7/7)[4(x) — 1]} reduces to the generating function of the Poisson
process with the time parameter equals to 27/, which has been considered
by Shepp and Lloyd. Also the generating function of II which represents
the distribution of P{v(a) = n}, where for our choice of the sequence
a;’s defined by 1.14

1.9 v(a) = ija]

is given by
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1.10 ZLP{U(Q') = nja" = jii[l exp Nz /79)[e(x?) — 1]} .
On detailed computation we note that

Py(a) = n} =exp{—\ 2 2i[5%} X

PR\ AR\
1« 2a %
J X
AR AEEE
Ny +2ngt3INngteee
+2(nf+2nf+--")
111 +3(7Li'+2:é'+-")
eeemn ~ , ,
PAZ \"1 [ PAZT "2
1[( 20:
" ! .
MNyd Nyl oo

(22 )( PAZ )
la 2a
X eee) o
L n'lng'l ..

In particular when =1, =1 and p,=1,p,= p, = --- =0, the
generating function of the distribution of 1.9 reduces to

1.12 exp [ (27/7) + 3 (@727)5)] = (1 — 2)/(1 — z2) .
Hence
Py(a) = n} = 1 — 22",

which is in agreement with that considered by Shepp and Lloyd. In
the special case mentioned above

UIL= 11 (Ui)5fa i Sija, =,

=0 otherwise .

1.13

This is also in agreement with the model discussed by Shepp and Lloyd.
If we take a = (ay, o, -+ +) to be a sequence of mutually independent
nonnegative integral valued random variables where for 7 = 1,2, ---

1.14 Pla, = a;} = v,;(#7/7%),a; = 0,1,2, ««+,

by using the Borel-Cantelli lemma, we can easily show that v(a) =
S, ja; is finite with probability one. Hence the joint distribution
(ay, sy @y, +++, v(@)) can be written as

1.15 P:{a'i = Ay Ay = Ay * 0o, V(C() = n} = H /Uaj(zj/ja) if Zjaj =mn,
7=1 J=1
=0 otherwise .
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From this we can see that
1.16 Pla, =a,a,=a, -+, |v(@) = n} = I/II,

which we have assumed for the model.

Shepp and Lloyd have considered a Poisson process which takes
place on T = {— o <t < + o} at unit rate. That is, for any interval
of length I T, the probability that p jumps occur in I is

exp[—I|I]]|I]?/p,,p=10,1,2,---

independently of any conditions on the process on T — I. They have
taken the following end points for the time intervals

tx(z) = 09
1.17 1) = S 2k, G = 2,8, «--
k=1
t2) = Si2*k = log (1 —2)",
k=1
so that the jth interval is

tJ(Z) <t < ti+x(z)aj =1, 29 ccc .

They define ), (f); —c0 <t < =, to be a function whose value is ‘5’ on
the jth interval, 7 = 1,2, .-+ and is zero if £ < 0 or ¢t > t.(2). Then
for each 7 =1,2, --. the interval {¢; ».(¢) = j} has length z//j, the
probability that a; jumps of the Poisson process occur in this interval is

1.18 exp (—2z7/9) - /)% /a;l,a; = 0,1,2, <«

and that these various events for 7 = 1, 2, .-« are mutually independent.
They have taken a sample function of the Poisson process, with jumps
in the interval [0, t..(2)), which are finite in number with probability
one, occurring at times 7, <7, < --+ <7, (0, random). They take the
positive integers A, (7)) < \.(z) < --+ < \,(7,) as the lengths of the o
cycles of a permutation on v = 3.2, A,(z,) places, and in this class S,
they choose a permutation at random with uniform distribution. For
any given r = 1,2, +++ let S, = S,(«) be the length of the rth shortest
cycle in a permutation of the cycle class a - S, (@) =0 if > a; <.
If the rth jump of the Poisson process oceur at ‘t’, then S, = \.(¢)
according to their model. Hence they have obtained the distribution
of S,. Similarly they have obtained the distribution of L, = L.(«a),
the length of the rth longest cycle. They have given asymptotics for
the distribution and to all moments of the length of the rth longest
and rth shortest cycles.

In this paper, instead of the Poisson process considered by Shepp
and Lloyd, we consider a more general process which can have k(k > 1)
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jumps at any moment. Let x(f) denote the number of jumps in the
interval [0, ) and let

1.19 v(t) = Pla(t) = k} .

Let p, be the probability of having k& jumps at a chosen moment, if
it is certain that jumps do occur generally at that moment. It has
been shown in Khintchine that

1.20 F@, ) = ,2 vi(t)at = exp (M) — 11},

where ¢(x) is given by (1.7) and » > 0. In our model, we take the
end points of the time intervals to be

t(®» =0
1.21 tj(z)zjcz'_lz"/k“’j:z’g,...’a>0,
=1
and

to(2) = giz"/lc“ .

Here the probability that L,, the length of the rth longest cycle is

‘5’ is given by
PAL, = j} = —2> S {3 ot — o)}t
1.22 ; P
= S {z_ Dl — t)}dt
where

r

P r = pk .
k
Also the probability that S,, the length of the »th shortest cycle is

‘47 is given by

il
-

PAS, =j} =

A Stjﬂ {i‘a pkvr—k(t)}dt .
P, Ji; k=2

Here we use the technique of generating functions to estimate the
asymptotics of E{L,}™ and E{S,}™ suitably normalized in a way different
from that used by Shepp and Lloyd. While they have considered the
case where the jumps occur according to Poisson law, we have considered
a more general system of which Poisson process is a special case. By as-
suming the Poisson law for jumps they were able to recover the model
based on the uniform distribution. By assuming a more general law for
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jumps we obtain a generalised probability model for the cycle class of
which that derived on the basis of the uniform distribution is a special

case. Thus we have in this paper discussed a generalization of the
one given by Shepp and Lloyd with the help of the new technique.

2. A lemmma. We now prove a lemma which we use extensively.

LEMMA. Let

2.1 AR, ) = 30,07
and
2.2 A@) = Y,

with a.(z) > 0, satisfying

8

2.3 a,@) =c¢0<2<1,
1

r

¢, a constant. Then for
2.4 a,) —a,,z—> 17,
it 1s mecessary and sufficient that for 0 < x <1

2.5 AR, ) — A(®),z— 1~

Proof of the lemma. First let us suppose that (2.4) holds. Then
for fixed x, (0 < # < 1) and &, we can choose a number 7, such that
{x™/(1 — x)} < e. Then,

2.6 Az, @) — A@)| < 3} 1a,() — @, o7 + 2c¢ .

Now each term in the right hand side tends to zero. Hence the
necessary part. Now suppose that (2.5) holds. Since {a,(z)} is bounded
it is always possible to find a converging subsequence. If (2.4) is not
true then we can extract two subsequences converging to two different
sequences {a}} and {a}*} and the corresponding subsequences of {A(z, x)}
would converge to A*(x) = >, afx” and A**(x) = >, a}*x” which con-
tradicts the assumption that (2.5) holds. Hence {a}} = {a}*} = {a,}.
This proves the sufficiency part.

3. The rth longest cycle. The mth raw moment of the rth
longest cycle is

3.1 EALY" =3, 9;' g'f*l 3% P, alte — ) dE .

-
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oo oo o tiv1 ”
Z Prxr_lEz{L'r}m =N Z :vr—~1 Z Jm St . kz_: pkvr—k(tw - t)dt!
j =1

co ts oo r
3.2 A § i 1x*~1{k§:;1 Vit — t)pk}dt,

t_,' r=

- ijm St”l P ke (5 () [Nt

tj

Let F = F(\) denotes the left hand side of (3.2) and F' = F(As'™) .

oo tg
T S L
7=1

tj

= 3 Pa—E(LY)"

3.3

where L. is the same as L, with A replaced by rs'—@.
Let us now consider some analytical preliminaries regarding ¢;(z). With
z2=¢7°,0<s< . We have

3.4 tale™) — ti(e™) = 35 {e ™Ik} -

In the interval {y: ks <y < (k + 1)s}, we have

e—ks e e—(k+1)s
> > )
ka‘sa ya (k —+ 1)a8a
and
—ksql—a (k+1)s ,—y 1—a,—(k+1)s
3.5 s 5 e gy > Ste
e R T

Summing with respect to %, we have,

3.6 5= 5 k) > |7 ey
Let
3.7 E(0) = S: (e~ /y=)dy .

Then from (3.6) E(js) < s~ i, e~ /k*. Also

I ey > s 5 i
Combining the two

3.8 E(js) < s 3% {e ™[k} < B(G — Ds} -
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Now consider the equation
3.9 s> {e */k*} = E(X) .

k=j

If X,(s) is the root of the equation (3.9), we have

(i) G —Ds<Xils) <ygs

3.10 d
o (ii) X;(s) is unique .

In (3.3) put E(6) = s*“*(t. — t) so that
s dt = {¢7/60*}d0 .

Hence

had Xjt1(s) A[p(z)—1]E(0)—0
3.11 FV — )\'ZJmS i+t {925(%)/%}-6———-———

j=1 X j(s) g«
Let

Xjt1(8)
= ij(s) ) »

where
3.12 dp(d) = {ele@-1E0-0/getqg
But

3.13 G —1Ds < X;(8) <gs and js < X;.(5) < (4 + D)s.
This implies that
Xi(s) <Js < Xy o

Thus
oo Xj (8)
s%F'==52@2§30$”§ Y du) .
X Jj=1 Xj(s)
Now
3.14 200 S Xr e = Frsr < M0 5 X @
o J=1 Jj=1

Consider

co o Xj+1(s)
3.15 S ordp(@) = S S 0" d () .

X(8) J=1 JX;(s)
We have
3.16 Sxr@m = 07dp0) < 3 X0 -
ie.,

L=I<I (say),
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where
Il = JZZLX;”(S)[,C], Iz = jz;‘l X;n+1(8)ﬂj
and
1= S” o ds(6) .
Xy(s)

I, and I, are the Darboux sums for the Stieltjes integral based on the
above meshes. Also X,(s) — 0 as s— 0*. Hence

SmF! ~ {¢($)/x})\: Sm 0m——ael[¢(ﬁi)—~1]E(0)—0d0, s — O—'r, m 2 o,

3.17 . L )

~ S om—ce—0d9 3 x’“l{z vrak[E(ﬁ)]pk}, s— 0" .
0 r=1 k=1

Now

oo oo Ct,+ oo
s" >, P, E,(Ly)™ = \s" =3, " S Tt = A S Rt — 1)
3.18 r=1 Jj=1 t; j=1
— ksm+1-—a21jm{e—js/ja} — Xsm+1-—a z:‘{{e—-js/ja-—m} < oo,
j= j=

Hence using the lemma
319  s"PE(L)" ~ ) S‘” [2 v,_k[E(ﬁ)]pk]e“"ﬁ’”—“dﬁ, 50" .
0 k=1

Since s ~ (1 — 2),
(1 — 2" B(L)"™ ~ (\/P,) r [g v,_k[E(ﬁ)]pk]e”"ﬁ'”‘“dﬁ, 21—,

Taking x =1, =1,p, =1, p, = p;--+ = 0, we now have

(= 9EL)" ~ | v, [BO)e0md0, 2 — 17,
3.20 N
~ | e BOI om0 — s, 217
0

This is in agreement with Shepp and Lloyd.

4. The 7rth shortest cycle. Let S, be the length of the rth
shortest cycle. Then

4.1 H&=ﬂ=0ﬂmy“§pwwwﬁ.

J

Let
F,=F,() = 3 PaE{S)" .
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Then
oo oo tj r
Fo=2Se 55 7" S0t
4.2 r:l _:=-:1 ty k=1
=Sy | 17 (o) ot
=1 tj
Also

F! = F(\s) = 3 Par—E(S)™ ,

where S/ is the same as S, with A replaced by As'—¢. Put (. — t)s'—* =
E@®) in F!.

o Xj41(8) 1—a
43 Fr =255 |7 @) @on)eriesonse gy

=1 Xj(s
Let

Xj+1(8)
#j o SXj(s) d#(a) ’

where
44 dp(0) = {p(x)/xf}es’ ™ teEONb@-11-0gg |
Hence

j+1

T > Y I O e

Xj
Xj(s)

Since (J — 1)s < X;(s) < Js < Xj(s) < (4 + Ds,

4.6 y ;:]lX}"(s)pj < Fls™ < i:; X2 -
Also

S Xr@e <3| 0map0) < 3 Xpu@p
That is '
4.7 S Xr@pm < |, 0mapm0) < 3 X
Hence

48  s"F! ~ xg” (g () ) T EONB@1-0gg ¢ 0%, m = .
0

Here also s™ 3>, P.E(S))™ = s™"'* 35, "t — t;) < oo {by (3.18)}.
Thus as in 3.17 by equating the coefficient of 2™ on both sides we can
obtain lim,_,s™P,E.(S)™.

Now let us consider the particular case of the above when p, =1,
Py=P;=+++=0 A=1and « = 1. Here

-] o _ _ _ -1 _ _ _ _
sm Z xr~1Ez(Sr)m ~ S 61» Le(x 1)[log(l—2)~1]—(2z—1)E(9) 0d0’ 2z — 1 ,
r=1 0

4.9

- SS Gr—ig-slEWD HOBIHED-0dg oy OF |
0
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Hence
Sm_‘li @ B, (S,)™ ~ e¥ost™h Sm o *EO+EO~0gmn-1dg
So
L= S o B (S ~ e X
410 Mmoo Db (m — 1)
' [S ro-ogmns 55 [—0BO d(,] [ [z log (1 — 2)7']" ]
0 =1 (r— 1! = (r — 1)!

Equating coefficient of 2 on both sides of 4.10
A= g8y ~ L S [(flog @ - 9T/pY
(m — 1)1 3=

(m —1)
o {Sm [— E(0)]—7gm—'e" O~ dﬁ}], s 0F

0 (r—1-—p!
4.11 ~ S /pHllog (1 — 2~ PK(r — 1 — p, m), s — 0+,
p=0
where
_ o 0m—1[_E(0)]qu(0)—€ 46
412 K(g, m) g T

which is in agreement with Shepp and Lloyd.
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NONTANGENTIAL HOMOTOPY EQUIVALENCES

VicTor A. BELFI

The purpose of this paper is to apply surgery techniques
in a simple, geometric way to construct manifolds which are
nontangentially homotopy equivalent to certain mz-manifolds,
Applying this construction to an H-manifold of the appropriate
type yields an infinite collection of mutually nonhomeomor-
phic H-manifolds, all nontangentially homotopy equivalent
to the given one,

The theorem proved is the following: If N* is a smooth,
closed, orientable =-manifold and L™ is a smooth, closed,
simply connected z-manifold, there is a countable collection
of smooth, closed manifolds {M;} satisfying (1) no #; is a =-
manifold, (2) each }M; is homotopy equivalent but not homeo-
morphic to N x L, (3) M, is not homeomorphic to M; if 1 + j.

1. Construction of the surgery problem. In [2] Milnor describes
a (2k — 1)-connected, bounded m-manifold of dimension 4k and Hirze-
bruch index 8 (k = 2). This manifold, which we denote by Y*, is
obtained by plumbing together 8 copies of the tangent disk bundle of
S according to a certain scheme. This implies that Y has the
homotopy type of a bouquent of eight 2k-spheres. The only other
property of ¥ which we shall need is that Y is a homotopy sphere.
Let » be the order of 6Y* in the group of homotopy spheres bP,,
[3] and take W* to be the r-fold connected sum along the boundary
of Y*. By the choice of #, 0 W is diffeomorphic to S**~*. Attaching
a 4k-disk to W by a diffeomorphism along the boundary, we obtain a
closed, smooth manifold W, which is (2 — 1)-connected and has index
8r. By the Hirzebruch index theorem W is not a m-manifold, but is
almost parallelizable.

Define f* W* — D* by the identity on the boundary, stretching
a collar of 0 W over D, and sending the remainder of W to a point.
This gives a degree 1 map f: (W, 0 W) — (D*, 6D*) which is tangential
gince both W and D* are m-manifolds. f is already a homotopy
equivalence on the boundary, so we have a surgery problem in the
bounded case. The connectedness of W implies that f is already an
isomorphism in homology below the middle dimension. However the

1@ B,
kernel of f, in dimension 2k is S and the index of the kernel is

the index of W which is 8». Thus it is not possible to complete the

surgery.
But if L™ is a closed, smooth, simply connected z-manifold, the
surgery problem f x 1,: W x L — D* x L does have a solution. To
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see this note first that if m is odd, the problem is odd dimensional
so there are no obstructions to modifying W x L and f x 1, by sur-
gery to obtain a homotopy equivalence. If m = 0 (mod 4), the problem
has an index obstruction given by the product of the index obstruec-
tion of the map f and the index of the manifold L, i.e., I(f x 1,) =
I(f)-I(L). This product vanishes since L is a w-manifold. The
formula follows from the multiplicativity of the index of a manifold.
If m =2 (mod 4) the problem has a Kervaire invariant obstruction
given by the mod 2 product of the Kervaire invariant obstruction of
f and the Euler characteristic of L, the formula arising from Sullivan’s
characterization of the Kervaire invariant obstruction [8]. Since L
is a m-manifold, y(L) = 0; so K(f x 1,) vanishes as well.

Now we change the surgery problem discussed above into a pro-
blem for closed manifolds. Let N be a smooth, closed, z-manifold of
dimension 4%k. Take a small disk D* in N and form the connectgd
sum N#W using this disk and the disk attached to W to make W.
Define 1,%f: N¢W — N by the identity on N-int D* and f on W.
Although (1,%f) x 1, is not tangential, it can be surgered to a homo-
topy equivalence. This is because it is already a homotopy equiva-
lence except on W x L, where it is tangential; so it suffices to do
surgery on W x L leaving the boundary fixed to make NgW x L
homotopy equivalent to N x L. We have already seen that this can
be done. Summing up the discussion we have

ProrosiTioN 1. Suppose N** is a closed, smooth, orientable -
manifold and L™ is a closed, smooth, simply connected m-manifold.
Then there is a mawifold M**™, homotopy equivalent to N < L obtained
by surgery on (1ygf) X 1,.

Notice that if Wi = W*# ... 2W*, and we define f;: W, — D*

7
the same way as we defined f, the above considerations also apply to
W,. The only difference is that W, has index 8ri. We shall denote
the solution to the surgery problem using W, by M+,

We also remark here that M, as a solution to a given surgery
problem, is unique up to PL homeomorphism, but not not always up
to diffeomorphism. This follows from Novikov’s results [5]. Since
we shall be primarily concerned with the topological type of such
solutions, we shall ignore this ambiguity.

2. Properties of the surgery solution.

PrOPOSITION 2. The manifold M*+™ obtained by surgery on
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(1s#f) x 1, NéW x L— N x L
18 mot a mw-manifold.

Proof. After surgery we have a homotopy equivalence ¢g: M —
N x L and a cobordism Z between M and NEW x L together with a
map F:Z— N x L whose restriction is ¢ on M and (1,4f) x 1, on
N#W x L. If * is a point of L, (1y%f) x 1, is transverse regular
with respect to N x *. Change ¢ by a small homotopy to make it
transverse regular with respect to N x *. Finally leaving (1,%f) X
1, and ¢ fixed, make F transverse regular with respect to N x * to
obtain the oriented cobordism F N x *) between N#W and

S = g-(N x *).

Because N#W and S are oriented cobordant, I(S) = I(N#W) = 0. We
have the usual equivalence of tangent and normal bundles

(M)|S=(S)Hv(Sc M) .
Since f is transverse regular with respect to N x * and
V(N x *c N x L)

is trivial, ¥(Sc M) is trivial. Thus if v(M)|S were stably trivial,
7(S) would be stably trivial, contradicting I(S) =% 0. Therefore z(M)|S
is not stably trivial and consequently 7(M) is not stably trivial.

PROPOSITION 3. M is not homeomorphic to N x L.

Proof. Suppose h: M — N x L is a homeomorphism. Denote by
p;(M) the j** Pontrjagin class of M (i.e., of ¢(M)) and by p;(M; Q)
the j* rational Pontrjagin class of M. In the proof of Proposition 2 it
was shown that M*+™ contains a closed submanifold S of dimension 4%
and index 8r. If 4: S— M is inclusion, the Hirzebruch index theorem
implies

8r = <Lk(p1(S)$ Tty pk(S))y [S]>
= (L@ p(M), -+, 7*p(M)), [S]
= <Lk(p1(M)’ ttYy pk(M))y 7’x[S']> .
Now we may replace p,(M) by p;(M; Q) since any torsion evaluated
on the orientation class is zero. By the topological invariance of ra-
tional Pontrjagin classes, p,(M; Q) = h*(p;(N x L); Q); but

pi{N x L; Q) =0

for every 7 because N x L is a w-manifold. Therefore p;(M;Q) =0
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for every j, a contradiction.

Observe that Propositions 2 and 3 are likewise valid for the mani-
folds M,, each M, containing a closed submanifold S, of dimension 4k
and index 8r17.

Now we are in a position to prove the central theorem of this
paper.

THEOREM 1. Suppese N is a swmocth, closed, orientable m-manifold
of dimension 4k(k = 2) and L is a smooth, closed simply connected x-
manifeld. Then there is a countable sequence of smooth, closed mani-
Jfolds {M.} having the following properties: (1) no M; is a m-manifeld,
(2) each M; is homotopy equivalent but met homeomorphic to N x L,
(3) M; is not homeomorphic to M, if v+ j.

Proof. The M.s are the surgery solutions already described.
Propositions 2 and 3 establish (1) and (2). It remains to prove (3).
We do this by expanding the idea of the proof of Proposition 3.

Suppose there exists a homeomorphism h: M, — M, and 7 == j, say
1> 7. (For the rest of this paragraph ¢t = 4,5.) Let g,: M,— N x L
be a homotopy equivalence which is transverse regular with respect
to N <« * so that g;'(N x *) = S, where I{S,) = 8rt. (We may assume
that ¢, is still the identity on (N — int D*) x L since no surgery is
done there.) Then by the index theorem,

<Lk(pl(Mt; Q), «-+, p{M; Q)), [St]> = I(S,) .

To simplify notation we omit explicit reference to the inclusion maps
S, M, and abbreviate L, (p.(X;Q), ---, p(X;Q)) by L. X). Let g,
be a homotopy inverse for g,. The idea is then to show that g¢;ig;
does not behave properly on rational homology. We shall be refer-
ring to the following diagram for the rest of the proof:

h

M.>S,

(3

Nx L
By the transverse regularity of g,, it follows that
98] =[N x "] = [N]®1le HyN < L; Q) ,
g0 ¢,.9:.[S:] = [S,]. Thus
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I(S)) = <L{M;), 3,.9:[S:1> = <Li(M3), h.g5.9:1S:1>

by the topological invariance of rational Pontrjagin classes.
Define a bundle & over N x L by g#(z(M;)). This means that
o(M;) = g#(&). Since ¢, is the identity on N — int D* x L and

o(M;)| N — int D* < L
is trivial, it follows that &|N — int D** x L is trivial. Now if
N —intD¥* x L—N xX L

is inclusion, then if 2 ®@ye H (N x L; Q) and dim z < 4k, @y €
image i,, say * @ ¥ = 1,2. Thus (L&), v Q y> = {L,(1*§), 2> = 0 since

1*¢ is trivial. This shows that if v,, € Hu (N x L; Q), then {L,(%), 7.
is given by the product of the coefficient of [N]® 1 in v,, and

<L$), INI®@ 1,

Using the preceding observation, we can compute the coefficient
of IN]®1 in (¢9,hg,).IN]® 1 as follows.

{LW3), (9:hg ) INTR 1) = {L(M), g, [IN] R 1>
= LM, h.d,.9:1S:1)
= I(S;) = (J/)L(S;) -

But

I(S)) = {LAM:), [S;]) = <L), 0:[S:]) = <Luf3), IN] K 1) .

Hence this coefficient is j/7 which is not an integer since ¢+ > j. This
contradicts the fact that any induced map on rational homology must
send integral classes to integral classes.

3. An extension of the results. It has been pointed out to me
that the results of this paper can be extended in the following way:

If M” is a simply connected smooth manifold where n is odd and
flj(M; Q) # 0 or some 4k < n, the Pontrjagin character shows that
KO{M) is infinite. (See, for example, Hsiang [2].) Thus the kernel
of ﬁ(M) — J(M) is infinite. It can be shown that the result of
doing surgery on the elements of the kernel is a collection of smooth
manifolds homotopy equivalent to M containing an infinite subset {M;)
of mutually non-homeomorphic manifolds. The condition on the ra-
tional cohomology of M is also necessary for the manifolds {}M,} exist.

Although the theorem described above considerably extends the
class of manifolds to which the principal result applies, its proof requires
methods of a deeper sort and the geometric simplicity is lost.
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4. Applications. By an H-manifold we mean a closed, orienta-
ble topological manifold having the structure of an H-space.

THEOREM 2. Suppose N* and L™ are smooth H-manifolds, N and
L are m-manifolds, and L 1is stmply connected. Then there exists a
sequence of mutually nonhomeomorphic smooth H-manifolds {M;} satisfy-
g (1) no M; is a m-maifold, (2) each M; is homotopy equivalent, but
not homeomorphic to N x L.,

Proof. This is immediate from Theorem 1 since the product of
2 H-manifolds is an H-manifold and any manifold homotopy equiva-
lent to an H-manifold is itself an H-manifold.

Examples of manifolds nontangentially homotopy equivalent to
Lie groups were known before surgery techniques were introduced;
however all these were nonsimply connected. An example due to
Milnor of a manifold homotopy equivalent to S*' x S* x S§7 with a
nonzero Pontrjagin class is quoted by Browder and Spanier [1].

The recent results of a A. Zabrodsky [9] and J. Stasheff [7] have
produced new homotopy types of H-manifolds (other than compact Lie
groups) to which Theorem 2 applies. However if we restrict ourselves
to simply connected, compact Lie groups, we can obtain a stronger
conclusion.

THEOREM 3. Suppose N** and L™ are simply connected compact
Lie groups (k = 2). Then there is a countable sequence of mutually
nonhomeomorphic H-manifolds {M;} satisfying (1) no M; is a m-mani-
Jold, (2) each M; is homotopy equivalent to N x L but not homeomorphic
to any Lie group.

Proof. Since Lie groups are w-manifolds, Theorem 1 applies. H.
Scheerer has proved [6] that homotopy equivalent, compact, simply
connected Lie groups are isomorphic; so if M; were homeomorphic to
any Lie group, it would be homeomorphic to N x L, contradicting
Theorem 1.

The author is indebted to John W. Morgan for his invaluable
suggestions in the course of this research and to the refree for pointing
out related results.
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COMPACT SEMIGROUPS WITH SQUARE ROOTS

JANE M. DAy

Suppose that S is a finite dimensional cancellative com-
mutative clan with £ = {0,1} and that H is the group of
units of S. We show that if square roots exist in S/H, not
necessarily uniquely, then there is a closed positive cone T
in E* for some 7 and a homomorphism f: (T U o) x H—> S
which is onto and one-to-one on some neighborhood of the
identity, 7T U <o denotes the one point compactification of 7',

K. Keimel proved in (6), and Brown and Friedberg independently
in (1), that if S/H is uniquely divisible, then it is isomorphic to 7T U oo
for some closed positive cone T. Brown and Friedberg went on to
show that if S is uniquely divisible, then S is isomorphic to the Rees
guotient ((T'U o) X H)/(«c x H). What we do here is to weaken
their hypothesis to assume just square roots in S/H and conclude that
S is isomorphic to some quotient of such (7' U =) x H, which will be
a Rees quotient if square roots are unique in (S/H)\0, but in general
need not be Rees.! f((T U =) x 1) is a subclan of S and a local cross
section at 1 for the orbits of the group action H x S— S (which equal
277 classes here), but an example shows that it need not be a full
cross section. Also, square roots exist (uniquely) in S if and only if
they exist (uniquely) in S/H and H.

The proof consists essentially of showing that the ingenious con-
structions of (1) can still be done under the weaker hypothesis, in a
sufficiently small neighborhood of H.

For basic information about semigroups, see (5), (8) or (9). The
real intervals (0, 1] and [0, 1] are semigroups under usual real multi-
plication; as in (5), a one parameter semigroup is a homomorph of
(0, 1], and we also define here a closed one parameter semigroup to
be a nonconstant homomorph of [0, 1].

The Lemmas (I)-(IlI) are variations on standard themes so we omit
proofs. (See (1), (3), (4), B-3 of (5), (6) and (7).) Throughout this paper
let S be a clan with exactly two idempotents, a zero and an identity
denoted by 0 and 1 respectively.

(1) If R is a one parameter semigroup in S which 1s not con-
tained in H and is not equal to 0, then R U0 is a closed one parameter
semigroup and an are with endpoints 0 and 1. Let $:(0,1] — R be
the homomorphism that defines R; if v =¢(tye R and k = 0, we write

! Keimel has concurrently proved a further generalization, by a different method,
assuming instead of cancellation that x X H — xH is one-to-one for all  near H.

623
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b for ¢(t*), and if x += 0,1, each y € R\0 equals x* for unique k.

(I1) If H is normal and every element of S/H has a square root
wn S/H, then for each xS there exists a closed one parameter semi-
group in S intersecting Hw.

(III) Let T be a commutative uniquely divisible clan with group
of units H(T) and E = {0, 1}, and let V be a set containing a neigh-
borhood of 1 in T such that T\V is an ideal. If S is commutative
and s V— 8 is a continuous function such that ' (V\H(T)) N H =[]
and '(xvy) = ¥ (X)'(y) whenever x,y, xyc V, then ' can be extended
to a homomorphism ~ on all of T by defining (0) =0 and (x*) =
+(x)" for each x€ V and positive integer n.

The definition of independent family which follows agrees with
the algebraic independence used in [1] when H is trivial and W = S\0,
and that notion is due to Clark [2]. We include H in our definition
so that we do not have to handle the case of S with trivial H sepa-
rately first, and we define independence in neighborhoods of H rather
than in S in order to apply the concept effectively to a clan with
nonunique roots.

An independent family in S is a finite family {R,, ---, R,} of
closed one parameter semigroups in S such that there exists a neigh-
borhood W of H with the property that for every partition of the
set {1, ---, n} into two nonnull disjoint sets A and B, this is true:

P{E}N (_f;{R,-})Hﬂ Wc H.

We will also describe this situation by saying that {R, ---, R,) is
independent in W. We adopt the convention that if X =[], then
P;.x{x;} = 1, for z;’s which are elements or subsets of S. S will be
called cancellative if z, y, z€ S and zy = xz % 0 implies y ==z.

We will make frequent use of the following facts. F(V) denotes
boundary of V. Any neighborhood of H in compact S contains a
neighborhood V of H such that S\V is an ideal (A-3.1, (5)), and if V
is a set such that S\V is an ideal, then

0¢ V, V= VH F(V)= F(V)H,

S\V* is an ideal if nonempty, and 2y e V implies ¢, yec V. If Jis a
closed ideal in compact S, shrinking J to a point gives a new compact
semi-group denoted S/J and called the Rees quotient of S by J, and
the natural map S— S/J is a homomorphism.

Part (i) of the lemma below is analogous to 1.4 of (1); part (ii)
shows that the homomorphisms ¢: S\0 — E™ and 8: S\0 — H constructed
in (1) can still be constructed here on a sufficiently small neighborhood
of H. Dim S means inductive dimension of S.
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LEMMA. Let S be a cancellative commutative clan with E = {0, 1}
and let W be a closed meighborhood of 1 such that S\W is an ideal.

(i) If {R, -+, R} is an independent family in W, and if
By oo Th = T, » o LW € W, where x,;, xi € R, for each © and h, k' € H,
then x; = x! for each 1 and h = h'; consequently dim S = n.

(ii) Suppose dim S < N or dim S/H < N and that S/H has square
roots. Then there exists a maximal independent fomily {R,, -+, R,}
of closed one parameter semigroups in S, and a closed neighborhood
U of H may be chosen so that S\U s an ideal and if xe U, x satisfies
this condition.

(1) There exists a unique partition (4, B) of {1, ---, n} and
unique elements z;,€ R, and he H such that 7¢ B whenever 2z, = 1
and (P {z:}) = (Piep{ehhe W.

Proof. (i) Since R; is a closed one parameter semigroup and
2; # 0, we may factor x;, or x; for each 7 and then commute and
cancel in the equality given to get 0 = P, {7} = (Pies{r:Hh’'h™" for
some partition (A4, B) of {1, -+, n}. These points lie in W so by in-
dependence, r; = 1, hence x; = x!, for each 4, and thus h = A’ also.
There is a closed neighborhood V of 1 such that V* < W, and then
the multiplication function (B, N V) X -+« X (R, N V)— S is a homeo-
morphism so S contains an n-cell.

(ii) If dim S < N, then a maximal independent family exists by
(i). If dim S/H < N instead, S/H is cancellative since S is, so (i) can
be applied to S/H to get a maximal independent family in S/H; a
closed one parameter semigroup in S projects to a closed one parameter
semigroup in S/H by (I), and it is easy to see that an independent
family in S projects to one in S/H, so S can have no larger independ-
ent family than S/H does.

Now choose a maximal independent family {R,, -+, R,} in S, and
choose W smaller if necessary so that the R;’s are actually independent
in a neighborhood of H containing W?.

To prove the uniqueness assertion of (}), suppose that

o Plzd) = (Plohhe W and o P {ai}) = ( P {ehh'e W,

as described in (t). Then
(P @I P e = (P @) Fophe W

for each 1, collect into one term the z,’s with & = 4, on each side,
and suppose there exists je AN B';jc A implies that the factor on
the left which is an element of R; is not 1, and it has to equal one
of the factors on the right by (i); therefore 7 has to be in A’ or in
B, because by independence an element of (R; N W?*\1l cannot arise
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from multiples of elements of R,’s for 1« j. But je B implies j¢ A

and j ¢ A’ implies j ¢ B’, both contradictions. So AN B’ must be emp-

ty, similarly A’ N B is empty, hence (A4, B) = (4’, B’). Now apply (i).
Now let R be any closed one parameter semigroup in S.

{R, Ry, +-+, R}

is not independent in any neighborhood of H (where R and R, are
each counted if R = R, for some ), so there is a particular partition
(Ag, Bg) of {1, ---, n} such that T = RPN QH contains points arbitra-
rily near H in S\H, where P = P,.,{R;} and Q = P;.;,{R:;}. T is
also a compact semigroup, so it contains a connected subsemigroup
from 1 to 0 (B-4.9, (5)). F(W) separates 0 and 1 in S, hence we
may select z,e R such that PN QHN F(W)==[]. Every z =z,
in R satisfies () since the complement of an ideal in R is connected
and {xe R|zPN QH < S\W} is an ideal of R. It follows that every
% = xp in RH satisfies (t) also.

If we can find a closed neighborhood U of H such that xz,¢ U
for each closed one parameter semigroup R in S, then every ye U
lies in some RH by (II), U may be chosen smaller so that S\U is an
ideal, and then every ye U satisfies (t) by the preceding remark.
Suppose no such U exists, so there is a net (x;) of the z;’s clustering
at some element of H; since there exist only a finite number of par-
titions of {1, ---, n}, we may suppose that for one particular partition
(A, B) and for each x; in the net, (Ai, Bz) = (4, B). Then, since
F(W) = F(W)H, any cluster point of (az) is an element of

¢€P4{R1} N (ii{Ri})Hﬂ F(W);

but this set is empty (by definition if A = [, and if 4 =[], by in-
dependence in W).

Euclidean n-space, denoted E™, is a semigroup under vector ad-
dition with the origin as identity. If P* is the set of nonnegative
real numbers, N the set of negative real numbers, and juxtaposition
denotes scalar multiplication, a closed positive cone in E™ is defined
to be a closed subsemigroup T of K™ such that P* T < T and NTN
T =1(0,.-+,0). The one point compactification T'U - of a nontrivial
closed positive cone T is a continuum and becomes a clan with exactly
two idempotents, a zero and an identity, when addition is extended
by defining 2z + o = o + z = o for each 2e¢ T U «, and such clans
are uniquely divisible (where the “nth root” of z would be (1/%)z since
the operation is addition).

THEOREM. Suppose that S s a commutative cancellative clan with
E = {0, 1}, such that every element of S/H has a square root in S/H.
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If dim S < N or dim S/H < N, then there is a closed positive cone T
m E* and an onto homomorphism f:(T U =) x H— S which is a
homeomorphism of some neighborhood of the identity onto a meighbor-
hood of the identity in S. f maps (T U o) X 1 to a subclan T which
28 a local cross section at 1 for the matural projection homomorphism
S — S/H.

Proof. Let W, U and {R, -+, R,} be as in (ii) of the Lemma
and let ¢; ¢ R; N F(U) for each ¢. These «,’s will remain fixed through-
out the proof, and since z; = 0, 1, by (I) each element of R;\0 equals
x¢ for a unique nonnegative real number ¢. This together with (ii)
of the Lemma implies that for each x e U, there are a unique parti-
tion (4, B) of {1, ---, n}, unique real numbers ¢, ---,¢,, and unique
he H such that x(P;., {xf}) = (Pi.s{xih)he W and 1¢ B if t; = 0; fol-
lowing the notation of (1), let ¢; =1 if 7e B and ¢; = —1 if 1€ A4,
let ¢(x) = (&t +++,&,t,), and let B(x) = h. Arguments just like those
in (1) show that ¢ x B is a homeomorphism, if one uses at judicious
spots the facts that W is compact and that S\W is an ideal. Since
S is commutative, ¢ and B are homomorphisms as far as they go.

Let T = P*4(U). We show next that ¢(U) contains a neigh-
borhood of the origin in 7 and that T is a closed positive cone in
Er. First, T = P*¢(F(U)) because each closed one parameter semi-
group in S intersects F(U), so T is closed in £ because in general
if A is closed in P* and S is compact in £™ and does not contain the
origin, then AB is closed. For this same reason, [1, «o)g(F(U)) is
closed, hence its complement in T is a neighborhood of the origin in
T and also is a subset of ¢(U) because ké(x) = #(x*) and x e U implies
a2 e U, for ke |0, 1). Since ¢(U) contains a neighborhood of the origin
in T and ¢ preserves multiplication on U, T is a subsemigroup of E™".
To see that NT N T is the origin it suffices to prove that (—1)¢(U) N
#(U) is, so suppose z, ' € U and ¢(x) = (—D¢(z') = (¢, +++, t,). Then
for some A, h' e H, ®(P;., {xli}) = (Pics{®ihhe W and «/(P;.5{xii}) =
(P;e . {xhh’ € W. Substituting from the first equation into the second
and cancelling gives a'zh™ = h’, hence =z, '€ H, hence ¢(x) is the
origin as required.

Now define +: ¢(U)— S by () = (¢ X B8)7'(z,1). « is a homeo-
morphism into and, if U is chosen small enough that ¢ is actually
defined on U? + preserves multiplication on ¢(U) also. 7T is uniquely
divisible so by (III), v+ may be extended to a homomorphism of 7T
into S. Now define f: (T U ) x H—S by f(z, h) = (2)h. [ is a
homomorphism because + is and S is commutative, and it is a homeo-
morphism of ¢(U) x H onto U because there it equals (¢ x g)~*. (We
cannot use (III) to define f directly as an extension of (¢ x B), be-
cause H need not be uniquely divisible.) Since the image of f is a



628 JANE M. DAY

subelan of S which contains a neighborhood of H and since S is
divisible, f is onto. Therefore T"H = S so T'— S/H is onto and the
rest is clear.

In a semigroup with zero, a nilpotent is a nonzero element some
finite power of which is zero.

COROLLARY. Let everything be as in the theorem.

(i) If square roots are unique in (S/H)N\O (but there could be
nilpotents) then f 1is onme-to-one on the complement of f~'(0), hence f
induces an isomorphism from the Rees quotient ((T U o) x H)/f(0)
onto S and also T' is a full cross section for H x S— S. If square
roots are unique in all of S/H (so there are no nilpotents) then
SH0) = o X H, so S s isomorphic to ((T U o=) x H)/(eo x H) (Theo-
rem 2.2 of (1)).

(ii) Square roots exist (uniquely) in S if and only if they exist
(uniquely) in H and S/H.

Proof. Let p: S— S/H be the natural map. If f(¢, h) = f(s, g) = 0,
then f(¢, 1)k = f(s, 1)g hence pf(¢, 1) = pf(s,1). Uniqueness of roots in
(S/EH\0 implies pf(kt, 1) = pf(ks, 1) for all k= 1 at least, and pf is
one-to-one near the identity by the theorem, hence kt = ks must be
true for %k sufficiently small. Therefore ¢ = s and cancelling f{(¢, 1)
now gives i = ¢ also. The rest is clear.

ExampLeE 1. This was also discovered by D. Brown and M. Fried-
berg (and communicated orally to this author). It is a cancellative
commutative clan S with E = {0, 1} and trivial group of units, which
has no nilpotents and is divisible but not uniquely divisible; in fact,
any two distinct one parameter semigroups in S are independent near
1 and have no nondegenerate arc in common, but can intersect infi-
nitely. Thus S is not a Rees quotient of any compactified cone. The
author is indebted to Kermit Sigmon for the elegance of this descrip-
tion of the example.

Let T be the closed first quadrant of E?, let D be the closed
unit disc in the complex plane with usual complex multiplication, and
define g: T U o — D by gz, y) = e@V+==97 gand g(0) = 0. ¢ is a
homomorphism by (III), so S = g(T U ) is a clan, it has F = {0, 1},
is topologically a 2-cell, and is an egg-shaped subset of D with large
end at 1 and small end at —1/e. S is commutative, cancellative and
free of nilpotents since D is, has roots of all orders since T'U - does,
and square roots are not unique since ¢(1, 0) = #(0, 1) but ¢(1/2, 0) =
$(0, 1/2).

S can also be visualized without the aid of D: there is a con-
gruence ~ on T U o such that S is isomorphic to (T U o )/~: it is
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the smallest congruence which identifies (0, 1) and (1, 0), and dividing
by it has the effect geometrically of rolling up T U = into a cone
with pointed end at .

ExXAMPLE 2. This will show that the subclan 7”7 of the theorem
need not be a full cross section for H orbits, i.e., 2# classes. Let
T U o be as in the previous example, let G be the circle group with
usual complex number notation, and let @ be the product semigroup
(TU ) x G. We will twist the 57 class of (0,1, 1) and then identity
it with the 5% class of (1,0,1). Formally, let ~ be the smallest
closed congruence on @ which identifies (0,1,1) and (1,0, —1), let
S =@Q/~, and let f: @ — S be the natural projection. Thus if 4 is
the diagonal of Q x Q, »p ={(0,1,1),(1,0, —1)], and ¢ = [(1,0, —1),
(0,1, 1)], then ~ is the smallest closed symmetric subsemigroup of
Q X Q containing p U 4, and pg e 4 so this equals A(I'(p) U I'(g) U 4).
Clearly [(0,1,1),(1,0,1)] is not in the semigroup generated by p U
g U 4, and I'(p) and I'(¢) have only one limit point, -, so this point
is not in ~, i.e., f(0,1,1) = f(1,0,1). On the other hand, the 5%
classes in S of these points are equal, because H = f(0 x 0 x G) is
the group of units of S and f(0, 1, 1) = f(1, 0, 1)f(0, 0, —1).

f is a homeomorphism on [0,1) x [0,1) x G, which is a neighbor-
hood of the identity, and we will show below that S is cancellative,
so this is exactly the situation of the theorem. However, if 7" denotes
JUT U ) x 1), T"— S/H is not one-to-one.

Interestingly, there actually is a full cross section semigroup for
the H orbits of this clan S; the problem in the above lies in the de-
finition of f—that is, in the choice of the independent closed one
parameter semigroups in S:

R, =f([0, =] x 0 x 1) and R, = f(0 x [0, ] x 1)

are independent but do not themselves intersect in some of the H
orbits which they both go through. Rechoosing f so that R, actually
does intersect R, at the levels where @ — S collapses two H orbits
to one yields a subelan 7" of S which is isomorphic to S/H. In detail,
define g: Q — Q by ¢g(x, y, &) = (x, y, +), let f' = fg, and let T =
F'((T U o) x1). To see that 7" — S/H is one-to-one, suppose

fg(xy Y, 1) = fg(.?c', Y, l)fg(os 0, eiﬂ) #0.

We will prove ¢ = 1. In g(z,y, 1) = g2, ¥, ¢’) then we are done
because ¢ is one-to-one, so suppose g(z, ¥, 1) = g(’, ', €). f identifies
these points and not to 0 so for some =, ((g(x, ¥, 1), g(«’, ¥’, €¥)) € 4p™.
An arbitrary point of 4p” is of the form ((s, n +t, %), (n + s, t, €9"™))
for some s,t and ¢, so we conclude o' = 2 + %, ¥y = ¥ + n, 7 = &%,
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and ¢+ = ¢i¢+%7 These imply €/+™" = ¢V, 50 ¢ = 1 as asserted.
From this it follows at once that 7" — S/H is one-to-one and in fact
that S is isomorphic to (T” x H)/(e x H).

Now it is easy to show S cancellative, for it suffices to prove
that 7" is, so suppose fg(z,y, 1)f9(s, t, 1) = fo(o', y', V)fg(s, t,1). It
follows that « + s+ n=2¢"+s and y -+t =19+t 4+ n for some n,
hence x + n =o' and y = ¥’ + n. fo(x,y,1) = f9(2’, ', 1) now is clear.

It seems at least possible that the technique used here for re-
choosing f might work in general, so that there is always a full cross
section semigroup for S — S/H when S is a homomorph of the direct
product of H and a closed positive cone.

It also seems reasonable to conjecture that the theorem is still
true with only H normal and S/H commutative, instead of S com-
mutative. Under these weaker conditions ¢ and B still exist, but g
need not be a homomorphism unless the R,’s commute with one another
and with H; using Theorem VI of (5), it is possible to choose a maxi-
mal independent set in the centralizer of H, but the problem of choos-
ing the R;’s to commute with one another also remains unsolved.
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QUASI REGULAR GROUPS OF FINITE
COMMUTATIVE NILPOTENT ALGEBRAS

N. H. EGGERT

Let J be a finite commutative nilpotent algebra over a
field ' of characteristic p. J forms an abelian group under
the “‘circle” operation, defined by aob=a 4 b+ ab. This
group is called the quasi regular group of J.

OCur main purpose is to investigate the relationship be-
tween the structure of J as an algebra, and the structure of
its quasi regular group.

In particular, the structure of the quasi regular group is described
in terms of certain subalgebras of J. These subalgebras are, for
fixed j, the p’ powers of elements in J. They are denoted by JY.

It is conjectured that the dimension of JY is greater than or
equal to p times the dimension of JY*, If this is true, then
Theorems 1.1 and 2.1 completely describe the possibilities for the
quasi regular group of J. Paragraph 2 considers some special cases
of the conjecture.

1. The quasi regular group of J. Let J be a finite commutative
nilpotent algebra over a field F with p* elements. Denote by J?
the set of p’th powers of elements in J,5 =0,1, ---. The JY form
a descending chain of subalgebras of J. If ¢ is the minimum exponent
such that z»* =0 for all xeJ then J'™ % (0) and J*® = (0). The
constant ¢ will be called the height of J. Let the dimension of J¢
be »; and set s, = vy, + Pppy — 21y, =1, oo &,

We denote by G(p, u;s, ---,s,) the group which is the direct
sum of us,, h =1, -+, ¢, copies of the cyclic group of order p*.

THEOREM 1.1. The quasi regular group of J is isomorphic to
G(py u; Sly "ty st)'

Proof. Since the pth power of z € J with respect to the operation
“0” is 27, the number of cyeclic summands of order greater than p*
is the dimension of the quotient group J%/J“*V over the integers
modulo p, that is w(r, — 7,2, [1, page 27]. Hence the number of
cyclic summands of order »* in the quasi regular group J is
W(Pyey F Trey — 213), =1, <+« L.

2. The possibilities for the quasi regular group of J. Given
certain p-groups, finite commutative nilpotent algebras can be con-
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structed with these groups as their quasi regular groups.

THEOREM 2.1. Let a; be arbitrary nonnegative integers for
t =1, ¢4, t, a, % 0. Then there exists a finite commutative nilpotent
algebra J over a field F of order p* where:

(i) r,=0and r,_,=pr; +a;,i =1, <+« ¢

(ii) the quasi regular group of J is G(p, u;s, +++,s,) where
Sy = Py + Thay — 27

Proof. Let J; be the Jacobson radical of F[X]/(X™), where
n=p*+1. If =X+ (X") then a basis for J; over F is
{z, 2% ++-, x**}. Thus the dimension of J¥ is p~** for ¢ < j. Let
J be the direct sum of a; copies of J; forj =1, -+, ¢. Then »;, = dim
JO =3 a0 1<t v, = dim JP = 0. A simple calculation gives
iy — pr; = a;. By using Theorem 1.1, the proof is complete.

The author conjectures that the converse of the above theorem
is also true, that is:

(C) If J is a finite commutative nilpotent algebra over F then
dim J¢Y — p dim J¥9 = r,_, — pr; = 0.

This is immediate for algebras of height one, height two and
dim J® =1, and height two and p = 2. The following theorem
establishes (C) for algebras of height two and dim J* = 2.

THEOREM 2.2. Let J be a commutative nilpotent algebra over a
perfect field F of characteristic p. Let x,y be elements of J and
suppose x* and y® are linearly independent over F. Then the dimen-
siton of J s greater than or equal to 2p.

Proof. Suppose the theorem is false. That is, assume there is
a finite commutative nilpotent algebra J over F and:

(i) =,yeJ and 2*, y* are independent over F,

(ii) dimJ < 2p.

We assume J is an algebra of least dimension over F which satisfies
(i) and (ii). It then follows that:

(iii) J is generated by = and ¥, and

(iv) If I is an ideal of J and an algebra over F' then I = (0) or
for some a,be F, 0 = ax® + by? e L.

If (iv) were false then J/I would satisfy (i) and (ii) and the dimension
of J/I would be less than the dimension of J.

We may assume x? is in the annihilator of J. This follows since,
by (iv), there are elements a, b in F where az® + by® = 0 is in the
annilhilator. By replacing # by «’ = o’z + b'y, where a'?> = a and
b'? = b, conditions (i) through (iv) hold and 2 is in the annihilator.

Let & be the cartesian product of the nonnegative integers with
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themselves less (0, 0). Let the total ordering < be defined in & by:
<@ ifs+t<i+gjors+t=1+7 and s < 1.

LEMMA. If 2y’ = 0 then 1+ 7 < p.

Proof. Let (», m(0)) be the maximum element in <, with
respect to <, such that a"y™® == 0. Suppose that n + m(0) > ».

Since 2” is in the annihilator of J, 7 < p» and m(0) > 0, thus if
n >0 then &7 ={(t,j)eZ&:1<n, and j < m(0)} has more than 2p
elements. The monomials 2%y, (¢,7)€.%, are dependent, thus a
nontrivial relation.

Sa; 'y =2=0,(1,7)e.&

exists. Let (s, t) be minimum such that a,, = 0. Consider

0 — zxn—sym(o)—t .

For (s, t) < (¢, 7) it follows that (=, m(0)) < (¢ + n — 8,5 + m(0) — ¢t).
By the definition of (%, m(0)) we obtain 0 = a,x"y™®. This is a
contradiction; thus = = 0.

Now define m(i) to be the maximum integer such that x'y™? = 0,
=20, ---,p. Since x, -+, 2%, y, -+, y* are dependent, let

(1) 2= Sax+ by =0,
1=h 1=

where a, = 0 and b, = 0. There is at least one nonzero a; since
gy, «++, y? are independent. Likewise at least one b; is nonzero. Thus
considering 27"z and y™“~'z we find x*"*y' = 0 and z'y™"~ =~ 0.

We will now show that, for £t =0, -+, h,if ¢ =k and 2y = 0
then (%, 7) = (k, m(k)). Suppose this has been shown for 0, -+, & — 1.
Since (¢ + 1, m(t + 1)) < (¢, m(z)) for © < k, we see that m(0) = m(z) + 21.
From a'y™®~' % 0 and » < k — 1 we have

(hy m(0) — 1) < (k — 1, m(k — 1)) .

Therefore  + m(0) —l <k —1+m(k —1) and I — h = k. Now let
(u, v) be maximum such that # =k and 2"y’ = 0. Since x*~"y' = 0
and p—h=l—h=Fkit follows that u +v=p—-h +1=p + k. If
v =0 then v = p and & = 0. Since for k¥ = 0 our result is established,
we consider v > 0. If u > k then the set & ={({,/)e €k <1 = u,
0=<j=v}contains (u —k+ 1) (v + 1) = 2(u — k + v) = 2p elements.
Thus there is a nontrivial relation among the 2%y, (4,j)e .4 As
before, let (s, ?) be minimum such that the coefficient, a,, of z"y* is
nonzero. On multiplying the relation by x“~*y'~* we obtain 0 = a,z*y"
which is contradictory. Therefore v =%k and v = m(k). By the
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definition of (u, v), if 4 = u = k and «'y’ # 0 then (¢, j) < (k, m(k)).
We now have the inequality, m(0) = 2k -+ m(k), for k. = 0, «--, h.
Since atym™ -t = 0, m(h) = m(0) — I. That is I = 2h.
Let bh + ¢ = p where 0 < ¢ < k. Returning to equation (1) we
obtain:

0 = alaer = o' (a2 = a°(— 2:by%)" = ay*'Y, where Y is a poly-
nominal in y.

Hence 2%y’ # 0. This implies m(0) — 2¢ = m(c) = bl = 2bh. There-
fore m(0) = 2p and v, ---, ¥*® are independent. This is a contradiction
and the lemma is established.

Next we show that if m +n =9 and n = p then z"y" = ¢, a”
where ¢,e F. Suppose this holds for the powers of y being
0, «++,n—1. If a2my» =0 then the result is established. Thus
suppose x"y" = 0. There are (m + 1) (n + 1) = 2p monomials of the
form x? or 'y, 1 < m,j < n. Thus there is a nontrivial relation

> auxty 4+ ax? = 0.

Let (s,t) be minimum such that the coefficient of x°y’ is nonzero.
By multiplying the relation by z"—*y"~* we obtain:

0 = Z a“xi-lrm—syj%-n—; + afc”"'m—sw—f
ihj=stt
= DU CiraatQi " + @7 4 a2 yY" .

itj=s+t
iy (s, 1)

Since 2? is in the annihilator of J, a?t™—*y*~t is x? or 0. Therefore
x"y" = ¢,a’.

Similarly we obtain: if m + » = p and m % p, then x™y" = b,y".
Since x? and y? are independent, if m + n = p, m % 0, p then x™y* = 0.

From equation (1) we may obtain, as before, x**y'=+0 and
2'y?~' = 0 where 0 < h,l < p. Assuming, without loss of generality,
h=1 we have h + (p — I) = p and by the lemma we have equality,
that is, A~ = 1. Since a"y** £ 0 we have, by the above paragraph,
h =1=p. Equation (1) becomes 0 = a,x” + b,y” for nonzero a, and
b,, a contradiction. This completes the proof of Theorem 2.2.
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SOME NUMBER THEORETIC RESULTS

(In memory of our good friend Leo Moser)

P. ErDOs AND E. G. STRAUS

The paper first establishes the order of magnitude of
maximal sets, S, of residues (mod p) so that the sums of
different numbers of elements are distinct,

In the second part irrationalities of Lambert Series of
the form 3 f(n)/a; --- a, are obtained where f(n) = d(n), ¢(n)
or ¢o(n) and the a; are integers, a; = 2, which satisfy suitable
growth conditions,

This note consists of two rather separate topics. In §1 we
generalize a topic from combinatorial number theory to get an order
of magnitude for the number of elements in a8 maximal set of residues
(mod p) such that sums of different numbers of elements from this
set are distinct. We show that the correct order is ¢p/® although we
are unable to establish the correct value for the constant c.

Section 2 consists of irrationality results on series of the form
2f(m)/aa,-+a, where f(n) is one of the number theoretic functions
d(n), o(n) or ®(n) and a, are integers = 2. For f(n) = d(n) it suffices
that the a, are monotonic while for o(n) and @(n) we needed additional
conditions on their rates of growth.

1. Maximal sets in a cyclic group of prime order for which
subsets of different orders have different sums. In an earlier paper
[4] one of us has given a partial answer to the question:

What is the maximal number » = f(x) of integers a,, +--, @, S0
that 0 < a, < a, < ++» < a, <2 and so that

@iy + oo+ @, = ay, + oo+ a;, for some 1<4;, < -0 < 4
1§.71< cc <jt

n

A A

n

implies s = ¢? it is conjectured that the maximal set is obtained
(loosely speaking) by taking the top 21/« integers of the interval (1, ).
We were indeed able to prove that f(z) < ¢z for suitable ¢ (for
example 4/1/3) by using the fact that a set of n positive integers
has a minimal set of distinct sums of ¢-tuples (1 < ¢ < ») if it is in
arithmetic progression.

It is natural to pose the analogous question for elements of cyclic
groups of prime order, as was done at the Number Theory Symposium
in Stony Brook [ 5]. Here again we may conjecture that a maximal
set of residues (mod p) is attained by taking a set of consecutive
residues, this time not at the upper end but near p*°.

635
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Conjecture 1.1, Let f(p) be the maximal cardinality of a set
of residues mod p so that sums of different numbers of residues in
this set are different, then f(p) = (4p)"® + o(p'®) where the maximum
is attained, for example, by taking consecutive residues in an interval
of length (4p)'”® + o(p'®) containing the residue [(p/2)'"].

It is easy to see that we can indeed get a set of about (4p)®
residues by taking the residues in the interval ([(»/2)® — (4p)"?],
[(p/2)*®]). Here sums of distinct numbers of elements are distinct
integers, and since all sums are < p it follows that they are distinct
residues.

The observation which let to the upper bound in [4] is much less
obvious (mod p):

Conjecture 1.2, A set A = {a, a,, -+, a;} of residues (mod p)
has a minimal number of distinct sums of subsets of ¢ elements if A
is in arithmetic progression.

Conjecture 1.2 would give us a simple upper bound for f(p):

COROLLARY 1.3. If Conjecture 1.2 holds then

f(p) < (6p)'"° + o(p'") .

Proof. The sums of ¢ elements from the set of residues
{11 2) "'ylk - 11 k}

fill the interval ((*§!), tk — (f)) that is to say there are tk — t* + O(¢)
such sums. Since for different ¢ we get different sums we must have

Pz Xtk — £+ 0@) = £ + o)

and hence k& < (6p)'° + o(p'?) .

Using methods employed by Erdos and Heilbronn [2] we can show
that f(p) = O(p'®). We use the following lemma from [2].

LEMMA 1.4. Let 1<m <1< p/2 and let B=1{b, -, b}, A=
{a, ++-, a,} be sets of residues (mod p). Then there exists an a;€ A
such that the number of solutions of a; = b; — by; b, b€ B is less
than 1 — m/6.

We now can get a lower bound for the number of distinct sums
of t elements from a set of residues.

LEMMA 1.5. Let A= {a, ---,a;} be a set of residues (mod p)
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and let A, = {a; + +++ + ;|1 =4, < «++ <4, =k} then for L=t <k/4
we have

(1.6) |A|=14 E=Lm _ tt—1)

6 6

=[E 2 ) m=[5]-

2 2

Proof. We divide the set A into two disjoint sets
A= {aly Agy ¢, a/l}y B = {bly b2y ey bm}

where

and prove the inequality (1.6) for the subset of A, consisting of the
sums

At = {a/i -+ 1)2__el -+ b4._52 + e + bZt—-z—et_llsj =0 or 1} ’

where the b; are a suitable ordering of the elements of B.
The inequality holds for ¢ = 1 since

A* ={a;} = A and |A|=1.

Now assume that (1.6) holds for A,* with ¢ < (m/2) — 1. Then the
set A,* + b, A*,., and according to Lemma 1.3 there exists |a
b; € {bysy, bogryy + 2, by}, say b; = by, so that the equation

byrs — by = af — af, af, af € Af
has no more than|A}| — §(m — 2t) solutions. Hence the set
((Ba+1 — bae) + (AF + b)) N (AT + bse)
contains no more than A} — }(m — 2t) elements and

IA;k+1‘ = [(Af + b,4,) U (Af + b,)|
= [AF| + #(m — 2¢)

S G=m t¢t-1 , 1~ t
=0+ 6 8 +6m 3
tm (t + 1)t
=1 — .
i 6 6

This completes the proof.

THEOREM 1.7. The maximal number f(p) of a set A of residues
(mod p) so that sums of different numbers of distinct elements of A
are distinct satisfies

(1.8) (4p)"" + o(p'") < f(p) < (288p)'”* + o(p'") .
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Proof. According to Lemma 1.5 there are at least
E/2 + k(t — 1)/12 — £3/6 + O(t)

distinct sums of ¢ elements (and hence, by symmetry, sums of k — ¢
elements) for ¢ < [k/4] out of a set A with % elements. Thus if A
has the desired property we must have

p=2 5; (/2 + k(t — 1)/12 — £/6) + O(k?)

1 1 1
= 2[{;3 —_—— e — ——— 2) = k° 2 .
<384 3 384)+O(k) k1288 + O(k?)
Thus

f(p) < (288 p)'** + o(p'?) .

The lower bound for f(p) was established above.

2, On some irrational series. One of us [1] proved that the
series >\, d(n)t—™ is irrational for every integer ¢, |¢| > 1. In this

n=

section we generalize this result to series of the form

@.1) g= 30
=l Q00 oy
where the a, are positive integers with2 < a, < a, <--- . It is clear
that we need some restriction, such as monotonicity, on the a, since
the choice a, = d(n) -+ 1 would lead to & = 1.
We divide the proof into two cases depending on the rate of
increase of a,. The first case is very similar to [1].

LEMMA 2.2. The series (2.1) is irrational if there exists a 6 > 0
so that the inequality a, < (log n)~* holds for infinitely many values

of m.

Proof. Let n be a large integer so that a, < (logn)"°. Then
by the monotonicity of a; there exists an interval I of length n/logn
in (1, n) so that for all integers te€l we have a; =t where t is a
fixed integer, ¢t < (log n)" .

Now put k = [(log »)**°] and let p, ., ---be the consecutive
primes greater than (log n)*. Let

A=(_ 1II p)f
k(k

198k (k+1)/2
then

P 614
A < (2(log ,}Z)Z)t k(k+1)/2 < gllog m1™9tlog n) /
< e(logn)l_alz .

(2.3)
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By the Chinese remainder theorem the congruences

z=p,*"(mod p,")
(2.4) x4+ 1 .E (p05)"~ (mOd (pzps) )

T+ k— 1= (Dulur1** Puss—r)’™ (MOd (P, Dus1** * Duimr)’)

where u = 1 + k(k — 1)/2, have solutions determined (mod A). The
interval I contains at least [n/(4 log n)] solutions of (2.4).

Now assume that £ = a/b and choose eI to be a solution of
(2.4) so that (x,x + k) I. Then

k-1
ba,--a, &= integer -+ b w
=0 tl+1

(2-5) b Atk s)

— %
370 Lyt * * Aprits

But (2.4) implies that d{z + 1) = 0 (mod #**') for [ =10,1, -+, k — 1.
Thus (2.5) implies that

b > d(x +k + s) )

EZa

(2.6) ba,---a, & = integer +
550 Qgip*** Aptiots

We now wish to show that for suitable choice of x the sum on
the right side of (2.6) is less than 1 and hence b¢ cannot be an integer.
We first consider the sum

b d@ +k + s)
tF e>ilosn Qg e Qupprs

(2.7) <Lk s EhEYS pegn 3 S
t* s>iologn [ ARR s>10log # L°
2bm

<

< —é— for large = .

e
Next we wish to show that it is possible to choose & so that
(2.8) dz+k+s)< 2 for 0 <s<10logn.
We first observe that
(2.9) (x+k+s, A =1forall 0 <s<10logn
since otherwise

(2.10) 4+ k+ s=0(mod p,;) for some 1 <j5 = kk + 1)/2
and

(2.11) 2+ 1= 0(mod p;) for some 0 <1< k.
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But
0<k+s—1i<1l logn < (logn) < p;

so that (2.10) and (2.11) are incompatible.
Let v =z, %, + A, --+, %, + 24 be the solutions of (2.4) for which
(v, + k) < I. From (2.9) we get

S d(w, + k A 2§;(“ 1
2 (@ +Ek+s+y4) < zzlﬂJr)

(2.12)
n logn .

<c 2

Thus the number of y’s for which d(x, + k& + s + yA) > 2*is less
than ¢n log n/(A.2"%), and the number of %’s so that for some
0=<s<10logn we have d(x, + k + s + yA) > 2**is less than

10c n log? n/(A.2"*) < 1/2n/(Alog n) < z .

It is therefore possible to choose © = x, + yd eI so that (2.8) holds.
For such a choice we get

iwlogn dx + k + s) <£‘2kl4ii

t° S0 Gpprt et Oprrts t* s=0 ¢°

(2.13) L
< b2~ < 5

Combining (2.7) and (2.13) we see that & is irrational.

LEMMA 2.14. If there exists a positive constant ¢ so that |a,| >
c(log n)** for all n then the series (2.1) is irrational.

Note that in this lemma we need not assume the monotonicity
of a, (or even that they are positive, however for simplicity we give
the proof for positive a, only).

Proof. We use two results. The Dirichlet divisor theorem
(2.15) Syd(n) ~ Nlog N

and the average order of d(n), [3]
(2.16) d(n) < (log n)*=*** for almost all » .

From (2.15) we get the following.

LEMMA 2.17. Given constamts b, c > 0, then for almost all in-
tegers «
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(2.18) dx + y) < b7 (2c)"(log @)y = 3, 4, -+

Proof. If we choose « large enough so that logax > (2bce)*?
then the right side of (2.18) is greater than ¢’ which exceeds x + y,
and hence d(x + y), whenever y > 2 log . Thus, if (2.18) fails to
hold for sufficiently large x then it must fail to hold for some y with
3y < 2loga.

Now if there are ¢,N integers  below N so that (2.18) fails to hold
then we have more than ¢, N integers x with VN <2 < N — 2 log N

and
(2.19) d(z + y) > b7'(2¢)*(log 2)*"* = b~'(2¢)7¥(% log N )*!*
' > b (4¢)(log N)** = ¢,(log N)** .

Thus

x 1
dn) = ¢, N « ————— ¢, (log N)**
ﬂgx (m) =z ¢ Zloch(Og )

= ¢, N(log N)**

which contradicts (2.15) for large N.
Combining Lemma 2.17 with (2.16) we find that there exists an
infinite set S of integers x so that

(log x)**

2.21)  d@+1) <% (log @)"*, d(x + 2) < b~4102

and (2.18) both hold.
Now assume that & = a/b is a rational value of (2.1) and choose
neS. Then

(2.22) a,---a, b = integer + b i _dm +y)
y=i an+1 oo an_}_y
where

= e —y 3y /4
0<s, d(n + y) <5 (20)(log m)*"* _ 4
=1 Qypg* 2 Qypy y=1 (C(log n)3/4)y

’

in contradiction to the fact that the left side of (2.22) is an integer.
Summing up we have

THEOREM 2.23. The series (2.1) is irrational whenever

20,0 <q,=

With considerable additional effort one can weaken the monotonicity
condition on the a, to a,/a, = ¢>0 for all m > «.
We have not been able to prove the following
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Conjecture 2.24. The series (2.1) is irrational whenever a,— <.
If we consider series of the form

(2.25) i (n) or i _om)

n=1 a, =1 Qe+,
then we cannot make conjectures analogous to 2.24 since the choice
a, = P(n) + 1 or o(n) + 1 would make these series converge to 1. It
is reasonable to conjecture that the series (2.25) must be irrational if
the a, increase monotonically, however we can prove this only under
more restrictive conditions.

THEOREM 2.26. If {a,} is a monotonic sequence of integers with
a, = n* for all large n then the series in (2.25) are irrational.

For the proof we need the following simple lemmas.

LemmA 2.27. Let {a,} be a sequence of positive tntegers with
a, = 2 and {b,} a sequence of positive integers so that b,., = 0(A,Gy.,)-

If
(2.28) L

=1 ll"'(l

18 rational then a, = O(b,).

Proof. Assume & = a/b and choose N so that for all »> N we
have bb, < a,_,a,/4. If there existed an n > N so that «, > 2bb, then
we would have

. ) =
by Ay & = aay+~+a,_, = integer + > &’C_
B=0 Uy v ¢ s Qyyy

but

E=0 Cly *»» an+k Qy,

B

Tyt Ay Wy ot s
< +iZer-=1,
a contradiction. Thus a, < 2bb, for all large .

LEMMA 2.29. If the series (2.28) is rational, say & = a/b, and
b,iy = 0(0,a,4), then there exists a sequence of positive integers {c,} so
that for all large m we have

(2.30) bb, = €, 0y, — Cpy s 0 < cCpyy < @y and ¢,y = 0(a,) .

Conversely, if these conditions hold then the series (2.28) is rational.
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Proof. Choose N so that for all » > N we have bb, < a,a,.,/4.
Now for n = N choose ¢,, ¢,., so that

bbn = Cp®y, — Cnt1 s Cn > 0
0 <epiy <
and ¢, €l
bb,:y = Crsi @iy — Chis s Chin > 0
0 < Chiye < Quay -
Then
ba,++-a, &= aa, - -0a,,
. bb e b
— 1nteger + bbn w41 + 2 b n+k
Ay, (1 29 Py k=2 Oy Qyip
’ ’
. c 4
= integer — Crnt1 4 o n+te
an a’n a’nan+l
1 & bb,, .1
(2.31) < DL
Ay *=2 Qpyy*** Ay,
. ’ : 7
— lnteger _ cn-}—l + cn+1 - cn+2 ,
Ay @, a’na"rH-l an
0<0<3.
Thus
1 ’ Chre :
— Cpt1 + Chyy — + ¢ ) = integer
a, n+1

and since 0 <e¢, < @a,, 0<ch, < [a. /4] + 1 0< s/, <1,

0 < 6 <3, this is possible only if ¢,., = ¢hsy.
Now choose N so large that bb,., <<¢a, a,,, for all n> N, then
from (2.31) we have

integer = — %1 4 3 bbnsi < Lg%
k=t =1 a

1
a’n anan-}-l e an+k an ¢

" Qptp—s

< — Gen 4 oge,
Ay
Thus ¢,., < 2¢a, for all n> N.
If condition (2.30) holds for all » = N then

o bbn o Conln — Cont
S0 S Cala— Can
n=N @y Q, a=N Qe Q,
— Cy —_ i c ( 1 Q41 >
R — n+1 -
Aoy, n=y Ao Qy Ay oo Uy
— Cx

al’.‘aN'—l
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is clearly rational.
Finally we need a fact from sieve theory. We are grateful to

R. Miech for supplying the correct constants.

LEMMA 2.32. Given an integer a and €>0 then for large y the
number of integers m satisfying

m # 0, m # a (mod p)
for all primes p, with 2 < p <y'® exceeds y'—.

Proof of Theorem 2.26. Let f(n) stand for either o(n) or @(n)
and assume that

s f(n)

n=1 al..'a”n

2.
b
Since a, > n'*/** for large n the hypothesis of Lemma 2.29 is satisfied
and we get
(2.33) bf(n) = ¢,a, — c,y, for large n .
Since f(n) = o(n'*c) for all ¢ > 0 we get
(2.34) ¢, < n''*+e for large n .
From Lemma 2.28 we get
(2.35) a, = O(f(n)) = O(n'*?)

and hence the number of integers n < x for which

Q1 > 1 4 g
(2%

is O(2**), since otherwise we would have

a 23/t
a, = [[ == >0 + a7 >a?

n<lz an

for large x, in contradiction to (2.35). From now on we restrict our
attention to integers m for which

(2.36) Gnir 1 4 g2,

n

For such integers we get from (2.33) and (2.35) that
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f(r+1) _ s Cusy (1 —_ Cuso )/(1 _m)

f(n) Con Uy, Crnt1 Anty Cp Uy,

(2.37) = Snti(1 4+ O(n~2) (1 + O(n~4*+))

n

= Ontr | OQ(n—tz+e)

k2

Now consider a prime ¢, $ 2" < ¢ < ¢, then according to Lemma
2.32 there exist more than y'~—* integers m < y = &' so that

{2.38) m# 0, m % — 2q (mod p)

for all primes p with 2 < p < #*°. We may even assume that m is
odd. The number of integers n = 2qm where m satisfies (2.38) exceeds
M= > x¥* and hence we can pick such an #» that satisfies (2.37)
with 2/2 < n < .

Now
f(n) = f(29)f(m)
where
394D jrr-y
f(2g) _ 2q
2q

in either case
{2.39) f(2q9) = AJq, A an integer not divisible by q.

Since m has at most 5 prime factors all exceeding %'° we have

(= gy < LU < (1 4 oy
m
(2.40) f(m) = m(l + O(y™F) = m (L + O@@™*")) .
By the same reasoning we get
(2.41) S(m + 1) = n(l + O(x™)) .
Substituting (2.39), (2.40) and (2.41) in (2.37) we get

] S(n +1) :_4 —2/11}) — Cntr —2+e)
a2 LBZD -2+ 0p) = i 4 0@

But since ¢ > 2 and ¢, < x'** we get

n

< p2ite

(2.43) 1 g‘:‘l _ Lat1
g, g e
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Since qe, < xM*+11% < x¥Y— this leads to a contradiction.

We could get similar irrationality results if the functions o(n) or
®(n) are replaced by oy n)(k = 1) or products of powers of o,(n) and
@(n). In each case we would need the assumption that the a, are
monotonic, increasing faster than a certain fractional power of the
numerators.

From Lemma 2.29 it is clear that there is a set of power 2%° of
series (2.25) which are rational even if we restrict the integers ¢, to
the values 1 or 2 since for ¢, =1 we can choose @, = d(n) — 1 or
o(n) — 2 to get ¢,., =1 or 2 respectively and for ¢, = 2 we choose
a, = [(6(n)-1)/2] to get ¢,,, = 1 if o(n) is odd and ¢,., = 2 if o(n) is
even. For the series with numerators ®(n) we would have to use
¢, = 1,2 or 3 since all ¢(n) are even for n > 2.
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MONOTONE DECOMPOSITIONS OF IRREDUCIBLE
HAUSDORFF CONTINUA

G. R. GOrpH, JR.

It is shown that a number of important results concern-
ing irreducible metric continua can be generalized to (non-
metric) irreducible continua. For example, if M is a (non-
metric) continuum which is irreducible between a pair of
points and which contains no indecomposable subcontinuum
with interior, then there exists a monotone continuous map
of M onto a generalized arc, such that each point inverse has
void interior, This result is applied to a study of hereditarily
unicoherent, hereditarily decomposable continua. Certain pro-
perties of trees follow as corollaries. Also, trees are charac-
terized as inverse limits of monotone inverse systems of den-
drites.

In recent years there has been a growing interest in the study
of (nonmetric) continua. It is well known (e.g., [6]) that some of
the most useful and important properties of metric continua do not
hold for (nonmetric) continua. It is the purpose of this paper to in-
dicate that a substantial number of theorems concerning irreducible
metric continua can be generalized to irreducible continua. These
results are then applied to a study of certain hereditarily unicoherent
continua.

In particular, § 2 contains generalizations of many of the results
about irreducible metric continua appearing in Chapter 1 of [11].
These results are applied in § 3 to obtain generalizations of a number
of theorems due to Miller [8] concerning hereditarily unicoherent con-
tinua. Section 4 contains several results about trees which follow as
corollaries of theorems in §3. Also, it is proved that every tree can
be written as a monotone inverse limit of dendrites. In Chapter 2 of
[11], Thomas discusses metric continua which are hereditarily of type 4’.
His definition is extended, in § 5, to (nonmetric) continua and several
characterizations of such continua are obtained.

The reader is referred to [3], [5], and [14] for general results
concerning continua (i.e., compact, connected Hausdorff spaces). It
will be necessary to refer to results which are stated in the literature
for metric continua; however, this will be done only when the proof
for continua is essentially the same as that for metric continua.

The author is indebted to Professor F. Burton Jones for his advice
and encouragement in the preparation of this paper.
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2. Continua of type A. We observe that Theorem 1 and
Theorem 7 of [11, Chapter 1] are true, as stated, for (non-metric)
continua. To prove Theorem 1, apply [9, Theorem 47, page 16] to
the proof as given in [11].

Let M be a continuum which is irreducible between a pair of
points x and y. A decomposition &7 of M is said to be admissible in
case each element of < is a nonvoid proper subcontinuum of M, and
each element of < which does not contain x or y separates M. Notice
that an admissible decomposition is not required by definition to be
upper semi-continuous. However, we will show that an admissible
decomposition must, in fact, be upper semi-continuous. Thus, for
metric continua, our definition is equivalent to the definition in [11].

A generalized arc is a continuum A with precisely two non-
separating points. It is well known that A can be totally ordered in
such a way that the order topology and the original topology coincide.
We will frequently denote A by [a, ] where a and b are the non-
separating points of A.

THEOREM 2.1. Let M denote a continuum. Let <7 = {D(x)} be a
decomposition of M such that (1) for each xze M, D(x) is a proper
subcontinuum of M, and (2) there exist elements D(a) and D) of &
such that every element D(x) of = distinct from D(a) and D(b) sep-
arates D(a) from D). Then < 1is an upper semi-continuous de-
composition, and M/<r is a generalized arc.

Proof. For each x in M — [D(a) + D)}, M — D(x) = A, + B,
where ac A,,be B,, and A, and B, are connected. If x and y are
in M — [D{(a) + D(b)] and D(x) = D(y), then D(y)c A, if and only if
A,C A,; also D(y) < B, if and only if B, B,. Define D(x) < (D(y)
whenever A, C A,, and let D(a) < D(z) < D(b) for all z in

M — [D(a) + D(b)] .

Then < is a total order on <. If f: M — < denotes the natural
map, then it is readily seen that f is continuous with respect to the
order topology on <. The conclusion of the theorem now follows.

COROLLARY 2.1. Let M be a continuum which is irreducible from
x to y. If &7 is an admissible decomposition for M, then < is upper
semi-continuous and M/<Z is a generalized arc.

A continuum M is of type A provided that it is irreducible be-
tween a pair of points and has an admissible decomposition; M is of
type A’ if it is of type A and has an admissible decomposition each
of whose elements has void interior.
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THEOREM 2.2. Let M be a continuum irreducible from x to vy.
If M has an adwmissible decomposition, then it has one which s
minimal (with respect to partial order by refinement).

Proof. See the proof of [11, Theorem 3, page 8]. Notice that
we are not required to prove the upper semi-continuity of the decom-
position.

Suppose that M is a continuum irreducible between two points.
If M is of type A, let 4 denote the collection of all admissible de-
compositions of M. For each & ed, let f: M— M/<r denote the
natural map. Thus f is a continuous monotone function from M onto
a generalized arc. Observe that every monotone map from 3 onto
a generalized arc is cobtained in this manner.

THEOREM 2.3. Let M be a continuum of type A, o ed, and
i M— M/<2. Suppose that K is a subcontinuum of M such that
S(K) = [r, s] where [r, s] is a nondegenerate subinterval of M/ <. Then
TN K and f7(s)yN K are continua, and for r <t <s, f7'(t) is
contained in and separates K. In particular flx is ¢ monotone map
of K onto [r,s]; thus, if K is irreducible, K is of type A.

Proof. Suppose that M is irreducible from x to y and M/= =
[a,b]. If » <t <s, then f'(t)c K; for if p is in f~'(¢) — K then
Sf e, r]) + K + (s, b]) is a proper subcontinuum containing « and
y. Clearly f'(t) separates K, since it separates AJ. To see that
f(r) N K is connected, let K" = N{cl[f((r, w))}; we {r, s5)}. Then K’
is a subcontinuum of f~'(r) N K which is easily seen to intersect each
component of f~(r)N K. Thus f7'(r)N K, as well as f(s) N K, is
connected.

THEOREM 2.4. Let M be a continuum of type A; then 4 contains
a unique mintmal element.

Proof. The proof of [11, Theorem 6, page 10] is valid, since we
are not concerned with proving the upper semi-continuity of the de-
composition.

COROLLARY 2.2. Let M be a continuum of type A'. If o ed is
such that each element of < has void interior, then <7 is the minimal
element of 4.

Proof. Suppose that <’ ¢ 4 such that &' < &, Let D(a) and
D(b) denote the nonseparating elements of <. Then M — D(a) is
connected, and since D(a)’ = @&, [M — D(a)] + D’(a) is connected. Thus
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D(a) = D'(a) and D(b) = D'(b). Given 2 in M — lD(a) + D(b)], write
M — D(z) = A, + B, uniquely. Then M = A, + B, and

@ # A,N B,c D() .

Given z in D(x), D’(z) must separate D(a) from D(b); thus 4, N B, <
D'(z). Consequently, D'(x) = D(x) and &' = 2.

The following useful result is a generalization of [11, Theorem 8,
page 14].

THEOREM 2.5. Let M be a continuum of type A, = ed, and
M- M= = ]|a,bl. Then for a <r <s<b, c[f((r,s)]=K s
a subcontinuum of M which is irreducible from every point of

Knf(r) =K,

to every point of KN f~(s) = K,. Also K, and K, are subcontinua
of K with void interior relative to K.

Proof. Since K,c K — f~((r, s)), K! = @. By Theorem 2.3, K,
and K, are subcontinua of K. That K is irreducible from K, to K,
follows from the proof of [11, Theorem 8, page 14].

THEOREM 2.6. Let M denote a continuum which is irreducible
between two closed subsets H and K such that every subcontinuum of
M with nonvoid interior is decomposable. Then the following hold.
(a) There is a decomposition of M, M = M, + Mg, where HC My,
Kc My and clfMy; — Mzl N My is connected. (b) If U and V are
open subsets of M such that HCc Uc Uc VcM — K and both 60U and
0V are connected, then there is an open set W of M such that Uc W
Wc Vand 6 W is connected.

Proof. The proof in [11, Theorem 9, page 14] is valid. Note
that we have added the hypothesis that U is connected in part (b).

TEEOREM 2.7. Let M be a continuum irreducidble between a pair
of points x and y. A mnecessary and sufficient condition that M be of
type A’ s that every subcontinuum of M with nonvoid interior be
decomposable.

Proof of sufficiency. Using the construction in [11, Theorem 10,
page 15] we define a monotone function f: M — [0, 1]. According to
[4, Lemma 3, page 114] f is continuous. Thus {f~(¢); t€[0, 1]} is an
admissible decomposition for M. According to Theorem 2.2 there ex-
ists a minimal admissible decomposition for M, say <. If some ele-
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ment D e <7 has nonvoid interior then ¢l(D% is of type A. Let <&’
denote an admissible decomposition for ¢l(D°. By combining & and
22" in the natural way, one obtains an admissible decomposition which
refines & properly. Thus no element of < has nonvoid interior, and
M is of type A’.

Proof of mecessity. See [11, Theorem 10, page 16].

By making the obvious necessary modifications, one can also gener-
alize Theorems 17 through 22 of Chapter 1 of [11]. As in [11] we
define K(z) = {y e M; M is nonaposyndetic at z with respect to y} and
L(z) = {ye M; M is nonaposyndetic at y with respect to z}. Observe
that L(z) = T(z) where T denotes the set function in [2]. The state-
ments and proofs of Theorems 18 and 19 can be shortened by observ-
ing that K(z) = L(z) for any point z of an irreducible continuum [2,
Theorem 2, page 116]. Since Theorem 19 provides a concise topological
characterization for continua of type A’, we include its statement as
Theorem 2.8,

THEOREM 2.8. Let M denote a continuum irreducible from x to
Y. Then M is of type A’ if and only if K)° = @& for each z in M.

3. Hereditarily unicoherent, hereditarily decomposable con-
tinua. In [8] Miller proves that every irreducible, hereditarily decom-
posable metric continuum is of type A (this is a corollary of our Theorem
2.7). By applying this result she obtains a number of conditions which
imply that a hereditarily decomposable metric continuum is heredit-
arily unicoherent, and she also shows that hereditarily unicoherent,
hereditarily decomposable metric continua have certain properties an-
alogous to properties of acyclic continuous curves (i.e., dendrites). In
this section we will apply Theorem 2.7 to show that most (but not
all) of Miller’s results can be generalized to (nonmetric) continua.

It is easy to see that a continuum M is hereditarily unicoherent
if and only if for each pair of distinct points x and y of M there ex-
ists exactly one subcontinuum of M which is irreducible from = to .

By a generalized simple closed curve we mean a continuum which
is separated by the omission of any two of its points. A point p is
said to cut the continuum M in case there exist points # and ¥ in M
such that each subcontinuum of M containing % and % also contains
p. Such a point, p, is said to cut « from y in M, or to cut between
2 and ¥ in M.

The theorems that follow extend and generalize (to nonmetric
continua) Theorems 2.4 through 2.9 of [8].

THEOREM 3.1. Let M be a continuum of type A, and Ze€d. If
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each element of =7 is unicoherent then M is unicoherent.

Proof. Let fi: M — M/<r = [a, b] denote the natural map. Sup-
pose that H and K are proper subcontinua of M such that M = H +
K. 1If f(H) = [a, ¢] and f(K) = [¢, b] then HN K f~'(¢). Now

HN 7Ol +1KN 7 e)] = f7e) -

Since HN f~'(¢) and KN f~*(¢) are continua (Theorem 2.3), and f~'(¢)
is unicoherent, HN K = [HN f(c)] N [K N f7'(c)] is connected. The
other cases are handled in a similar manner, although they do not
depend on the unicoherence of the elements of <.

THEOREM 38.2. Let M be a continuum of type A, and e d. If
S M— M/ <7 = [a, b] is an open map, then M is unicoherent.

Proof. Let H and K be proper subcontinua of M such that M =
H+ K. If f(H) = |[a, c] and f(K) = [¢, b] then

HNO fe) = f7(e) = KN f7e)

since f is open. Thus HN K = f~(¢) which is connected. The other
cases are handled as in Theorem 3.1.

THEOREM 3.3. If M s a hereditarily decomposable continuum
which is not unicoherent, then M contains a continuum N which is o
generalized simple closed curve with respect to the elements of «
monotone upper semi-continuous decomposition <. Furthermore, if
D, and D, are in & then N — (D, + D,) = U+ V where U and V
are disjoint connected open sets such that (1) N =U + V, (2) Uand V
are irreducible from D, to D,, and (3) any subcontinuum of D, + D, +
U which intersects D, and D, contains U.

Proof. Apply Theorem 2.7 to the proof of [8, Theorem 2.6, page
187].

THEOREM 3.4. Let M be a hereditarily decomposable continuum.
M s hereditarily unicoherent if and only if M contains no subcon-
tinuum N which is a generalized simple closed curve with respect to
the elements of a monotone upper semi-continuous decomposition.

Proof. If M is not hereditarily unicoherent, apply Theorem 3.3.
Conversely, suppose that f: N— C, where N is a subcontinuum of M,
f is monotone and onto, and C is a generalized simple closed curve.
Write C = A+ B where A and B are generalized arcs. Then
F(A) N f~'(B) is not connected.
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THEOREM 3.5. Let M be a hereditarily decomposable continuum.
Suppose that there exists a cardinal number k < ¢ such that given k
points of M there exists one of them which cuts between some pair of
them. Then M 1s hereditarily unicoherent.

Proof. Suppose M is not hereditarily unicoherent. According to
Theorem 3.4 there exists a subcontinuum N of M, a generalized sim-
ple closed curve C, and a monotone map f from N onto C. Choosing
k distinct points of C it is clear that no one cuts between any pair
of them. The theorem follows.

THEOREM 3.6. If M is a hereditarily decomposable continuum
every subcontinuum of which 1s irreducible about a closed proper
subset having only countably many componenis, then M is hereditarily
unicoherent.

Proof. Apply [5, Theorem 6, page 173] to the proof of [8, Theorem
2.9].

Theorem 3.6 does not remain true if “countably many components”
is replaced by “c components”. A simple modification of Example 2
[11, page 12] produces a metric continuum which is irreducible about
a closed set with uncountably many components and is not unicoherent.

In order to obtain generalizations of thecrems in [8, Section 3,
page 190] we prove a generalization of a theorem due to R. L. Moore
[10].

THEOREM 3.7. Let M denote a hereditarily unicoherent continuum,
and suppose that each indecomposable subcontinuum of M is irreduci-
ble. If H is an 1rreducible subcontinuum of M then H 1is contained
m a maximal irreductble subcontinuum.

Proof. Throughout this proof {x, y> denotes the unique irreduci-
ble eontinuum from « to .

Suppose that H is irreducible from a to 6. TLet {H,} be a maximal
monotonic collection of continua such that Hc H, for each «, and
H, = {a, h,y for some h, in M. Let K = cl({J.H.). We will prove
that the continuum K is irreducible from @ to seme point k. Assume
not. Observe that if A is a proper subcontinuum of K which contains
a, then K — A is connected. There are two cases to consider.

Case 1. Suppose that cl(K — A) is indecomposable for some sub-
continuum A of K which contains a. Let T'= ¢l(K — A). Then TN
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A is a proper subeontinuum of T, hence T'N A is contained in a com-
posant C of T. Since T is irreducible, it contains at least two com-
posants. Choose ke T — C. Then <a, k) = K. To see this, suppose
that <{a, k) + K. Then {a, k)N T is a continuum which intersects two
composants of T thus Tc<a, k). Choose h,e A —<a, k), hse K — A.
Then H,¢ H; and H,¢ H,, which is a contradiction.

Case 2. cl(K — A) is decomposable for each subcontinuum A of
K containing a. If

MK —A)=E+ F

is any decomposition of ¢l(K — A), then AN F =g or ANE= Q.
Using this fact it is easy to verify that there exists an H; such that
Ac H). In particular, given an H,, there exists an H, such that
H,c H}. Choosing & in N.cl(K — H,) it follows that {a, k> = K.

In either case, K is “maximally irreducible” from a to some point
k. If {x,y)> contains K = {a, k) properly, then <{z, y> =<z, k> or
{x,y> =<y, k). For suppose not and let x ¢ K. Then k ¢ {a, x)>; hence
y ¢<a, x). Since {z, k) is properly contained in {x, >, y¢{x, k>. But
Kc<a, x) + <Lz, ky; thus ye K. Now <z, y>c<a, z) + {a, y> which
misses k. This is a contradiction.

Let L be a continuum containing K which is “maximally irreduci-
ble” from k to some point. Then I, is a maximal irreducible subcon-
tinuum containing H. For if L <z, y> then K <=, y>. According
to the argument above we can assume that {z, y> =z, k>. It follows
immediately that <z, y> = L.

COROLLARY 3.1. Let M denote a hereditarily unicoherent, heredi-
tarily decomposable continuum. If H is an irreducible subcontinuum
of M, then H s contained in a maximal itrreducible subcontinuum.

COROLLARY 3.2 (Moore). Let M denote a hereditarily unicoherent
metric continuum. If H is an trreducible subcontinuum of M, then
H s contained in a maximal irreducible subcontinuum.

Proof. Every indecomposable metric continuum is irreducible.

As in [8], we define a point p to be a terminal point of the
continuum M in case every irreducible subcontinuum of M which
contains p is irreducible from p to some point. By making use of
Theorem 2.7 and Corollary 3.1 we obtain the following generalizations
of theorems in [8, § 3, page 190].

THEOREM 3.8. Ewvery point of a hereditarily unicoherent continuum
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M s either a terminal point or a cut point of M.

THEOREM 3.9. A continuum which s hereditarily wunicoherent
and hereditarily decomposable has at least two terminal points.

THEOREM 3.10. A continuum which is hereditarily unicoherent
and hereditarily decomposable is irreducible about the set of all its
terminal points.

THEOREM 3.11. If the continuum M is hereditarily decomposable
and K is a subset of M consisting of some of the terminal points of
M, then M — K is connected.

In §4 we will see that Theorem 3.7 of [8] does not generalize to
nonmetric continua.

4. Some properties of trees. A continuum M is said to be a
tree [12] if and only if given two distinct points p and q of M, there
exists a third point which separates p from q. The point p of a tree
M is said to be an end point of M if and only if p is a nonseparat-
ing point of every generalized arc containing p. It is known [12]
that a continuum M is a tree if and only if M is locally connected
and hereditarily unicoherent. If M is a metric continuum then M is
a tree if and only if M is a dendrite [13, (1.1), page 88]. In Theorem
4.1 we show that a number of familiar properties of dendrites are
also shared by trees.

THEOREM 4.1. Let M denote a tree. Then (1) M is connected by
generalized arcs, (2) each point of M is a separating point or an end
point, (3) each generalized arc tn M 1is contained in a maximal gener-
alized are, (4) M has at least two end points, (5) M 1is irreducible
about the set of all its end points, (6) if K is a subset of the end
points of M, then M — K s connected.

Proof. Let A be a subcontinuum of M irreducible from p to q.
Since M is hereditarily unicoherent, each point of A — (p + ¢) cuts p
from q in M; thus, since M is locally connected, each point of A —
(p + q) actually separates » from ¢ in M. Consequently, A is a
generalized arc. Since M is hereditarily decomposable, properties (2)
through (6) follow from Theorems 3.7 through 3.11.

For a metric continuum M the following properties are equivalent
[13, (1.1), page 88]: (a) M is a tree, (b) M is locally connected and
contains no (generalized) simple closed curve, (¢) every subcontinuum
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of M contains uncountably many separating points of M.

For (nonmetric) continua we have seen that condition (a) implies
conditions (b) and (¢). However, neither of these implications can be
reversed. Mardesié has shown [6] that there exists a locally connected
continuum which contains no proper locally connected subcontinuum.
This example clearly satisfies condition (b), but is not a tree. The
following example satisfies condition (¢) but not (a); and also shows
that [8, Theorem 3.7, page 193] does not generalize to (nonmetric)
continua.

ExampLE. Let C denote a circle, and let M = C x [0,1]. We
define a basis <& for the topology on M as follows: V is in & if
and only if 1) V=p» x (r,8), (2) V=9 X (r,1], or (3)

V= (Ux10,1) - Ufp: x [g: 11} ,

where U is open in the usual topology for C, p; is in U, and 0 <
qg; < 1. If 7 denotes the topology generated by <& then (M, 77)
is seen to be a (compact Hausdorff) continuum with the desired pro-
perties.

Finally, we give a characterization of trees in terms of inverse
limits. For a discussion of inverse limits systems, see [1].

THEOREM 4.2. The continuum M is a tree if and only if M is
homeomorphic to the imverse limit of a monotone inverse system (D,,
s, A) where each D, is a (metric) dendrite.

Proof. According to [12] we must show that M is locally con-
nected and hereditarily unicoherent. M is locally connected by [1,
Theorem 4.3, page 241]. A simple application of [1, page 235, 2.9]
shows that M is hereditarily unicoherent. On the other hand, since
M is locally connected, M can be written as the inverse limit of a
monotone inverse system (D,, T.; A) where each D, is a locally con-
nected metric continuum [7]. According to [1], n,: M — D, is mono-
tone. It follows easily that D, is a tree, hence a dendrite.

5. Continua hereditarily of type A’. As in Chapter 2 of [11],
we define a continuum M to be hereditarily of type A’ if and only if
every nondegenerate subcontinuum of M is of type A’. If M is a
hereditarily decomposable metric continuum then M is hereditarily of
type 4’ if and only if M is snake-like [11, Theorem 13, page 50]. In
this section we obtain several topological characterizations of (non-
metric) continua which are hereditarily of type A’.
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THEOREM 5.1. If the continuum M is hereditarily of type A’,
then M s hereditarily unicoherent and atriodic.

Proof. The proof of [11, Theorem 6, page 41] is valid for (non-
metric) continua.

LemMa 5.1. If the continuum M 1is hereditarily unicoherent and
atriodic, then given three points of M, one cuts between the other two.

THEOREM 5.2. The continuum M s hereditarily of type A’ if and
only if M s hereditarily unicoherent, hereditarily decomposable, and
atriodic.

Proof. Suppose that M is hereditarily unicoherent, hereditarily
decomposable, and atriodic. According to Theorem 2.7 it suffices to
show that every subcontinuum N of M is irreducible. Let A be a
maximal irreducible subcontinuum of N (Theorem 3.7) which is ir-
reducible from p to q. If there exists a point » in N — A then, since
A is maximal irreducible, it follows that none of p, ¢, and » cuts
between the other two. This contradicts Lemma 5.1; hence N = A.
The converse follows from Theorem 5.1.

THEOREM 5.3. Let M denote a hereditarily decomposable continuum.
Then M s hereditarily of type A’ if and only if given any three
points of M one cuts between the other two.

Proof. If M is hereditarity of type A’ apply Theorem 5.1 and
Lemma 5.1. If given any three points one cuts between the other
two then M is hereditarily unicoherent (Theorem 3.5). Clearly M
contains no triods. Thus, by Theorem 5.2, M is hereditarily of type
A,
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THE MATRIX EQUATION AXB =X

D. J. HARTFIEL

This paper considers the solutions of the matrix equation
AXB = X where we specify A and B to be #n-square and
doubly stochastic. Solutions are found explicitly and do not
depend on either the Jordan or Rational canonical forms, We
further find all doubly stochastic solutions of this equation, by
noting that J, = (1/n), the n-square doubly stochastic matrix
in which each entry is 1/n, is always a solution and that the
doubly stochastic solutions form a compact convex set, We
solve the equation by characterizing the vertices of this con-
vex set,

Matrices considered in this paper are real matrice unless other-
wise stated. Most of the definitions and notation may be found in
[5], although some will be presented below.

If A, A, ---, A, are square matrices, by >;2, 4, we mean the
direct sum of the A,’s. If s = 2 we may write A, @ A, for this di-
rect sum. We say that a square matrix A is reducible if there exists

a permutation matrix P so that PAP® = (‘if, g) where X and Z are

square and P’ denotes the transpose of P. If A is not reducible,
then it is said to be irreducible. A square matrix A = (a;;) is doubly
stochastic if a;; =0 and 3, a; = D ay =1 for all 4, 5. It readily
follows that if A is doubly stochastic, then there exists a permuta-
tion matrix P such that PAP' = 3., A, where each A, is doubly
stochastic and irreducible.

The following two celebrated theorems in matrix theory are used
in the paper.

BIRKHOFF’S THEOREM. The set of all m-square doubly stochastic
matrices, 2,, forms a convex polyhedron with the permutation matrices
as wvertices [5, p. 97].

PERRON-FROBENIUS THEOREM. Let A be an m-square nonmnegative
wrreducible matrixz. Then:
(i) A has a real positive characteristic root r which is simple.
If N is any characteristic root of A, then |\ < 7.
(ii) If A has h characteristic roots of modulus

TN = 7y Ay, St Mi—1

then these are h distinct roots of N — r* = 0, h is called the index of
imprimitivity of A. If h = 1 the matrixz is called primitive.

659
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(iii) If Ny Ny o0 0, Nu_y are all the characteristic roots of A, and
0 = &% then N, +++, Ay_s ATE Ng, *++, My i1 SOME Order.

(iv) If h> 1, then there exists a permutation matric P such
that

0 A, 0---00

00 Ay +++00
PAP' = : :
0 0 040 A, .,
A4,,00---00

where the zero blocks down the main diagonal are square [5, p. 125].

If A is a nonnegative matrix and

Qiiyy Qigigy Qigips ** 0 Qipy_idy Fiys, = Qiggy

are all positive elements in A, then A is said to have a loop of length
m. If A= (a;) is such that all a;; are equal, then we say that A4
is flat. If A is partitioned into block matrices A;;, i.e., 4 = (4;)),

and each A,;; is flat, then a block loop is defined similarly.

1. Preliminary results. First we note that if P and @ are
permutation matrices then AXB = X if and only if

PAP'PXQQ'BQ = PXQ .

Since A and B can each be put into a direct sum of irreducible matrices
by simultaneous row and column permutations we may assume by
the Perron-Frobenius Theorem that

0 A7 0--+0 0 Bf 0-+-0
00 Ag---0 00 B+ 0
R . By=]  eeeeenes
00 0---Ac, 00 0B,
A5, 0040 B 000

where A, is irreducible with index of imprimitivity s,; B; is irreduci-
ble with index of imprimitivity 7,. Further the 0 blocks down the
main diagonal on A, and B; are all square.

Note that the dimension of each Af (k=1,2, «-.,s,) is the same
for each fixed a. For fixed B the dimensions of the B} (k =1, 2,
+++, ;) are also equal. Hence
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C,00---0 D,00--+0
0C 00 0D, 0---0
A;a: ..... s Igﬁ: .....
00 0--:0 00 0--40
000---C,, 000D,

where each C,(k=1,2,+--,8,), D, (k=1,2,---,7,) is a primitive
doubly stochastic matrix. Now let »p be a sufficiently large integer
so that A and B” are direct sums of primitive matrices.

LEMMA 1.1. If T is a linear operator on o convex set S whose
vertices are X, (1 = 1,2, -+, m), then T(S) is a convex set whese wver-
tices are in {T(X,)|t =1, «--, m}.

THEOREM 1.2. The set of doubly stochastic sclutions of the matrix
equation A*XB? = X (p previously defined) is the convex hull of

{Iim (AP P(BTY | P, is a permutation matriz, | = 1,2, ««., n!} .
Je—co

Proof. If V is an m x m primitive doubly stochastic matrix,

then lim,_... V* = J,, the flat m x m doubly stochastic matrix.
lim (A?)* and }cim (B?)*

exist, their limits being direct sums of flat doubly stochastic matrices.
Let L(X) = lim,... (A?)*X(B*)*. This is a linear operator defined on
the set of n X m matrices.

By Lemma 1.1, L(2,) is the convex hull of {L(P))| P, is a permuta-
tion matrix} i.e., of {lim,_ .. (A?)*P,(B?)*| P, is a permutation matrix}.

Now if A*XB? = X, XeQ,, then I(X) =X and by Birkhoff’s
Theorem, X is in the convex hull of the {L(P))|P, is a permutation
matrix}. Furthermore, if X is in the convex hull of the {L(P)|P, is
a permutation matrix} i.e., X = 3\ L(P,) where N, =0 and X\, =1,
then

X = INL(P) = 3\ lkim (AP): Py(Br)*

— AF[Z?W lim (A”)"—‘PZ(BP)"—l]BP — APXB?,
k—oo
and X is a solution of the matrix equation.

THEOREM 1.3. YeQ, @ a solution of AXB = X if and only if
Y = >zt A*WB p where We, is a solution of A>XB? = X.

Proof. If Y = >zt A*WB¥/p, W a solution of A?XB? = X, then
AYB =Y.
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Further if Y is solution of AXB = X then Y is a solution of A?XB? =
X and so Y = >3z A*YB¥/p.

Let M(Z) = >3zt A*ZB*/p. Then M is a linear operator defined
on the set of % X n matrices.

COROLLARY 1.4. The vertices of the set of doubly stochastic solu-
tions of AXB = X 1is a subset of {M[L(P)}|P, is a permutation
matrix}.

Proof. The proof follows from Lemma 1.1, Theorem 1.2, and
Theorem 1.3.

COROLLARY 1.5. If ome of A or B is primitive, then the only
doubly stochastic solution of the equation AXB = X s J,.

Proof. Either lim,_.. (47)* or lim,..(B?)* is J,. Thus if X is
doubly stochastic, then IL(X) = J,.

2. The operator L. Our primary aim here is to investigate the
structure of the convex set L(Q,): in particular its vertices.
From §1 we know for P, a permutation matrix

L(P) = lim () P(BY = (S J¢)P(3 J2)

where J# and JZ are flat doubly stochastic matrices whose dimensions
correspond to the dimension of the primitive matrices in the direct
sums A? and B? respectively.

Suppose a, X a, is the dimension of J# and b, X b, is the dimension
of JE Set O),JHP(S,JE) = V.. Partition V, into blocks V,, of
dimension a, X b,.

LEMMA 2.1. If X e lI(R,) is partitioned into block matrices X,, of
dimension a, X b,, then each X,, is flat.

THEOREM 2.2. If Xe L(2,) is partitioned into block matrices X,,
of dimension a, X b,, then X is a vertex of IL(R2,) if and only if X
does not have a block loop.

Proof. Suppose X has a block loop
Xrlali XTlazy X tee X = XTlal .

72029 ! o

Add & > 0 to each element in the 7,0, block. Subtract (b,,/b,)e from
each element in the 7,0, block. All the row sums of the matrix are
now one. Now add (a,b,/a,b,)e to each element in the 7,0, block.
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All the column sums of the matrix are now one. Now subtract

b,,a;b,, c
b,,0;,b,,

from each element in the v,0, block. All the row sums of the matrix
are now one. Continuing in this manner we see that in the 7,0,
block we add (a,, b,  +:-b,/a; b, -++b,)e=c¢c. This is exactly
what is in the 7,0, or 7,0, block. Now all rows and columns sum
to one. Call this generated matrix X’. Now considering the same
block loop we generate X” by replacing ¢ by —e in X’. Again all
rows and columns sum to one. Now X = (X’ + X"), and since X’
and X" e I(2,) for ¢ sufficiently small, X is an interior point.

On the other hand if X e L(2,) and interior to it, there are X’
and X" in L(2,) so that X = (X' + X"). We may pick X’ and X"
in L(2,) so that they have zero blocks in the block position if and
only if X does. Now if X'’ == X" then there is a ~v,0, block so that
X/, < X/, where X/, is a block in X’, X/, is a block in X" and
the relation is elementwise. Hence there is a X/, > X/, and so on.
This generates a block loop in X.

COROLLARY 2.3. X 1s a wertex of the convex set of doubly stoch-
astic matrices if and only if X does mot have a loop.

Proof. Consider the matrix equation IXI = X and apply the
Theorem 2.2.

We are now in a position to find the vertices of L(2,). Partition
each permutation matrix P, into blocks P}, of dimension a, X b,. Let
n,, be the number of ones in the vo block of P,. Then

(s o)e(s )=

i

and V,, has all its elements equal to m,/a,b,., We may now use
Theorem 2.2 on this finite set to establish exact vertices.

ExXAMPLE.

T
N Nl
S

N N

~——
—
N N

(=)

N Nl
~—

—

N Noj

(=]

N N

~
P RS
N N

(=]

Nj= N
~—

Partitioning the matrices P, we have
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10 | 00 1] 0
01|00 33
(1) L = , a vertex,
00 | 10 0 | 3
00 | 01 33
00| 10 0 |33
00 | 01 3%
(2) L = | , a vertex .
10 | 00 321 0
01100 33

All vertices are of the form L(P,) for some permutation P,. However,
L(P)) is not always a vertex for every !. For example,

10 l 00 it | 1%
00 | 10 1| 3
(3) L = an interior point .
01 ' 00| 32|42
00|01/ \#: |4

We can further note by Theorem 2.2 that 1 and 2 are the only ver-
tices of L(2,).

3. General solutions of A?’XB? = X. We already know from
Theorem 1.2 that for each We@,, L(W) is a solution of A*XB? = X.
Actually we have shown that if W is any »# X % matrix then L(W)
is a solution of A*XB? = X. Further if W is a solution of the equa-
tion then L(W) = W. i.e., S, JHWS,,JE) = W. Partition W into
blocks W,, as in §2. Now JAW,J? = W, implies that W, is flat.
Also if each W,, of W is flat, then W is a solution. Hence we know
all solutions of the matrix equation A?XB? — X.

4. Orbits in matrices. Let C = (¢;,) be a p X ¢ matrix. Sup-
pose we pick some ¢;;. Then by the orbit of ¢;; we mean the set
of positions (¢, — %k, 5, + k) [k=0,1, ---] where the row index is
modulo p and the column index is modulo q.

ExXAMPLE.

1 The numbers in the positions of
4 the orbit of

2

5

7 8 9 (1) 5 are 5,3,7
(2) 2 are 2,9,4

(a b

d e f

¢ (3) larel,8,6
(4) a are a,e, c,d, b, f.
Consider the group Z/p @ Z/q where Z is the additive group of
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integers. Note that K = {(—% mod p, k mod ¢)|k e Z} is a subgroup
of (Z/p @ Z/q). Hence we can consider orbits as cosets in (Z/p P
Z/q)/K by looking at indices. We now see:

1. The number of elements in each orbit is the same.

2. If two orbits intersect, they are the same.
3. If one orbit contains a row index % times then all orbits con-

tain that row index %k times. The same property holds for columns.
4. Each row index and column index appear at least once in

each orbit.
5. If p and ¢q are relatively prime, then there is only one dis-

tinct orbit.
Finally we note that since orbits are defined by indices, we may

consider block orbits in partitioned matrices.

5. The operator M. Our aim here is to investigate the struc-
ture of the convex set M[L(2,)]: in particular to find its vertices.
Let X e L(02,). Partition X into blocks X,, of dimension a, Xb,, then

—1

=

11’—1 1 .
M(X)==3 A*XB* = =3 3,
pk:O pk:()a
0 A7 0 0--- 0\ 0 Bf 0 0--0\*
00 A7 0+-+0(x |00 Bf 0-+-0
...... 8 esesse
A 000---0 B, 000---0

and since the blocks X,, of X are flat we may write

0 Jr 00---0\* 0 JF 00---0\F

Mx) =18 5700 00X 00 00000
D k=0« | L. 2 R

J:000---0 J2, 00040

where Ji(k=1,2,---,s,) and Ji(k=1,2,---,7,) are flat doubly
stochastic matrices whose dimensions are the same as those of Af and
BZ, respectively. Suppose the irreducible blocks A, of >, A. have
dimension p, x p, and the irreducible blocks B; of 3, B; have the
dimension ¢q; X ¢q,. Partition X into blocks X, of dimension p, X ;.
We call these blocks the major blocks of X. Now since X is already
partitioned into blocks of dimension a, x b,, we see that the major
blocks are partitioned into the X,, blocks in the first partitioning.
We call each block in the original partition a minor block. Note that
inside each major block, all minor blocks are of the same dimension.

Now suppose X; is a major block of X. Then we see the sequence
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0 J% 0.+ 0\ /0 JF 0+er0
1000 Jre 0 |XI{0 0 JEe0] -en,
J?a. S Jfﬁ. s
0 J* 0+er 0P [0 JF 0ee 0\
00 Jr--0|X00 Jtan0
Jé:: S Jﬁﬁ. S

is such that each minor block in X/, moves through its orbit in X,
at least once.

By the definition of M and the remarks made above we see that
M(X), X e L(2,), is found as follows. Let X be partitioned into major
and minor blocks. Consider the orbit of the minor blocks in each
major block.. Sum the blocks in each orbit with sufficiently many
copies in order that there are p blocks. Then divide the sum by p
and replace each block in the orbit by this block. From this we see
that X e M[L(2,)] if and only if

1. XeL(Q,).

2. If X,, and X, are in the same major block and in the same
orbit in the major block, then they are equal.

We now find necessary and sufficient conditions for X to be a
vertex of M[L(2,)].

DEFINITION. If X, ;, Xo5, <+, Xa, 5, = Xap, are major blocks of
X, Xe M[L(2,)] and each X, 5 (k=1,2, -++,m), Xopp,,, (K =1,2, --+,
m — 1) has exactly one positive minor block orbit, then

Xalﬂly Xalﬁgy ) Xamﬂm
is an orbital block loop in X.

THEOREM 5.1. Xe M[L(2,)] is a vertex if and only if

1. there do not exist two different positive minor block orbits in
any major block of X, and

2. there does not exist an orbital block loop in X.

Proof. First suppose Xe M[L(£2,)] and X has two positive block
orbits in a major block X,, of X. Then we add e > 0 to each ele-
ment in each block of one of these orbits and subtract ¢ from each
element of each block in the other orbit. Call this matrix X’. To
generate the matrix X' replace ¢ by —e¢ in X’. Now for ¢ sufficiently
small, X’ and X” ¢ M[L(2,)]. Since X = 3(X’' + X”), X is interior
and therefore if X is a vertex it must satisfy 1.

Now suppose X e M[L(2,)] satisfies 1 but not 2. This means X
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has an orbital block loop, say X.;, Xups, ++, Xa, s, = Xap,. Bach of
these major blocks has a positive orbit by definition. Flatten each
major block; i.e., if X,; is a block in the orbital block loop and has
s different orbits, divide the element ¢ in the positive orbit by s and
replace all elements in the major block by ¢/s. If we call this matrix
X’ then X’ € M[I1(2,)]. We may now use the scheme of Theorem 2.2
to alternately add and subtract ¢>0 from this major block loop, the-
reby generating X! and X,e M[I(2,)] and X' = 3(X/ + X,). Now
absorb the flat major blocks back into the original orbits, i.e., if X,;
is a major block in the orbital block loop with s different orbits then
replace each element ¢ in each block of the original positive orbit by
se. Put zero blocks in all other orbits in this major block. Doing
this to X’, X/, and X] we generate X, X, and X,, respectively. Note
X, X,e M[L(2,)]. Further X = (X, + X,). Hence X is interior.

Finally suppose X satisfies 1 and 2. Suppose that there exist
X, X, e M[L(2,)] so that X = §&(X, + X,). We may suppose X, and
X, have the same zero pattern as X. If X, # X, and X,, X, satisfy
1 we can see by an argument similar to Theorem 2.2, that X has an
orbital block loop. This contradicts X having property 2. Hence we
see that X is a vertex.

Using this theorem and the remarks preceeding this theorem we
see that we have characterized the vertices of M[L(2,)].

010 010
0 0 1) X (0 0 1)
1 00 1 0 0

There are three orbits for X given in the following diagram.

ExAMPLE.

3 2 1

2 1 3

1 3 2
They are the positions occupied by 1, 2 and 3 respectively. Consider
the vertices of L(2,). Using 1 of Theorem 5.1 we see

010
(a) 0 0 1

1 00

has a one in each orbit; hence
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ro 10 1/3 1/3 1/3
M{O 0 1) ={1/3 1/3 1/3)
1 00 1/3 1/3 1/3/
which is interior.
1 00
(b) 00 1)
010

has 3 ones in the same orbit, hence

10 0\_1 1 00
M0 O 1} =|0 0 1)
0 10 0 1 0

which is a vertex. The other vertices are

010 0 0 1
(1 0 0] and <0 1 O) .
0 01 1 00

6. General solutions of AXB = X. Partition X into the major
and minor blocks. Since AXB = X would imply A?XB? = X we see
that each minor block of X must be flat. If we add the further
condition that minor blocks on the same orbit are all equal then we
see from §5 that X is a solution and all solutions are of this form.

7. General remarks. It is interesting to note that in order to
obtain solutions of AXB = X it is only necessary to know the block
form of 4 and B, i.e., if A4, is doubly stochastic and has the same
block form as A and B, is doubly stochastic and has the same block
form as B then AXB = X if and only if A XB, = X.

From §4, property 5, we see that if A and B are irreducible,
where the index of imprimitivity of A and the index of imprimitivity
of B are relatively prime, then .J, is the only doubly stochastic solu-
tion. The only general solution is flat. This follows since there is
only one orbit in X. Each block in the orbit is flat and all blocks
in the orbit are equal.

Finally we point out that our result can be extended to a more
general setting by considering the following result due to Sinkhorn

(7):

THEOREM. Let D be the set of all n X n matrices with row and
column sums equal to 1, M,_, the set of (n — 1) x (n — 1) matrices.
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Let R=1&@ M,_,. Then there is a mnonsingular matric P so that
PDP' = R.

From this we know that if A, and A4, are (n — 1) X (n — 1)
matrices then there are nonsingular matrices P and @ so that P7'(1 @
A)P and Q1 @ A)Q™ have row and column sums equal to 1. If
P16 A,)P and Q(1 @ A)Q" are nonnegative and real and hence
doubly stochastic, then since

AXA, =X
if and only if
1QA(IDX)1PA)=1BX
if and only if
QLD A)QQU X)PPT(1D 4)P = Q1B X)P,

we can also find the solutions to the matrix equation

AXA =X.
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EXPANSIVE AUTOMORPHISMS OF
BANACH SPACES, II

JAMES H. HEDLUND

An automorphism of a complex Banach space is shown
to be uniformly expansive if and only if its approximate
point spectrum is disjoint from the unit circle,

The problem of giving a spectral characterization of the property
that an operator be uniformly expansive was investigated in [2], but
the theorem stated above was obtained only for automorphisms of a
Hilbert space. The proof given in this note is both more general and
more transparent than the special version. We also note some
topological properties of the various classes of expansive operators in
the space of all invertible operators.

1. Uniformly expansive automorphisms. If T is an auto-
morphism (a bounded, invertible, linear operator) on a complex Banach
space X denote its spectrum by A(T), its compression spectrum by
I'(T), its approximate point spectrum by /I(T), and its point spectrum
by /1(T). Denote the unit circle {\: |A| = 1} in the complex plane
by C. The automorphism 7 is said to be

(1) expansive if for each x e X with ||#|| = 1 there exists some
non-zero integer n with {|T"x|| = 2;

(2) wuniformly expansive if there exists some positive integer =
such that if x ¢ X with ||@|| = 1 then either ||T"xz|| = 2 or || T "z || = 2;

(3) hyperbolic if there exists a splitting X=X P X,, T =
T, T,, where X, and X, are closed 7T-invariant linear subspaces of
X,T,=T|X, is a proper contraction, and 7T, = T|X, is a proper
dilation.

A discussion of these classes of automorphisms may be found in [2].

It is well-known [2, Lemma 1] that an automorphism 7 is hyper-
bolic if and only if 4 (T) N C = @. The principal result weakens both
conditions.

THEOREM 1. Let T be an automorphism of a complex Banach
space X. Then T is uniformly expansive if and only if II (T) N
C = 4.

The proof requires the Banach space version of an interesting
numerical lemma.

671
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LEMMA 1. Given any complex numbers ¢,, «+-, ¢, there exists e C
such that >,i-Ne; > 0.

Proof. [2, Lemma 2]

LEMMA 2. Given any complex numbers c¢_,, »=+, ¢, with ¢, # 0
there exists M e C such that |Dj-—, Ne;| > ¢,

Proof. We may assume that ¢,>0: otherwise set d; = (¢,/|¢]) ¢;
and proceed. Let fF(\) = 3. Ne;, g(\) = D71, NMe;, and A(N) =
N C_;. Since M7 = (A) for A e C it follows that Re g(\) = Re h(\),
and therefore Re [F(M) + g(V)] = Re [f(N) + A(N)]. Now f(\) + h(\) is
a polynomial in »; by Lemma 1 there exists neC such that f(\) +
h(A) >0. Thus f(A) + A(N) + ¢, = ¢, and

> Re (Es] ch> = Re [f(N) + h(N) + ¢] = ¢,

j=—r

S Ne;

Jj==r

LEMMA 3. Given any wvectors %_,, +++, %, in a Banach space X
with x, = 0 there exvists » e C such that

| & vz a0

Proof. By the Hahn-Banach Theorem choose x* ¢ X* with |[|z* || = 1
and x*(x,) = || %, ||. It suffices to find A e C with

(3 V)12 0@ -
J=—7
Set ¢; = x*(x;) and apply Lemma 2: there exists A e C such that

= el = la*(w)| .

(2, ve) =] &, v

Proof of Theorem 1. Necessity is proved in [2, Theorem 1].
To prove sufficiency, suppose that T is not uniformly expansive. Then
for each positive integer n there exists z,€ X with ||2,|| =1 and
max {|| Tz, ||, || T"x,{|} < 2. For infinitely many » we produce a
vector ¥, € X and a number A, € C such that || (T — 2.9 v, [[/l| 4. || — 0.
This will suffice. In fact, if e C is a limit point of {\;'} choose a
subsequence {\;} of {\;} with A;'— . Then

1T = 2 9 1 0 1= 1T = 239 i Wl ]+ D25 — 2]

The right-hand side approaches 0 as m — o« , so that pell (T).
To construct v, we must consider two cases. Define
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k+n—1 .
>, ATz,
&

é(n) = max sup >

k=—mn,0 2eC

Case 1. ¢(n) is unbounded. Fix #, choose k& where the maximum
in the definition of ¢ is attained, and let )\, be the M e C where the
supremum is attained. Define

k+mn—1

Yo = >, MT,
=k
so that || .|| = ¢(n). Now
(T - N Y= T, — NG, if k=0,
and
(T — A7) ¥ = No'@y — A" T, if b= —m .
In either event,

(T =2 wall =3. Thus || (T — X)) v [/l 9 || = 3/6(n)

Since ¢(n) is unbounded, 3/¢(n;) — 0 for some subsequence n; — co.

Case 2. ¢(n) is bounded. Assume that ¢(n) < A for all » and
define

U= 3 (0 + 1+ ) NTz, + 3 (n — 7) T, ,
.

i=—n

where we choose ), eC by Lemma 3 to insure that ||y, || = n, the
norm of the term with index 0.

HT = wll= || = & M P, + 3 T, |
= |2 x| 2 ar)
< AL+ (T -

Hence
(T =N v llllwall = AQ + (| T|)/m— 0 .

Note that the hypothesis that 7' is not uniformly expansive is
not used in Case 2. But it is easy to see directly (by Lemma 3) that
T is not uniformly expansive if ¢(n) is bounded. Note also that it
follows immediately from Theorem 1 that a hyperbolic automorphism
is uniformly expansive.

2. Density. Denote the class of all hyperbolic automorphisms
of a fixed Banach space X by 2% of uniformly expansive by ¥ &, of
expansive by &, of all automorphisms by .# and of all bounded linear
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operators by <z. If dim X < o then 57 = % & = & and is precisely
the class of all automorphisms whose spectrum is disjoint from C. In
general the situation is much different.

THEOREM 2. Let X be separable infinite dimensional Hilbert
space. Then:

(1) sFPCcwE cE c ”CZ;

(2) 27 and Z'E are open (in <, in the uniform operator
topology) but & is not;

(8) mo class is dense 1n the next larger.

The tools necessary for the proof are two results on semicontinuity
of pieces of the spectrum due to Halmos and Lumer.

THEOREM A. [4, Theorem 2] /I(T) and A(T) are upper semicon-
tinuous: to every Te B and every open set G containing I1(T)
[respectively, A(T)] there corresponds a positive number ¢ such that
II(S) cG [A(S)cG] whenever ||S-T|| < e.

THEOREM B. [4, Theorem 3] A(T)\/I(T) is lower semicontinuous:
to every Te <% and every compact set K contained in A(T)\I(T)
there corresponds a positive number € such that K c A(S\I(S) when-
ever ||S— T <e.

Proof of Theorem 2. (2) If Te 57 then A(T) NC = @. By semi-
continuity, 4(S)NC = @ for S sufficiently near T. Since _# is open,
Se 57 The proof for Z & is identical. To see that & is not open
fix an orthonormal base {e,}” and let T be the diagonal operator
Te, = nf(n + 1) e,. T is expansive [2, Example 2]. Given ¢ > 0 let
Se, = Te, for [1 —mn/(n +1))=¢ and Se,=e, otherwise. Then
[|S— TJ < e but S is not expansive since 1€ II(S).

(8) _# is not dense in <#: [3, Problem 109].

% is not dense in ._7: let {¢,}>. be an orthonormal base and let
T be the backward bilaterial weighted shift defined by Te, = 2¢,_, for
n=1, Te, = 1/2 ¢,_, for n < 0. Then [2, Example 4]

I(T)={12 < [ x| <2}

so that T¢ . Now A(T*\I(T*) = {1/2 < | 7| < 2}; by Theorem B
if || S* — T* || is small then C c A(S*)\II(S*) < I'(S*). Hence C < I1,(S)
and S¢ &.

57 is not dense in ZZ & : in fact ZZ&\ o7 is open. If Te & \oF
then II(T)NC = @ but A(T)NC+@. So there exists a compact set
KcCN[A(T\I(T)]. By Theorem B, KcA(S) for || S — T|| small, so
that S¢ 2%



EXPANSIVE AUTOMORPHISMS, 1I 675

Z& is not dense in &: let X be represented as H? (of the unit
circle) and let T be the multiplication operator 7Tf (¢%*) = (¢* + 3/2)
fle). Let A, ={|»—8/2| <r}. Either direct calculation or appeal
to the spectral properties of Toeplitz operators ([1], for instance) shows
that A(T) = A, I(T) = @, II(T) = bdy A,, and I'(T) = int A,. By
Theorems A and B there exists ¢ > 0 such that if || S — T'|| < € then
Ay, < I°(S) and A(S) < A;,. Now the arc a(t) =€, 0=t < 7/2, on
the unit circle has a(0)e 4;, and a(n/2) ¢ A;,. Thus a(t) e bdy A(S)
for some ¢; hence /(S)NC = @ and S¢ Zr&. To verify that T is
expansive let a € [0, 7] with | ¢** + 8/2| = 1. Fix fe H* with || f]|, = 1.
Then either

1/2ng“_ | fle) | di = 1/2 or 1/277:8 e de = 1/2 .
If the former holds choose — a < b < ¢ < a with
1/2ng“ | Fle) | dt = 1/4,
b

let K = min {|e®* + 8/2], | ¢® + 3/2|} > 1, and choose an integer n with
Kr=4., fm=n

1T Ns = 12| fe + 321 S dt
= 1j2n| (" + 3/2*" | ) dt

> szl/ZnS: | F(e") [ di

v

4.

If the other alternative holds then || T7"f||. = 2 for large m. Hence
T is expansive.
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THE p-PARTS OF CHARACTER DEGREES IN
p-SOLVABLE GROUPS

I. M. Isaacs

Let G be a finite group and Irr(G) the set of irreducible
complex characters of G. Fix a prime integer p and let e(G)
be the largest integer such that p¢© divides %(1) for some
%€ Irr(G). The purpose of this paper is to obtain informa-
tion about the structure of G, and in particular about a Sylow
p-subgroup of G, from a knowledge of ¢(G). If G is solvable,
we obtain the bound 2¢(G)+1 for the derived length of an
S, subgroup of G, We also obtain some information about
the normal structure of G in terms of e(G).

When ¢(G) = 0, our result is equivalent to the theorem of N. Ito
which asserts that G has a normal abelian Sylow p-subgroup. Actually,
Ito’s result, [7], holds for p-solvable groups. This may readily be
proved by induction on the group order, as follows. The hypothesis
e(G) = 0 is inherited by factor groups and by normal subgroups and
it follows easily that a minimal counterexample, G, has a normal
p-complement, H. Now let yelIrr(G). It follows from Clifford’s
theorem that t|y(1), where ¢ is the index in G of the inertia group
of an irreducible constituent of the restriction y,. Since ¢ is a power
of p, we have t =1, and every irreducible constituent of y, is
invariant in G. It follows by Frobenius reciprocity that every
irreducible character of H is invariant in G. Now Lemma 2.1 of [4]
applies to yield the result.

Although it might be conjectured that our present bounds hold
for all p-solvable groups when ¢(G) >0, the proofs given here fail
even when ¢(G) = 1. However in this case, we do obtain a result
which is valid for p-solvable G with p >3, and shows that ~,(G) is
either abelian or else is a Sylow subgroup of G.

1. The following lemma is well known and will be used repeatedly.
Since its proof is quite short, we present it here.

LEMMA 1.1. Let N <| G and y € Irr(G). Suppose 8 is an irreducible
constituent of yy. Let T = _7%(0), the imertia group of 0. Then
there exists a umique trreducible constituent v of ¥r such that 0 is a
constituent of +ry. Furthermore y = % and [yy, 0] = [V, 0]

Proof. Choose any irreducible constituent -+ of ¥, such that ¢ is a
constituent of +r,. By Clifford’s theorem, ¥y, = a>t_, 0, where §, = 0

677
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and (1) = at6(1). We have t = |G: T| and +, = a,6, a, < a. Now
¥ is a constituent of “ and so

2(1) = ¥(1) = ty(1) = ta,f(l) < tab(l) = (1) .

We have equality throughout, so that y(1) = 4°1) and a = a,- Thus
=% and [xy, 0] = a = a, = [¥y, 0]. The uniqueness of + also
follows from a = a,.

If e(G)=¢ and NG, let Oelrr(N) and T = _#(0). Suppose
that |G: T|, = p", where n, denotes the p-part of the integer n. Let
4 be any irreducible constituent of 67, and let y be an irreducible
constituent of % Then by Frobenius reciprocity and Lemma 1.1, it
follows that ¥ = +“ and hence (1), < p*~". It does not follow, however,
that ¢(T) <e — r. We wish to prove our results by induction in a
manner similar to this and hence we define a quantity which “inducts”
properly.

DEFINITION 1.2. Let N <] G and 6 € Irr(N). Suppose ¢ is invariant
in G. Then ¢(G, N, ) = e is the largest integer such that p¢|(%(1)/6(1))
for some irreducible constituent y of 6%

Note that (G, 1, 1) = ¢(G) and that if N & H <] G, then
e(H, N, 6) < e(G, N, 6) .

The following is immediate.

COROLLARY 1.3. Suppose ¢(G, N, 0) = e and N = M <|G. Let +
be an irreducible constituent of 6" and let p’ = (v(1)/6(1)),. Set
T= %) and p" = |G: T|,. Then T, M, )< e— f— r.

It would suffice for our purposes to show that if N <]G, G/N is
solvable and ¢(G, N, 6) = e for some 6 € Irr(N), then the derived length
of an S, subgroup of G/N is bounded by a function of e. We in fact
will prove this for certain special characters ¢ and also for certain
groups G/N. In order to prove results like these, it is necessary to
be able to produce irreducible characters of degrees divisible by
“large” powers of p. This is done using the following result of
Gallagher ([1], Theorem 2).

PROPOSITION 1.4. Let N <| G and suppose y € Irr(G) and
Aw = 0elrr(N) .

Then the irreducible constituents of 0° are uniquely of the form By
where BeIrr(G/N) is viewed as a character of G. For all such B,
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By 1is wrreducible.

LEMMA 1.5. Let NG, N HG with G/H a p-group. Let
0 ¢ Irr(N) be invariant in G. If ¢G, N, 0) = e¢(H, N, 6), then G/H 1s
abelian. If e(G, N, 0) > e(H, N, 6), then there exists L <| G with H < L,
G/L abelian and e(L, N, 6) < ¢(G, N, 0).

Proof. Let K <]G, K 2 H be minimal such that
¢(K, N,6) =eG, N,0) =e.

Let ¢ be an irreducible constituent of 6% with p°|(y(1)/6(1)). Let %
be any irreducible constituent of ¢ Then p**}(x(1)/6(1)) and
therefore pf(x(1)/v(1)). Since G/K is a p-group, x(1)/¥(1) is a power
of p and thus y(1) = ¥(1) and yx = v € Irr(K). Let B be an arbitrary
irreducible character of G/K. By Proposition 1.4, gy is an irreducible
constituent of ¢ and we may apply the above reasoning to @y in
place of y. Hence (8y)(1) = (1) = x(1) and B(1) = 1. Thus G/K is
abelian. If ¢(G, N, 6) = e(H, N, 6) then H = K and the first statement
is proved.

Otherwise K> H and we may choose L<]G with HS L<K
and |K: L| = p. By the choice of K, e(L, N, 6) <e and hence +, is
reducible. Therefore y, =, is a sum of p distinct irreducible
characters, conjugate in K. Let @ be one of these characters and
put 7= _%(®) so |G:T|=p. Thus T<]G and G'= T. We also
have G < K and KNT = L so that G/L is abelian and the result
follows.

LeEMMA 1.6. Let N <|G and suppose that G/N is p-solvable with
p'-length < 1. Suppose 6 € Irr(N) and is invariant in G with

e(G, N, 0) =e.

Then the derived length of an S, subgroup of G/N is < e + 2. If GIN
s a p-group, d.1.(G/N) < e + 1.

Proof. Let K/N = ?(G/N), the minimum normal subgroup with
factor group a p-group. By hypothesis, K/N has the normal S,
subgroup P/N. Suppose e¢(K, N, 6) <e. Then by Lemma 1.5, there
exists L <] G, K < L with G/L abelian and ¢(L, N, ) <e. Both state-
ments now follow by induction on |G: N|. Suppose then ¢(K, N, 0) = e.
Then G/K is abelian by Lemma 1.5. If K = N, then d.1.(G/N) <e + 1
is trivial. Suppose, then, K> N. Then P< K and e¢(P, N, 6) < e so
by induction, d.l.(P/N) < e + 1. Since G/K is abelian, the derived
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length of an S, subgroup of G/N is < ¢ + 2. However, since K > N,
G/N is not a p-group and the proof is complete.

2. Suppose N <] G and 6 e Irr(N) and is invariant in G. It will
occasionally be necessary in what follows to be able to extend 4 to
an irreducible character of G. This is, of course, not always possible,
We discuss some sufficient conditions below.

Given any character y of a finite group G, we define the deter-
minant det ¥ = N to be the linear character of G given by

My) = det X(g) ,

where X is any representation affording x. Let o(y) denote the order
of N as an element of the group of linear characters of G. Clearly
o(x) = o(\) = |G: ker \|. Gallagher [1] has shown that if 6 Irr(N),
N < G, ¢ is invariant G and (1), |G: N|) = 1, then 4 is extendible
to G if and only if det ¢ is extendible to G. Furthermore, Gallagher
proved that if A = det # and g is an extension of A, then there is a
unique extension y of # with det y = ¢#. Since ¢ is invariant in G,
so is » and it follows that ker A <] G and N/ker » & Z(G/ker ©). If
(6(0),|G: N|) = 1, then N/ker\ is a direct factor of G/ker » and hence
there is a unique extension £t of M to G with o(%) = o(\). Summarizing
these results, we obtain the following.

ProrosiTioN 2.1. Let N <] G and let 6 € Irr(N) with 0 invariant
m G. Suppose o(6) and 0(1) are both relatively prime to |G: N|. Then
there exists a unique extension, 0, of 0 to G with o) = o(0).

DeriNITION 2.2. Let y € Irr(G). Then y is a p-character of G if
2(1) and o(y) are powers of p.

LEMMA 2.3. Let N<]G and suppose 0 ¢ Irr(N) is a p-character
which ts invariant in G. Suppose G/N has a normal p-complement
K/N and that «,(GIN) = 1. Then d.1.(G/K) < e(G, N, ) = e.

Proof. Use induction on |G: N|. Suppose ¢e>0. If ¢(K, N, 0) = e,
then by Lemma 1.5, G/K is abelian and we are done. Otherwise,
e(L, N,0) <e for some L<]G with K< L and G/L abelian. By
induction, d.l.(L/K) < e — 1 and the result follows. The only remain-
ing case is where ¢ = 0. Here we must show that K = G.

Since @ is a p-character of N, there is an extension & of ¢ to K.
Let X be any irreducible constituent of 4°. Then X(1)/6(1) is a power
of p and @ is a constituent of X, so X(1) = (1) since ¢(G, N, 6) = 0.
Thus if g is any irreducible character of G/N, gX e Irr(G) and since
¢ is a constituent of (8X)y, it follows that p}/B(1). Hence ¢(G/N) = 0
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and therefore G/N has a normal S, subgroup. Since &,(G/N) =1,
pY|G: N| and thus K = G and the proof is complete.

The following lemma will be used to prove that a given character
is a p-character.

LEMMA 2.4. Let N<]G and suppose that G/N has no proper
normal subgroup of p'-index. Let Xelrr(G) and suppose 6 is an
wrreducible constituent of X, and o(0) is a power of p. Then o(X) is
a power of P.

Proof. Let n=detX, and let K ={gecG|Mg)* =1 for some
¢ = 0}. It suffices to show that K = G. Clearly, K <] G is a subgroup,
and p/f|G: K|. The result will follow if we show N & K. Now
Xy = a20; by Clifford’s theorem, where the 4; are all conjugate to 4.
Let p; = det 4; so that Ny = (/Ig;)*. Each p; has order equal to o(f)
which is a power of p. Therefore, for suitable e, and for 2 ¢ N, we
have p;(x) is a p°th root of 1. It follows that N & K and the proof
is complete.

3. We define functions u, v as follows.

DEFINITION 3.1. Let %, v be functions from the set of nonnegative
integers into the same set with < adjoined, where u(¢) = maximum
derived length of an S, subgroup of G/N where G is a finite group,
N <G, G/N is solvable and there exists a p-character, 4, of N,
invariant in G and such that ¢(G, N, 0) < e. Set u(e) = co if there is
no maximum. Define v(e) similarly, except that only those situations
are considered where #,(G/N) = 1.

LEMMA 3.2. Let P be a p-group and suppose that P, S P with
|P: Py| = p". Then d.1.(P) £ r + d.L(P).

Proof. Use induction on 7. The result is trivial if » = 0.
Otherwise P, << P and hence P,P’ < P since P’ < @(P), the Frattini
subgroup of P. By induction, d.1.(P,P’) < (r — 1) + d.1.(P,). However,
P,P' <] P and P/P,P’ is abelian.’ The result follows.

LEmMA 3.8. Let N H be normal subgroups of L. Assume
(|{H: N|, |L: H|) = 1. Let 9eIrr(N) and suppose 0 is extendible to H.
If 6 is invariant in L, then some extension of 6 to H is also invariant
wn L.

Proof. Let .&” be the set of extensions of 4 to H, and let U be
the group of linear characters of H/N. Then U acts on the set &~
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by multiplication and by Proposition 1.4, this action is transitive..
Set A= L/H. We have U = H/H'N and thus (|A|, |Uf) = 1. Clearly,
A acts on . and on the group U and if X € &% » e U, then (X\)* = X*\*
for all ac A. Therefore Glauberman’s Lemma (Theorem 4 of [2])
applies and hence A fixes some X ¢ .92 Thus X is invariant in L.
Before going on to our main result, we digress briefly to give an
application of some of the lemmas we have already accumulated.

COROLLARY 3.4. Let N <| G with G/N p-solvable. Suppose 8 is a
p-character of N which is invariant in G and that e(G, N, 6) = 0.
Then 6 is extendible to G and G/N has a normal abelian S, subgroup.

Proof. If 6 is extendible to G, then it follows from Proposition
1.4 that ¢(G/N) = 0 and hence G/N has a normal abelian S, subgroup.
We prove extendibility by induction on |G: N|. Let M/N = £°?(G/N).
If M <G, then 6 is extendible to « ¢ Irr(M). Let X be any irreducible
constituent of +°. Since G/M is a p-group, it follows that X(1)/4(1)
is a power of p. Since e(G, N, 6) = 0, X(1) = (1) and the result follows.

Suppose then M = G and let V/N = &?(G/N). Then V<G and
9 is extendible to V. Let W/N = (V/N). Then V/W is a p-group.
Now if xeG, then +* is an extension of 6 so +* = Ay for some
linear character A of G/N (Proposition 1.4). Then A, = 1 and % = 4y
Hence v, is invariant in G and by Lemma 3.3 we may assume that
4 is invariant in G. By Lemma 2.4, 4 is a p-character of V and thus
is extendible to G. The proof is complete.

THEOREM 3.5. The functions u and v are finite valued, v(0) = 0,.
w(0) =1 and

v(e) §£njg,<x (f + ule — f)) for e>0 and
u(e)gl-l—glix (f+ u(e — f)) for e>0.

Proof. If u ever takes on the value oo, choose e¢ = 0 minimal
with u(e) = . Otherwise pick e arbitrarily. Choose a group G, N<]G,
0 a p-character of N, invariant in G with e(G, N, ) <e. Let P/N
be an S, subgroup of G/N. If ¢>0, write b = max {f + u(e — f)|
0<f<e}. If e=0, set b =0. We claim that (a) if ~,(G/N) = 1,
then d.1.(P/N) < b and in any case (b) d.1.(P/N) < b + 1. The proof
will be complete when these claims are established. In particular,
the inequality involving w(e) will follow when (a) is proved. Note
that when e = 0, the result follows from Corollary 3.4, however this
case also follows from the general argument and we do not appeal to
the previous result. We shall prove (a) and (b) by induction on |G: N,
for the fixed value of e chosen above.
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Case 1. ,(G/N) > 1. Let K/N be a minimal normal p'-
subgroup of G/N so that K/N is an elementary abelian g¢-group
for some ¢ = p. Let # be the unique extension of 6 to K with
o(f) = o(0). Because of the uniqueness, # is invariant in G and by
definition, 0 is a p-character. Clearly e(G, K,0)<e and thus
d.1I.(PK/K) < b + 1 by induction. Since PK/K = P/N, (b) follows in
this case. If ~7,(G/K) = 1, then d.l.(PK/K) < b and (a) follows.

Assume that ~7,(G/N) = 1 but that «7,(G/K) = H/K > 1. Let 4
be an irreducible constituent of 67 with (4(1)/0(1)), = »* as large as
possible. Let @ be an irreducible constituent of r, which is a
constituent of #*. Since K/N is abelian, it follows from Proposition
1.4 that @ = O\ for a linear character ) of K/N. Thus @(1) = 0(1)
is a power of p. Since H/K is a p-group, (1)/»(1) is a power of p
and hence (1) is a power of p. We claim that  is a p-character
of H. This will follow from Lemma 2.4 when we establish that H/N
has no nontrivial p’-factor group.

Now H'NN K <] G and by the minimality of K, we have either
H'NNK= Nor HHNN K = K. In the first situation, K/N & Z(H/N)
and it follows that 7 (H/N)= H/K > 1, a contradiction. Thus
H'NNK = K. Since any p’-factor group of H/N 1is abelian, this
shows that only the trivial one exists.

Let T = _Z(y) and set p" = |G: T|,. By Corollary 1.3,

(T, Hy)<e—f—1r.

Let P,/H be an S, subgroup of T/H and assume that P, & PK since
PK/H is an S, subgroup of G/H. Now d.1(P/H) < u(e — f— v) and
|PK: P)| = p"so that d.1.(PK/H) < » + u(e — f — v) by Lemma 3.2. We
have e¢(H, N, 0) = fand «(H/N) = 1 and hence 0 < d.l.(H/K) <f<e
by Lemma 2.3. It follows that d.J(PK/K) <+ +f+ue—f—+)<b
and the proof of Case 1 is complete. In particular, since only Case
1 can occur when #,(G/N) = 1, we have shown that w(e) < b .

Case 2. ,(G/N)=1. Let H/N = ¢,(G/N) > 1 and let
f=eH, N,D0).

Sinece H/N is a p-group, we can pick v € Irr(H) with +, = p’0. Also
v is a p-character by Lemma 2.4. Let T = ._7(y) and p" = |G: T|,.
Reasoning exactly as before, we get

dL(PINy =< » + wle—f—»)+ dL(H/N) .
By Lemma 1.6, d.I.(H/N) < f + 1, and thus
dLP/NYS1+f+r+ule—f—7).
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If f+ r >0, then ¢ > 0 and we obtain d.1.(P/N) < b + 1 and we are
done in this case.

Assume then that /= 0 = » for all irreducible constituents « of
6”. From f = 0, it follows that # is extendible to H and by Lemma.
3.3, we may choose an extension ++ which is invariant in L where
L/H = ,(G/H). Now let T'= _%(y). Since r = 0, we may assume
PS T. Also LS T. We claim that U/H = #(T/H) = 1. We have
[L, U] < H and hence by Lemma 1.2.3 of [3], it follows that U < H.
Therefore, d.l.(P/H) =< v(e) since (T, H,+) <e. By Lemma 1.6,
d.l.(H/N) <1 and thus d.1{P/N) <1 + v(e). Since we have already
shown that v(e) < b, the result follows.

COROLLARY 3.6. w(e) < 2¢, u(e) < 2¢ + 1 for all e = 0.

Proof. Use induction on e. The Corollary is immediate if
e=0. For ¢e>0 we have wv(e) Emax {f+ule—|0<fZe =
max {f + 2(¢ — f) + 1}. This maximum occurs when f = 1 and yields.
v(e) < 2¢e. Similarly u(e) < 2¢ + 1.

4, Some improvement on the bounds of Theorem 3.5 can be
obtained, especially for ¢ < p — 1. We shall use Theorem B of Hall
and Higman [3] and also the following result of Passman (Corollary
2.4 (i) of [8]).

ProposITION 4.1. Let P be a p-group which acts faithfully on a.
solvable p’-group A. Suppose that every element of A lies in an orbit
of stze < p® < p? under the action of P. Then some element of A lies
m a regular orbit and hence |P| < p°.

LEMMA 4.2. Let NS H be normal subgroups of L. Suppose
HIN s solvable and that (|L: H|,|H: N|) =1. Let 0eclrr(N) and
suppose 7 (0) covers L over H. Then some irreducible constituent
of 0" is wnvariant in L.

Proof. We use induction on |H: N|. The result is trivial if
N=H Let M<{L, M< H be maximal such. By the Schur-
Zassenhaus Theorem, applied to the group _#(6)/N which has the
normal Hall subgroup, .7{(6)/N, we can find a subgroup S & L with
SNH=N, SH=L and S< . #(f). By induction applied to the
situation N <] M <] SM, there exists an irreducible constituent ¢ of
6" which is invariant under S. Since H/M is an elementary abelian
chief factor of L, Proposition 3, Part 2 of [5] applies and we conclude
that there are only three cases to consider. They are (a) @ = ¢ is
irreducible, (b) ®“ = ay where + is irreducible or (c) ® is extendible:
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to H. In either of cases (a) or (b), 4 is invariant under S and since
L = HS, we are done. In the remaining case, ® is invariant in L
and the result follows from Lemma 3.3.

We state below the special case of Theorem B of Hall and Higman
which will be needed in what follows.

ProrPoSITION 4.3. Let G be a p-solvable group which acts faithfully
and rreducibly on an elementary abelian p-group U. Suppose
U< p™. Then py|G|.

THEOREM 4.4. Let e<p — 1. Then u(e)<e+ 2 and v(e) < e.
If e(G, N, 6) <p — 1, where 6 is p-character and G/N is solvable, then
G/N = ﬁmﬂ:ﬂp'(G/N)-

Proof. The first statement follows from the second by Lemmas
1.6 and 2.8 since in calculating wu(e) and v(e), it is sufficient to consider
only cases where G/N = ~*(G/N). We proceed to prove the second
statement.

Let N <] G, 6 an invariant p-character of N and

e(G,N,0) =e<p—1.

It suffices to show that ~?'**’?(G/N) = 1 and this is done by induction
on |G: N|. If &?(G/N) = L/N and L < G, then since

e(L, N, 6) < e(G, N, 0),
the result follows by induction. Thus we may assume that
o?(GIN) = GIN

and similarly, ~???*?(G/N)=1. Let H/N = **'(G/N) and
U/N = &*»»'*»(G/N) so that U/N has the normal S, subgroup H/N.
We may assume U > N. Let V/N = &**(G/N) so that V/U is a
p-group. Suppose US Y < V with Y<{G and |V: Y| < p**. Let
Y be a maximal such subgroup. Then V/Y is an elementary abelian
p-group which is an irreducible G/V module. Let C/V = C4(V]Y)
so V/Y is a faithful irreducible G/C module. By Proposition 4.3, G/C
is a p'-group and since G/N = &7*(G/N), we have C = G. It follows
that V/Y is a direct factor of M/Y where M/N = ~?(G/N). Since
V/Y > 1, this contradicts <?(M/N) = M/N and therefore no such Y
exists.

Now let Uy/H = (U/H)' and let Y/U = Cy;x,(U/U;). Then Y < G.
Now U/U, € Z(Y/U,) and U/U, is a nontrivial S, subgroup of Y/U,
since U> H and U/H is a solvable p’-group. It follows that
c"(YIU) < Y/U,. Since «&*(V/N) = V/N, it must be that Y < V.
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We will have the desired contradiction when we show |[V: Y| < p” < p*~L.

By Lemma 4.2, there exists an irreducible constituent . of 6“
such that ++ is invariant in U. Since H/N is a p-group, it follows
from Lemma 2.4 that +y is a p-character of H and hence there exists
a unique extension + of +» to U with o(y) = o(:f). It follows from
the uniqueness that _7(v) = _Z(y). Now let A\ be any linear character
of U/H. Then M\ elrr(U). Let T = _%0) and put |G: T| = p".
By Corollary 1.3, ¢(T, U, Mp) < e — r and thus »r <e. Letze 7. We
have

M= (Mp)” = NP7

Restricting this to H, we obtain + = " since r, = 1 and , = .
Thus ze 7 (y) = (). Therefore M = A% and it follows from
Proposition 1.4 that » = \*. Thus T < ._%(\). Since |G: T|, = p" and
V/U is a normal p-subgroup of G/U, it follows that |V: TN V| < p.
Thus |V: A0 < p" < p° < p*. Therefore, in the action of the
p-group V/U on the group of linear characters of U/H, all orbits
have size < p°. The kernel of this action is Y/U and thus by pro-
position 4.1, |V/Y| < p* which yields the desired contradiction and
the proof is complete.

COROLLARY 4.5. Ife=p—1, ule) <2¢ — p+ 4 and

v(ie) < 2 — p-+3.

Proof.
up -1 = max {fwp—1—-f) + 1 +1
< max {p—1—fFf+2+ f}+1=p-+2
0<f=p—1

and similarly v(p — 1) < p + 1. Thus the desired inequalities hold
when ¢ = p — 1. For ¢ > p — 1, apply induction.

5. In this section we consider the case e = 1 in more detail.
From Theorem 4.4 we have (1) <3 and #(1) <1 when p = 3. For
» = 2, Corollary 3.6 yields (1) <3 and »(1) < 2. An example (see
6.1) shows that «(1) = 3 for p = 3.

THEOREM 5.1. For all primes, v(1) = 1.

Proof. That v(l) =1 is clear. Let e(G, N,6) =1 with G/N
solvable and # an invariant p-character. Suppose 7, (G/N) =1. We
must show that an S, subgroup, P/N, of G/N is abelian. Let K/N
be a minimal normal subgroup of G/N so that K/N is an elementary
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abelian g-group for some prime ¢=p. Let & be the unique extension
of 6 to K with o(d) = o(¢). Then & is an invariant p-character of K.
If ©Z(G/K) =1, then the result follows by induction on |G: N|.
Assume then that H/K = #7,(G/K) > 1. Let A be any linear character
of H/K. Then _%(\) = ._%(6\) and thus 2*/|G: _Z(\)|. It follows
that A lies in an orbit of size 1 or p under the action of H/K on the
group of linear characters of K/N. Since #7,(G/N) =1, Cyx(K/N) =1
and thus H/K acts faithfully on the linear characters of K/N. By
Proposition 4.1, |H/K| = p.
Now choose M as above in an orbit of size p. Then

D) = e Irr(H)

and + is a p-character of H by Lemma 2.4 (using the minimality of
K). Let T = _#(y) and T, = _%(\0) so that HT, < T and T,N H = K.
By the usual argument, »*/|G: T,| and hence p/}|G: HT, and we may
assume that P & HT,. Then PK/K = (H/K)(P,/K) where P, = PKN T,
Now ¢(T, H, ) = 0 by Corollary 1.8 and since w%(0) =1, we have
PK/H is abelian. But PK/H = P,/K and H/K < Z(PK/K) and thus
PK/K = P/N is abelian. The proof is complete.

We now prove a result which is valid for p-solvable groups with
p > 3. It will enable us to conclude for solvable groups that (1) < 2
with respect to these primes.

THEOREM 5.2. Let N <| G with G/N p-solvable and p > 3. Suppose
8 1is a p-character of N which is invariant in G and that e(G, N, 6) = 1.
Let PIN = &,(G/N) and suppose that P/N is not abelian. Then P/N
s an S, subgroup of G/N.

Proof. Use induction on |G: N| and assume that P/N ¢ Syl,(G/N).
Then P/N is a Sylow subgroup of every proper normal subgroup
of G/N which contains it. It follows that «&*(G/N) = G/N. Also
M/P = ~*(G/P) < G/P and |G: M| = p. By Lemma 4.2, there exists
an irreducible constituent 7 of #” which is invariant in M. Now 7
is a p-character of P by Lemma 2.4 and thus there exists a unique
extension 7 of 7 to M with o(y) = o(f)). We have either 7(1) = 4(1)
or (1) = p(1). In the latter case, it is clear that 7 must be invariant
in G and hence it is extendible to X ¢ Irr(G). Now G/P does not have
a normal S, subgroup and thus has some irreducible character g of
degree divisible by p. Since X, is irreducible, gX € Irr(G) and this
contradicts e(G, N, §) = 1. Therefore we must have (1) = 4(1).

We claim now that ¢(G/N) =1. Let @elrr(M/N) with p|e(1).
It suffices to show that p*/®(1) and that ® is invariant in G. Now
e e Irr(M) and p%0(1)}(#He)(1). Thus p*fP(1l). Also (Hp)? is not
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irreducible so that 7 is invariant in G. Now let xe€G. Then
e = (Jp)* = §*p*. Since 7)* and 7} are both extensions of 4 to M, there
exists a linear character A of M/N with 7° = A%). Substituting in
the above, we obtain 7@ = AM)®*. Since 7 is an extension of 6 and
@ and A@® are irreducible characters of H/N, it follows by Proposition
1.4 that @ = A@*. Applying this to the complex conjugate character
@, we obtain @ = A@*, and thus @ = Ap®. This yields A\p® = A@® and
qu)z = @°,

Now o(n) = o(7). We have det(7)*) = det(\))) = A/ det()) where
f=7%@1) is a power of p. It follows that o(\) is a power of p,
and since p > 2, M is a power of A% Since @* = M@“ we obtain
P* = Ap® = @. Since ¢ G was arbitrary, @ is invariant in G and
we have thus shown that ¢(G/N) = 1.

We may now assume without loss that N = 1. In the notation
of [6], P has r.x.1 and by Theorem C of that paper, either P has an
abelian subgroup of index » or else [P:Z(P) =9p'. It follows
that either P has a characteristic abelian subgroup of index p or
|P: Z(P)| < p*» We claim that there exists A<]G, A< P with
[P: Al = p and A abelian. If this is not the case then |P:Z(P)| < p°.
Let S be an S, subgroup of M. Then U =[P, S]<]{G since for
geG, S = S for some xc¢ P. We claim that U < Z(P). Otherwise
V=UZP) >Z(P) and we choose Y <{G, maximal such that
Z(P)S Y< V. Let C/Y =Cs(V/Y). Then V/Y is a faithful
irreducible G/C module. Now |[V/Y| < »® and p =5 and hence it
follows from Proposition 4.3 that pt|G/C|. Since 27 (G) = G, it follows
that G = C and thus [V, G] & Y. In particular [U, S| Y NU< U.
Since U = [P, S] = [P, S, S], this is a contradiction and thus U & Z(P).
It follows that Z(P) 2 P N &7(G).

Since P is not abelian, P/Z(P) is not cyclic and thus G/Z%(G) is
not cyclic. It follows that there exists a subgroup M, <] G, with
M = M, and |G: M| = p. Now &7,(M,) = M, N P is not an S, subgroup
of M,. By induction, M,N P is abelian. Since |P: M,N P| = p and
M,N P<]G, the claim is established and A exists.

Suppose A\ is a linear character of A which is not invariant in
P. Let T=_%X). Then, PN T=A and hence p||G:T|. By
Corollary 1.3, it follows that e(T, A,\) =0 and 2*°/|G: T|. Since )
is obviously a p-character, it follows from Corollary 3.4 that 7/A
has a normal S, subgroup, of order exactly ». Let U be the group
of linear characters of A. Then G/A acts on U and we let Z = C,(P/A).
The above argument shows that if we U — Z, then C, (%) has a
normal S, subgroup of order p.

Let P/A =<x) and let W =[U, «z]. Then the map fiu — [u, x]
defines a homomorphism from U onto Wand ker f = Z. Set Y = G/A
and P, = P/A<]Y. Now Cy(P,) has index dividing p — 1. However
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&’ (Y) = Y and it follows that P, & Z(Y). Therefore, for ye Y and
ue U, we have f(u*) = f(u)* and f is 2 homomorphism of Y-modules.
Also, from P, Z(Y), it follows that Y has a normal p-complement
and thus so does every subgroup.

Since P is not abelian, A & Z(P) and it follows that x acts
nontrivially on U. Therefore W > 1 and hence V= W N Z > 1. Now
choose we V, w # 1. Let K be the normal p-complement of C.,(w).
Then K fixes the inverse image of w under f, which is a coset of Z.
It follows (by Theorem 1 of [2] for instance), that K fixes some
element we U with f(u) = w. In particular, ¢ Z so Cy(u) has the
normal S, subgroup, P,, of order p. Now K is a full p-complement
for C,(u) since Cy(#) S Cy(w). Hence Cy(u) = K x P, and

Cy(w) = KX P, x P, .

Now, Cy(V) <& Cy(w) and thus has a normal S, subgroup. Since
(YY) =P, P,is a full S, subgroup of C,(V).

Now suppose ve V with P, & C(v). Let P, be the subgroup of
order p in Cy(vu). Then P, # P, and P,# P,. Furthermore, since
flvu) = w, P, & Cy(vu) & Cy(w) and thus P, & P,P,. We may therefore
choose y ¢ P, with xy e P,. Then uv = (wv)* = 4" = w*v'. However,
w = f(u) = v'u* and 4* = uww. Hence uv = wwv® and [y, v] = v™%v = w.
Since wy = yw, it follows that 1 = [¢?, v] = w? and w has order p.
Since we V was arbitrary, V is elementary abelian. Also from
[y, v] = w, it follows that [P, v] = (w). Since ve V was arbitrary,
not centralized by P,, it follows that [P, V] = {(w). Therefore C,(P,)
has codimension 1 in V. Now choose w*eC,(P) with w* += 1.
Repeating the above reasoning with w* in place of w, we conclude
that [P}, V] = (w*), where P} x P, is a normal S, subgroup of
Cy(w*). By the choice of w*, P, < Cy(w*) and thus P, & P; x P,.
Since [P, V] =1, {w) =[P, V] & [P}, V] = <w*>. It follows that
C/(P,) = {w) and hence |V| = p*. Given any basis {v, w} for V, the
above argument shows that there exists ye Y with [y, v] = w and
thus Y acts irreducibly on V. Since p > 3, Proposition 4.3 applies
and p1|Y:Cy(V)|. It follows that Y centralizes V which is a contradie-
tion. The proof is complete.

COROLLARY 5.3 If p > 3, then u(l) = 2.

Proof. It suffices to show u(1) < 2. Let ¢(G, N,6) =1 with 0 a
p-character and G/N solvable. If ~,(G/N)= H/N is an S, subgroup
of G/N, then by Lemma 1.6, d.1.(H/N) < 2 and nothing remains to
be shown. Otherwise H/N is abelian. Choose an irreducible con-
stituent  of ¢” which is invariant in U, where U/H = &,(G/N).
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(Lemma 4.2). Let T = _“(y). Then ¢7(T/H) =1 and e(T, H, +) =< 1.
If &(T, H, ) = 0 then since v(0) =0, pt|T:H| and p*/|G:T| by Corollary
1.3. Thus p*/|G: H} and the result follows. If ¢(T, H, ) = 1 then
py|G: T| and the result follows from »(1) = 1.

6. The assumption p > 3 was used twice in the proof of Theorem
5.2. In this section we give examples to show that both uses were
essential.

ExampLE 6.1. Let P be the group of matrices of the form

8, <

1 z
0 1 = Mz, y)
0 0 1
where 2, y € GF(27). Then |P| = 3% and
P =Z(P) = {M(0, y)lye GF(2T)} .

Let e GF(27) have order 13. Then the map M(x, y)— M(x\, y\*') is
an automorphism of P of order 13. Denote this automorphism by o,
and let M be the split extension P {o;>. Now GF(27) has an
automorphism = of order 3 and we let ¢ act on M in the natural
manner, with (0,)° = 0,-. Let G = M {r). We claim that ¢G) = 1,
but «7(G) = P is not abelian.

It suffices to check that every irreducible character of P is stabiliz-
ed by some element of order 3 in G/P. Now 7 fixes the two linear
characters of P whose kernel is [P, v]. It is not hard to show that
P (z)/[P’, 7] has center of index 3° so all of its irreducible nonlinear
characters have degree 3. It follows that ¢ fixes all six nonlinear
irreducible characters of P with kernel containing [P’, t]. Since ¢
acts transitively on hyperplanes of P/P’ and of P’, it follows that
every irreducible character of P is conjugate in M to a character
fixed by ¢ and this proves the claim. Note that G contains no normal
abelian subgroup A of index 3 in P. Also, d.1.(P (7)) = 3.

ExampLE 6.2. Let A = =, a, ¥, ¥,y be elementary abelian of
order 3*. Let Y = {o)x S where o has order 3 and S=SL(2, 3). Let
Y act on A so that S acts in its natural manner on <z, #,> and on
Yy Yoy with 2, —y, and x,-—y, defining an S-isomorphism. Let
2 =2, and y? = y;. Let G be the split extension AY. Now
7WG) = A {o) is not abelian.

To show that e(G) =1, it suffices to show that every linear
character of A is fixed by some element of Y of order 3. Let U be
the group of linear characters of A and let VZ U be those whose
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kernels contain <y, %.>. The unique element of order 2 of Y fixes
no nonidentity element of U and hence for 1=+ uec U, Ciu) is a
3-group. Now the 3-subgroups of Y, either contain ¢ or else have
order 3. Since Cy(0) = V, it follows that if ue U — V, then |Cy(u)| < 3.

Each subgroup of order 3 of Y must centralize a subgroup of
order at least 9 in U since U is elementary abelian of order 3.
Since C,(V) = (o), it follows that each of the 12 subgroups of Y of
order 3, different from (o), centralize at least six elements of U-V.
Since these sets are disjoint, this accounts for all 72 elements of
U — V and the result follows.

In example 6.2, even though the normal abelian subgroup A does
exist, the conclusion of Theorem 5.2 does not hold. Therefore, the
second assumption that p > 3 was essential. Note that Example 6.1
shows that «(3) = 3.
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RINGS OF QUOTIENTS OF ¢-ALGEBRAS

D. G. JoHNsSON

Let 27 be a completely regular (Hausdorff) space. Fine,
Gillman, and Lambek have studied the (generalized) rings of
quotients of C(:Z°) = C(2Z7; R), with particular emphasis on
the maximal ring of quotients, Q(-Z”). In this note, we start
with a characterization of Q(:#”) that differs only slightly
from one of theirs. This characterization is easily altered
to fit more general circumstances, and so serves to obtain
some results on non-maximal rings of quotients of C(Z°),
and to generalize these results to the class of @-algebras,

We consider only commutative rings with unit. Let A be one
such, and recall that the (unitary) over-ring B of A is called a ra-
ttonal extension or ring of quotients of A if it satisfies the following
condition: given be B, for every 0= b’ ¢ B there is ac A with bac A
and d'a # 0. A ring without proper rational extensions is said to be
rationally complete. TFor the rings to be considered here (all are
semi-prime), the condition above can be replaced by the simpler con-
dition: for 0 = be B, there exists a € A such that 0= bac A ([1], p.
5). Accordingly, we make the following

DEFINITION. If B is an over-ring of A and 0 = be¢ B, say that
b is rational over A if there is a ¢ A with 0 % ba ¢ A.

Let mpBs2" denote the minimal projective extension of g2 and
T: mBZ — B2 the minimal perfect map ([2]). In [1], it is shown
that Q(2°) is a dense, point-separating subalgebra of D(mgG.2"), the
set of all continuous maps from mpB.2" into the two-point compactifi-
cation of the real line which are real-valued on a dense subset of
mpB.Z (see, also, [3]). Sinece Q(.2°) contains every ring of quotients
of C(#), this leads to

ProrosiTiON 1. If B is any ring of quotients of C(#°), then there
exist a compact (Hausdorff) space 2 and minimal perfect maps «
and v such that B is a point-separating subalgebra of D(Z/) and the
Sollowing diagram commutes:

MBZ" ——

r\l’
B .
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2/ is the obvious identification space, and the proof consists of a
routine argument to show that the quotient map « is closed, whence
2/ is Hausdorff. Since C(.#°) & B, the existence of v follows im-
mediately. (Note that, although D(mpB.2") is an algebra, D(%’) for
other spaces 7 is, in general, only a partial algebra.)

For our purposes, it is convenient to view C(2#") as a subalgebra
of D(B:Z). This allows us to decree that all spaces are compact
(Hausdorff).

Let us say that any space 27 that is situated in a commutative
diagram of the form

a
mz —— &

where all maps are minimal perfect, is near to 27 (Of course, the
existence of v automatically guarantees the existence of a.) Note
that we have already adopted the convention of identifying f e D(2°)
with its image f o~v in D(%2’) whenever convenient. With this con-
vention, if A is a subalgebra of (%) and fe D(%2’) then we may
consider f as an element of an over-ring of A—D(ms2")—, even if
there is no subalgebra of D(2) containing both A and f.

Now let A be a @-algebra that is closed under bounded inversion;
i.e., an archimedean lattice ordered algebra with a multiplicative
identity that is a weak order unit, in which 1/a € A whenever 1 < ac A.
Let &7 = _#(A), the space of maximal ideals of A with the hull-
kernel topology. It is shown in [4] that A is (isomorphic with) a
point-separating subalgebra of D(2°). If 27 is any space that is
near to 25 let A, = {f € D(%’): for each nonempty open set % in
%/, there are a nonempty open set 7" & % and ge A such that
Sl =9gl,}. Note that A, is always a lattice. However, it need
not be an algebra:

ExAMPLE. Let 27 = %/, the one-point compactification of the
countable discrete space, and let A = C(:27). Then A, = D(%), which
is not an algebra.

REMARK. One readily shows that the open sets 7° appearing in
the definition of A, can always be shown to have the form v (],
where 27; is open in 27 It follows that

A, ={feDZ) foacA,.}.

ProrosiTION 2. (i) Ewvery element of A, is rational over A*
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(and, hence, over A).
(ii) A, contains every rational extension of A and A* in D(Z/).

Proof. (i) Let 0= feA,, and let Z be a nonempty open set
contained in cozf. Since feA,, there exist a nonempty open set
7 =y [¥]1< U, where <[ is open in 2, and he A* such that
flo-="hl,. Choose 0 # gec A* withcozg & 7;. Then 0 == fg=hg e A*.

(ii) Let feD(z’)\4,. Then, there is a nonempty open set %
such that f agrees with no member of 4 on any nonempty open sub-
set of . Choose gec A* with ¢ = coz g & % .

There is no he A with kg == 0 while fhe A. For, such » would
agree with a unit 4, of A on some nonempty open subset 7 of Z
(since A is closed under bounded inversion), whence

fl?/ = (h/hx)f|7 ’

while (1/h)hf € A, a contradiction. Thus, f is contained in no rational
extension of A.

Although A. may contain many different rational extensions of
A, it is not true that it is the union of such extensions, as is seen
in the example preceding Proposition 2. However, in those spaces Z/
for which A, is an algebra, A, is a @-algebra and is the largest ring
of quotients of A that “lives on” Z/. In particular, this happens when
D(%’) is an algebra (e.g., when % is basically disconnected or an F-
space). Hence, A,. is a @-algebra, since m.2" is extremally discon-
nected, and we obtain the following generalizations of results in [1].

THEOREM 1. A.,.. is rationally complete; thus, A,.. = & (4), the
maxitmal ring of quotients of A.

THEOREM 2. A,. is uniformly dense in D{(m.Z°).
THEOREM 3 ([1]). D(m.2") is rationally complete.

The proofs of Theorems 1 and 3 are virtually identical, and are
related to one found on p. 30 of [1]; we prove 1. To do so, we will
employ the following characterization of rational completeness (see

[1], p. 7).

The commutative ring B is rationally complete if and only if it
satisfies: for any dense ideal I of B, every element of Homj (I, B) is
a multiplication by an element of B. (In the present setting, an
ideal I of A, . is dense if and only if U{coz f: f eI} is dense in m2".)

Proof of Theorem 1. Let I be a dense ideal in A, and let
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peHom, _(I, A,e). By Zorn’s lemma, choose a family {Z,: ke K}
of open sets in m.# satisfying:

(i) % =U %, is dense in m.7;

(ii) the %, are pairwise disjoint;

(iii) for each &, there is f, € I such that f, is bounded away from
zero on 77, and both f, and ¢(f,) agree with members of 4 on % ..

Let f e D(ms2") satisfy

flo st
% g fe e
for each £ ¢ K. This is possible, since m.Z” is extremally disconnected,

80 mzZ" = B,
If geI and 2 e %, then

F@o@) = L gy = L) | () = LA (@) = (0)(0) -
Se(®) L %4

It follows that ¢ is multiplication by f. Clearly, fe A4, ., and the

proof is complete.

Proof of Theorem 2. Let feD(ms2"),e> 0. By Zorn’s lemma,
choose a family {Z,: k € K} of open sets in m.2” which satisfies:

(i) Z = U %, is dense in m.2;

(ii) the %/, are pairwise disjoint;

(iii) for z, y e #., |f(x) — f(y)] < e (in particular, f is real-valued
on Z’.).

For each k¢ K, choose %, ¢ %, and define g: Z — R by

9(y) =fw) if yez..

Since m.2" = 87/, ¢ can be extended to § € D(ms#"). Clearly, gc A, -,
and

If—gl=e.

Now the analogue of Proposition 1 for @-algebras is routinely
obtained.

In case 27 = m.2" and A = C(Z°) one readily translates the de-
finition of A, (using the fact that m.2" is extremally disconnected,
and hence that every dense subspace is C*-embedded) as follows:

A, = lim{C(5°): & is a dense open subset of #7}.

Thus, the Fine-Gillman-Lambek result that this direct limit is Q%)
follows from Theorem 1.
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It is easily seen that any @-algebra A is a rational extension of
its bounded subring A4*, and hence that (A*), = A, for any space 2/
near to _Z(A). Thus, if A is closed under uniform convergence, then
&(A) = @(A*) = Q(_#(A)), since A* = C(_#(A)). In the general
case, this may fail to hold. (So, more generally, A, = C(.Z(A)),
even when A S C( .7 (A)).)

ExamrrLE. Let A = Q(R). Then (see [1], p. 34),
A= @(A%) # D(mR) = D(M(A")) = QM(A")) .

For any @-algebra A and any space 2/ near to .27 = _7 (A), every
subalgebra of A, that contains A is a ring of quotients of 4. Of
interest are those that separate points of Z/; prime candidates are
the maximal subalgebras of A, containing A, which are easily seen
to exist.

The results that follow are obtained using ideas and methods
employed by Nanzetta in [6] (see his 2.1, 2.3, 4.1). Conversion of his
arguments to the present setting is largely an exercise in careful
bookkeeping, and the details are omitted.

THEOREM 4. If B is a maximal subalgebra of A,, then B is a
lattice (hence, a ®-algebra).

We will use the term “maximal subalgebra of 4,” to denote
only those that contain A.

DEFINITION. Let B be a subalgebra of D{%z/). A function fe€
D(z7) is said to be locally in B if each point of %2/ has a neighbor-
hood on which f coincides with some member of B. The subalgebra
B is said to be local (in D(#)) if each member of D(%/) that is locally
in B is a member of B.

THEOREM 5. FEwery maximal subalgebra of A, is local.
As in [6], this fact yields the following result.

THEOREM 6. Let B be a maximal subalgebra of A., and let &
be a stationary set of B. If |.&7| > 1, then

(i) &7 s closed;

(ii) &7 s mowhere dense;

(iii) .&” is connected.

COROLLARY. If % is totally disconmected, then every maximal
subalgebra of A, separates points of Z/. (Note that this may occur
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even when A, is not an algebra: see the example preceding Proposi-
tion 2.)

It is not known whether every space Z” near to 2 supports
(i.e., is the structure space of) a ring of quotients of C(=2°). Ap-
parently, an answer to this question awaits a more systematic des-
cription of the collection of spaces near to 27

Note that (4.)*, the set of bounded elements of A,, is always a
¢-algebra. Hence, it is always a ring of quotients of A*—the largest
bounded ring of quotients of A* in D(2/). As mentioned above, it is
not known whether (A,)* always separates points of Z/; it clearly
does so if and only if A4, does. However, the example that follows
shows that A. may separate points in 2 even though 27 supports
no ring of quotients of A.

ExampLE. Let &7 = {(#, sin (1/x)); x € (0, 1]}, let 2 denote the
one-point compactification of &4 and let 22 = & U ({0} x [—-1, 1]). Let
A denote the @-algebra of all functions f e D(.2") that satisfy the
following condition:

There is a real number x, 0 < x, < 1, and a real polynomial p
such that

f(x, sin l) = p(l) for 0 <2 <«
x x

(cf. [4], 8.6). Then (A.)* = C(2’), whereas no subalgebra of D(z")
containing A separates points in 27 ([6], Theorem 4.6).

In passing, it should be noted that the development here has
proceeded independently of [1]. The only results from that work
that have been employed in an essential way came from Chapter 1
of [1], which consists of standard facts about rings of quotients of
commutative rings (see, e.g., [5]). Thus, one can rapidly and ef-
ficiently reach the high points of the theory developed in [1] along the
lines suggested by this note.
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TRANSLATION PLANES CONSTRUCTED
FROM SEMIFIELD PLANES

NorMAN L. JOHNSON

Let = be an affine plane of order ¢* that is coordinatized
by a ‘‘derivable’’ semifield & = (&, +, ). If (&, +) is a
right vector space over F = GF(q) then a plane =’ may be
constructed from = using Ostrom’s method of ‘“derivation.”

The purpose of this article is to examine the planes =’
and their coordinate structures (57, +, ). It is shown, in
particular, that (57, +, *) is a (right) quasifield which is
neither a nearfield nor a semifield, Furthermore, it is shown
that =’ is always of Lenz-Barlotti class IVa, 1.

The automorphism groups of semifields of square order
are also briefly investigated.

1. The Construction of Quasifields from Derivable Semifields.
We will assume that the reader is familiar with the concept of “deri-
vation.” For background material the reader is referred to [2], [4],
[6], and [7].

DEFINITION 1.1. A semifield & = (& +, +) of order ¢*, ¢ =", »
a prime, will be said to be derivable if and only if (&% +) is a vector
space over GF(q) = F where FF& . and ¢ -a = 2« (or a « ¢ = azx)
is scalar product.

If a semifield & is derivable then either .&¥ or dual & (i.e.,
right multiplication becomes left multiplication, and conversely) is a
right vector space over GF(q) and hence either the affine plane 7 co-
ordinatized by .&” or an affine restriction of the dual of the projective
extension of 7 is derivable (see sections 3 and 4, [7]).

A projective plane is a semifield plane if and only if it ecan be
coordinatized by a semifield or if and only if the plane is (P,1)-
transitive V points Pel, and (Q, [)-transitive V lines e @ and Qel.

If Q,1 are chosen to be (c0) and l., respectively, then the coor-
dinate structure obtained is a semifield. In dualizing the semifield
plane © we shall let (o)« 1[. and then delete l. to obtain an affine
plane coordinatized by a semifield dual to a semifield which coordi-
natizes 7.

DEFINITION 1.2. Let & = (%7 +, ) be a derivable semifield.
& is subcommutative if and only if aa = aa for all a e .o” and for
all o« € GF(q).

DEFINITION 1.3. A semifield . of order ¢* containing GF(g) is

701
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a weak nucleus semifield (wn-semifield) if and only if (ab)e = a(be)
whenever any two of «, b, ¢ are in GF(q).

Note that a wn-semifield of order ¢* is derivable and a derivable
subcommutative semifield is a wn-semifield.

Let . be a derivable semifield which is a right 2-dimensional
vector space over GF(q). Let {1,t},te. % — GF(q) be a basis for &~
over GF(q).

Then let B(ta) = th(B, @) + k(B, o) and (ta)(t8) = tf(a, B) + 9(a, B)
for o, 3¢ GF(q) where h, k, f, g are bilinear functions: GF(q) x GF(q) —
GF(g) which introduce no zero divisors into the multiplication.

Then multiplication in the semifield is given by:

(ta + o) tB + v) = t(fla, B) + R(3, B) + av)
+ (9(a, B) + K(0, B) + 67) .

Thus, if .5 is any derivable semifield then either the multiplica-
tion of & or dual .&¥ is of the above form.

THEOREM 1.4. Let & = (% +, +) be a deritvable semifield which
18 a right wvector space of dimension 2 over F = GF(Q),q=7p,p «a
prime. Let the multiplication in & be given by:

(ta 4 0) - (tB + 7) = t(fla, B) + h(9, B) + av)
+ (9(a, B) + k(8,8 + V) Va,B,0,7eF

where f, h, g, k are bilinear functions: F X F— F,
Define a system .&°* = (& +, *x) when the =-multiplication is
given by

txa=ta, (ta+ B) =7 =tay) + gy and if 6+ 0

(tae + B) = (td + v) = to + X where
(1) A, p) =1,
(2) k(o, M)+ 5/'52 =7,
(3) f(a, )ul) + ]’L(P, #1) + ap, = 6,

(4) g(a, )ul) + k(p, ﬂl) + oY, = V4
Ve, 8,0 # 0, ve F where p, ¢, and thus o, X € F are determined

from the above equations.
Then .&7* = (&4 +, =) is a (right) quasifield.

Proof. The affine plane @ coordinatized by .&” is derivable (see
[21,[6], [7]). Ostrom [6] has shown that the plane 7’ derived from
7 is a translation plane and may be coordinatized by a system

(F +,ota=txa, (ta+ B)«td +v)=to+ X
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if and only if (ta + p)(E, + ) = t8 + X where 0(tge, + t) =t + v
for 0 # 0, and (ta + B) v = (ta + B) for all o, B, 0, ve GF(q). Our
equations are obtained by merely equating vector components.

We shall now specialize (1.4) to the case where .&” is a wn-semi-
field.

Knuth [4] has shown that if .&” is a wn-semifield then a basis
{1, ¢} can be chosen so that at = ta°Va € GF(g) where ¢ is some auto-
morphism of GF(q). In this case, h(d, 8) = 0°6 and k(5, B) = 0 for
all ¢, Be GF(g).

Thus A0, p) = 6°¢, = 1 implies g, = 6=° and k(0, p,) + opt, = v
implies that g, =6~y for ¢ = 0. Thus fla, 1) + Ko, 1) + ap, = 8
implies that f(a, 67°) + 0°0~° = a6~y = 8. Hence

0= ((B—fla,d7) —ad™1)e°)™ = (B — fla,67°) — ad~v)"5 .
Also, g(a, tt,) + k(o, tt.) + oy, = X implies that g(a, 67°) + ooy = X.

Thus, we have the following theorem.

THEOREM 1.5. If & = (< +, +) is a weak nucleus semifield of
order q°>3 multiplication in &7 is given by

(ta +0)(tB + 7) = Ufla, B) + 0B + av) + (9(a, B) + 67) .

Define a system .* = (& +, =) by defining a x-multiplication
as follows:
txa=ta, (ta+ 0)x (8 +7) =t — fa, B7) — ag™ )78
+ g(a, 87°) + (0 — fla, B7°) — @B~y

for ¢ = 0 and ¢ an automorphism of GF(g), and
(ta + 90) x v = (ta + d)YVa, B, 0, Y€ GF(q) .
Then .&* is a (right) quasifield.

REMARKS 1.6. Under the assumptions of (1.5)

(i) ara=ax*a"'VaeGF(q) and Vae.&¥ — GF(q),

(ii) (@=b)+c =a=(bxc) whenever any two of a,b, ¢ are in
GF(q).

Proof. The proof of (1.6) is routine and is left to the reader.

2, Automorphisms of derivable semifields which fix GF(q)
elementwise. The semifields of order 16 have been tabulated, [3],
and are all isotopic (Sec. 3, [4]) to one of two weak nucleus semi-
fields, each of which admits a group of automorphisms of order 3
which fixes GF(q) elementwise (see [4]). The multiplications for the
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two systems are given by (ta)(t0) = ta’o* + a*d, Bt = t&*Va, 9, B € GF(4)
and (ta)(t0) = wa®, Bt = tG* where @ is a primitive root of GF(4).

The semifields of order 16 are exceptions among derivable semi-
fields of order ¢ in that no derivable semifield of order ¢2, q¢ > 4 can
admit such automorphism groups.

THEOREM 2.1 Let (& +, +) be a derivable proper semifield of
order @*. Then &7 is of order 16 if and only if a derivable isotopic
mage of .&F admits a group of awtomorphisms of order ¢ — 1 which
fizes GF(q) elementwise.

Proof. Suppose the indicated automorphisms 7z, that the form
tto =tovpoe GF(q) — {0}. (Note: This would be true by (2.2) if .&
is a wn-semifield and o = 1, but we are not necessarily assuming this
property.) If & is a left vector space over GF(q), consider dual .54
Let {1, t} be a basis for .$” or dual .&#

(Ga)@B))» = (tfa, B) + g(a, B))e where f, g are bilinear functions:
GF(q) x GF(q) — GF(g). Thus,

(t(oa))(t(0B)) = t(of(a, B)) + 9(e, B)

which implies that of(a, B) = floa, 0B) and g(a, B) = g(oa, pB). Since
we have ¢ — 1 automorphisms 7, these previous equations are true for
all o, B, 0 € GF(q) — {0}. 1f characteristic F' + 2 then g(2p, 20) = 9(2, 2).
But ¢ is bilinear so ¢(2, 2) = 4¢(1,1). Also g(a, a) = g(1,1) so that
49(1, 1) = g(1,1). Moreover ¢(1,1) == 0 since £ = #{(1,1) + 9(1,1) and
multiplication of nonzero elements is a loop.

Hence 4 = 1 so that characteristic ' = 3.

Since g(pa, 0B) = g(a, B)Va, B, p € GF(q) — {0} then
g, (@ +7) =g(a+71) =gl 1)+ g(r, 1)

for a + v # 0.
Thus, ¢(1, (@ + 7)™ — (9(e, 1) + g(7, 1)) = 0, which implies that
g(1, (@ + )™ + 2(9(a, 1) + 9(7, 1)) = 0.
Clearly, 29(B, 1) = 9(28, 1)VB e GF(q), and ¢(25, 1) = 9(1, 287"), so
91, (a + v)™) + 92a, 1) 4+ g(27, 1)
= g9(1, (@ + 7)) + g(1, 2a7) + 9(1, 2v7)
=g(1, (¢ + 7)™ + 2a7 + 2v7Y)
=g, (@ + 77— (@’ +77).

If (a+v)7"#at+ ", then

a4+ 7)1 = (e + ™) = (L, (@ + ) = (a™ + 77N)
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which cannot be the case. Hence (o + 7)™ =a* + v It is easy
to see that in this situation GF(q) = GF(3).

But then & would be a field ([4], p. 208) contrary to our as-
sumption.

Hence, characteristic 7 = 2. Then, using the bilinearity of g we
may argue as before (except that —1 = +1) to obtain (a + v)*' =
a™ + v from which it follows that GF(q) = GF(4).

To complete the proof of (2.1) we must show that the automor-
phisms 7, have the form t°0 = tp.

Let 7 be the affine plane coordinatized by .&” and let w, be the
subplane of 7 coordinatized by GF(q).

The automorphism group of . induces a collineation group of
7 which fixes 7, pointwise. In the derived plane there is a collinea-
tion group of order ¢ — 1 fixing the line {(x, y)|x = 0} pointwise.
(The validity of this last statement may be seen by choosing coordi-
nates for the derived plane so that 7, in 7 is the point set {(z, y)|x = 0}
in the derived plane. See e.g. [6], Theorem 10.)

Thus, the derived plane 7’ admits a (P, # = 0)-homology group of
order ¢ — 1 (see [2], remarks following (2.6)). Moreover, this group
must fix the set points of 7, on the line at infinity of the derived
plane where 7 is the line © = 0 in 7 (see [6], Theorem 7). Hence,
P = () where a € GF(q). If a =0 we can rechoose ¢ in .%” so that
P is represented by (0).

Now {(t0 + ad, t8 + aB)} in & is the same as {(td + B, tad + aB)} in
' ([6], Theorem 10). If we let ¢t =t + « then {(¢9, tB8)} is {(¢d + B, 0)}
in 7’. Hence, we have relabeled {(z, ¥)|y = za} in ' by {(z, y)|y = 0}.
Thus, P = («) is relabeled by (0).

Now a group of ((0), # = 0)-collineations which fix z; induce auto-
morphisms of the form 7,3 (ta + B)r, = o) + B in & (see [2],
(2.10), and the proof of (3.10)).

Hence (2.1) is proved.

ProposITION 2.2. Let (S4 +, +) be a wn-semifield of order ¢* with
multiplication defined by (ta)(tB) = tfla, B) + g(a, B), 0t = té°, 0 an
automorphism of GF(q), Ve, 8, 0€GF(q). If o+ 1, and if T is any
automorphism of (&, +, ) fizing GF(q) elementwise then (ta + B)° =
H{oa) + B for some p e GF(q).

Proof. (at)® = at* = at*. Let ¢ = tp + 0 for some p, 0 € GF(q).
Then at” = ta’o + af and (at)” = (ta°), 'a° = toa’ + 6a°. Hence,
af = 6a° which implies 4 = 0.

THEOREM 2.3. If a derivable semifield & = (&4, +, +) of order
Q% 9 > 2 admits a nontrivial automorphism group E which fixes
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GF(q) = F elementwise and |Z||q then & is an elementary abelian
2-group whose order is strictly less than q.

Proof. Without loss of generality, suppose that (& +) is a right
vector space over F. Then it follows directly from [5], Theorem 1,
that if ze & and {1, t} is a basis for (% +) over F then " =¢ + v
for some v e F.

Let 6(tB) = th(d, B) + k(3, B),

ta)tp) = ifla, B) + 9(a, BVa, B, 6 € GF(q)

where f, g, h, k are bilinear functions: GF(q) x GF(q) — GF(q).
Then, (ta)(tB)” = (tfla, B) + g9(a, B))° if and only if

(ta)(tB) + th(ve, B) + avpB)
+ k(ve, B) + Tap = (ta)ip) + 1fla, B) .

Equating vector components:

(1) hlva, B) = —avBYea, 8 and

(2) k(va, B) + Yap = 7fla, B).

If «a =v"1in (1), then (1,8 = —B. But, (1,8 =p. .. F is
of characteristic 2. Thus, Z is an elementary abelian 2-group.

Now assume |Z| =q. Then, by (2), k&(1, 8) + 78 = (v, B) =
vB so that f(v™, 8) = B for all ye F. But

AN+, 8 =AA""8)+ (v, B) =0
since f is bilinear and F' is of characteristic 2.

Hence, (2.3) is proved.

COROLLARY 2.4. If .&¥ = (% +, +) is a wn-semifield of order ¢*
which admits a montrivial automorphism group € such that |<||q
then |2 | = 2.

Proof. By (2.3)2), k(va, B) + 7*aB = vf(a, B).

We may choose te.&¥ — Fak(va, 8) =0Va, B, ve F so 7ag =
YAle, B) = vap = fla, B). Clearly |.&”] =2 for otherwise it would
follow that vag = 4+ aB for v # +#"Va, B F.

COROLLARY 2.5. If .S = (% +, -) is a wn-semifield which admits
a group & of (2.4) then there is a t€.&¥ — F such that

(ta + 0)tB + 7v) = tasf + 08 + av) + (9(a, B) + 97)

where g 1s a bilinear function FF X F— F and f is a nonzero con-
stant in F.
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Proof. 3te . — Faat =ta’Ya e F, ¢ an automorphism of ¥. By
(2.2), 0 =1. By (2.4), || =2and if te &5t =t + ffla, B) = aBf.

COROLLARY 2.6. Let (&% +, ) satisfy the hypothesis of (2.3) and
(& +, =) the quasifield of (1.4). Consider the following distributive
law:

cx(@+b)=cxa+cxb

for all ¢, be.s” and for some ae F.

Then

(i) 1if char F = 2 this distributive law cannot hold for any non-
zero ce k),

(ii) if char F = 2 and (% +, ) is a wn-semifield then the dis-
tributive law holds for at most a single nonzero element of F),

(iii) if char F' = 2 this distributive law cannot hold for all @ e F'.

Thus, in particular, (&4 +, *) is not a semifield.

Proof. The given distributive law induces a ((<0), = 0, 7,)-col-
lineation in the affine plane coordinatized by (.&4 +, x) and hence
([2], see the proof of (3.10)) an automorphism group in (& +, ) as
in (2.3).

We have seen that (&7 +, =), if & is a wn-semifield, admits
some associative properties ((1.6) (ii)). In general, however, we note
that (&4 +#) cannot be associative.

THEOREM 2.7. If &¥ = (% +, +) ts a derivable semifield > (57 +)
18 & right vector space over GF(q) then (&, +, *) is neither associative
nor distributive.

Proof. The affine plane coordinatizing (.& +, ) is ((e), z = 0,
)-transitive ([2], [6]) and thus (& +, ) admits a group of auto-
morphisms of order ¢ which fix GF(q) elementwise. But regular
nearfields clearly cannot admit such automorphisms. The irregular
nearfields all have order »* where p is a prime. If . has order p*
then & is a field ([4]) in which case (& +, %) is a quasifield which
coordinatizes a Hall plane.

3. The Knuth multiplication. Let (& +) = (GF(¢?), +). Let
te ¥ — GF(q) and define at = ta’ where o is an automorphism of
GF(q). The functions fla, B) = a” &%, 9(a, B) = a’R’g where _+; X, 0,6
are automorphisms of GF(q), o, B GF(q), f, 9 constants in GF(q) are
bilinear functions: GF(q) x GF(q) — GF(q).

at = ta’, (ta)(tB) = ta” B* + a’R’y
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will define multiplication of a semifield & = (&4 +, +) provided no
zero divisors are introduced by the choices of o, #;X, p,0,f and g¢.
If no zero divisors occur, we shall say that the semifield so defined
is a Knuth Semifield.

THEOREM 3.1. (Knuth [4]). Let

& = (S +,*)3(S +) = GF(@)
and
(ta + 0)(tB + ) = tla” B* + av + §°3]
+ [a*B’g + 07]Ve, B, 0, v € GF(q)

where 4, X, 0, 0,0 are automorphisms of GF(q) and f, g elements of
GF(q).

(@) If f=0 and g is a nonsquare in GF(q) then the above mul-
tiplication defines a Knuth Semifield for an arbitrary choice of auto-
morphisms @, p, 0.

That is, at = ta°, ta)(tB) = arB°g for arbitrary automorphisms
0,0 of GF(q) and g a nonsquare in GF(q) define a semifield.

(b) If f+0 and o, f, g are chosen so that y°** + fy — g = 0 has
no solutions in GF(q) and (45X, p,0) = (0,07, 0,07, (0,1, 0,1),
A,07, 07 07 or (1,1, 07, 1) then the above multiplication defines a
Knuth Semifield. That is, each of the following multiplications define
a class of semifields:

I. at =ta’, (ta)tB) = ta’S” f + a’8" g

I at = ta, (ta)(tp) = ta’Bf + a’Bg

II. at = tas, ta)(tR) = tap" 'f + a° ' g

IV. at = ta’, (ta)tp) = tagf + a’'By.

Furthermore, Knuth [4] has characterized types II, III and IV in
terms of the nuclei.

DEFINITION 3.2. Let (Q, +, +) be a ternary system. Let

{xeQ|(ab)x = a(bx)Va,beQ} = M7 ,
{xeQ|(ax)b = a(xb)Va,beQ} = A4 ,
{xeQ|(za)b = x(ab)Va,beQ} = A 7yq ,

A ovay N ovgy N wo Will be called the right, middle, and left ‘nucleus
of @, respectively.

THEOREM 3.3. (Knuth [4]). Let (& +, ) be a Knuth Semifield
of order ¢*. Then GF(q) = Vo = N, if and only if 7 is of
type II. GF(q) = A0 = A .5 tf and only if & is of type III,
and GF(Q) = N o = N0 if and only of &7 of type IV.
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By applying (1.4) to (3.1), we obtain the following result:

THEOREM 3.4. FEach of the following multiplications = (with field
addition) defines a (right) quasifield which is meither o semifield or
nearfield. If B + 0,

(1) (a+8)«(t8+7) =t —ag™ ) B+ (0 —apg™ )
+ a”B g, g a nonsequare in F

(2) (tae + 0) = (.8 + 7) = t(0 — a’B™f — aB™7) 'R
+@—aBf—ag™) v +ag g, 0~ 1, f =0

(3) (ta + 8)+ (t8 + 7) = t(6 — a’B~f — ™) B
+ (0 —a’Bf —aBp™) v+ a’B8 g, 0% 1, f %0

(4) (ta + ) = (¢8 + 7) = (0 — aB™f — aB™Y) 'R
+@—aBf—ag™ ) v+ a T g, 0= 1, f#0

(5) (ta + 8) = (t8 + 7) = (0 — ap~f — aB™ 1)

+ 0@ —agf—apg™)y v +a g g, 0 # 1, f # 0.

Also, (ta + 6) x v = t(ay) + 0v where o is an automorphism of F and
in cases (2) through (5) y°** + fy — g # OVy e GF(q) and 77, X auto-
morphisms of F in case (1).

Proof. See (1.4), (2.7) and (3.1).

4. The planes coordinatized by the (%] +, *) quasifields, A
plane Y is of Lenz-Barlotti Class I1V.a.2 or IV.a.3 if XY can be coordi-
natized by a (right) nearfield, and of Class V.1 if ¥ can be coordi-
natized by a semifield. ¥ is of Class IV.a.l if ¥ is coordinatized by
(right) quasifield but no coordinate system for Y is a (right) nearfield
or semifield.

The planes coordinatized by the (&4, +, x) quasifields are there-
fore of L-B Classes IV.a.l, a.2,a.3, or V.

THEOREM 4.1. Let &¥ = (S +, +) be a derivable semifield 5 (&, +)
18 a right vector space over GF(q). Let © be the semifield plane co-
ordinatized by . w is derivable, so let ' be the plane derived from
. Then ©' is of Lenz-Barlottt Class IV.a.l.

Proof. We must show that 7’ cannot be of type IV.a.2, a.3, or
V.1.

Suppose 7’ is of type V.1, then 7’ is ((m), [)-transitive for all lines [
incident with (m) where mlIl... By (2.7), (m)+ (o) since F*=(, +, *)
is not a semifield. Clearly (m) is fixed by the full collineation group
of ' (otherwise 7’ is Desarguesian and every coordinatizing structure
is a field). Recall (see proof of (2.7)), &* admits an automorphism
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group of order ¢ fixing F pointwise such that t—¢ + « for all «c F
(see (2.3) and (2.7)). Hence, me F if ©’ is ((m), l)-transitive.
We consider two cases:

(1) (m)=(0), (2) m=(0).

Case (1). If (m) = (0), consider changing coordinates as follows
in &7 (in 7):

coordinate
change ¢

(ta, + @ Ly + ¥2) — (2, + @y, LYy + YOIV, Ty Yy, Yo EF

S0 is a derivable semifield (see [2], the proofs of (3.6) and (3.7)).
The coordinate change appears as (zx, ¥) —(y, %) in @' (see [2],
(3.7)) and thus induces a Hall coordinate system .&%*s 7’ is ((o=), x =

0)-transitive. .. .%* is a (derivable) semifield. However, .&%* is con-
structed from &2, = & in the same manner that $* is constructed
from &% .. we have a contradiction by (2.7).

(2) (m)=(0).
Choose ¢ =t + m (recall me F) in (&, +, +). Then in 7’

(y = om) = {(x, y)|v = ta + B, y = t(am) 4 (Bm)}

is the same as {(ta + am, t8 + Bm) = (T, tR)} =y =0 in ©’. Hence,
by case (1) we have a contradiction.

Assume that 7’ is of type IV.a.2 or a.3. Then 7’ is ((P), (Q))-
transitive for some pair of points (P), (@), P # Q.

Moreover, every collineation of 7’ must fix {(P), (@)}. Therefore,
since .&* admits an automorphism group of order ¢ it must be that
P,QeF or P,Q = oo.

Now if we can change coordinates so that .5%* is a nearfield and
SZF admits an automorphism group of order ¢, then we have a con-
tradiction since the order of an automorphism group of a nearfield of
order ¢*(g = p", r > 1) is never this large.

Let (P) = (a) and (@) = (B), ¢, Be F or a, B = oo.

Case (1). (a) = (o). Since .&¥* is not a nearfield (see (2.7)),
(8) # (0). We can rechoose ¢ in & (in 7)) so that y =28 is y =0
in ' (i.e., if t =t + B) and (o) in 7’ is left fixed. .. .&°* with the
basis {1, ¢} is a nearfield and admits ¢ automorphisms.

Case (2). (a) # (o0), (B) # (), (@) = (0). We can move (0) to
() by the (z, ¥) — (y, x) coordinate change of .&“* of the previous
argument. Therefore, ©’ is ((co), (v))-transitive for (v) = (0). Then,
we may rechoose ¢ in &% so that (v) is (0) in $%* (or in 7’). Since
%% is a (derivable) semifield, &2 admits an automorphism group of
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order ¢ which is a contradiction.

Case (8). (a), (B) # (o) or (0). First rechoose ¢ in & so that
(a) is (0), then repeat Case 2.

REMARKS. If (&4 +, -) is a derivable subcommutative semifield
then a “derivable chain” (see [1]) can be constructed based on the
affine plane coordinatized by (<& +, -).

(&, +, +) actually need not be finite to construct (&, +, ). That
is, Ostrom’s “derivation process” extends for infinite translation planes.
We shall explore this in a later paper.
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QUASI-PROJECTIVE AND QUASI-INJECTIVE MODULES

ANNE KOEHLER

This paper contains results which are needed to prove a
decomposition theorem for quasi-projective modules over left
perfect rings,

An R-module M is called quasi-projective if and only if for every
R-module A, every R-epimorphism ¢q: M — A4, and every R-homomor-
phism f: M — A, there is an f' € Endz(M) such that the diagram

M
77 s
/(I
M— A—10

commutes, that is, gof’ = f. An R-module M is called quasi-injective
if and only if for every R-module A, every R-monomorphism j: A— M,
and R-homomorphism f: A— M, there is an f' e End,(M) such that
the diagram

0—s Ay

//
fl 7
M

commutes.

The first section of this paper contains results which are needed
to prove a decomposition theorem for quasi-projective modules over
left perfect rings (Theorem 1.10). This decomposition is a characteriza-
tion for quasi-projective modules over left perfeet rings. A ring is
left perfect if a projective cover (the dual concept of injective
envelope) exists for every left R-module [4, p. 467]. It is known, for
example, that left Artinian rings are left perfect [4, p. 467]. Some
of the propositions are stated for semiperfect rings which are rings
such that every finitely generated module has a projective cover [4,
p. 471].

In the second section the decomposition for quasi-projective modules
is used to obtain a decomposition for quasi-injective modules over a
special class of rings. For these rings this decomposition characterizes
quasi-injective modules. This decomposition theorem (Theorem 2.5) is
specialized to the cases where the ring is quasi-Frobenius and where it
is a finite dimensional algebra.

Jt will be assumed that all rings have an identity and that the
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modules are unital. Modules will be left R-modules, and homomor-
phisms will be R-homomorphisms unless otherwise stated. When S
is the centralizer of M in the sense of Jacobson [8], the notation
will be abused and be written S = End,(M). Actually, S operates
on the right is anti-isomorphic to End.(i). The radical will mean
the Jacobson radical and be denoted by N. A direct sum of card (/)
copies of M will be written M’ unless card (I) = n < o, and then
M will be used in place of M’. Also 3. . P M7 is a direct sum
where M?” is g(i) copies of M, and g(i) can be any cardinal number.
If g(?) = 0, then M/® = 0.

I wish to thank Professor Azumaya who suggested that I in-
vestigate quasi-projective modules.

1. Quasi-projective modules. The goal of this section is to
prove Theorem 1.10 which is a characterization of quasi-projective
modules over left perfect rings. The first proposition to be presented
was proved by Wu and Jans.

ProprosITION 1.1. Let R be a semi-perfect ring. Then M is a
finitely generated, indecomposable, quasi-projective module if and only

if M = Re/Je where e 1s an indecomposable idempotent, and J is an
ideal of R [12, Thm. 3.1].

PropoSITION 1.2. Let R be a semi-perfect ring. If Re/Je+0
where e 1s an tndecomposable idempotent and J is an ideal, then Je = J'e
where J' is an ideal contained in the radical N.

Proof. The module Ne is small in Re [4, p. 473]. Since Re is
indecomposable and the projective cover of Re/Ne, Re/Ne is inde-
composable. It is known that R/N is completely reducible if R is
semi-perfect [4, Thm. 2.1]. Thus Re/Ne is simple, and Ne is
maximal in Re. Now Je & Ne because Ne is both maximal and small
in Re. Let J ' =JN N.

ProrosiTION 1.3. If M is quasi-projective and has a projective
cover P—— M——0and if P=3S@P, (acl, and indexving set), then

M= > &M, and P, M, —0is the projective cover of M, where
7w, = w|P,.

Proof. The proof for the finite case [12, Prop. 2.4] will work
here also.
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PropoSITION 1.4. Let Pa—”f”—e M,—— 0 be the projective cover of
M, where acl, an tndexing set. If f(Ker m,) & Ker m, for every
a,be I and fe Homg(P,, P,), then X P M, is quasi-projective.

Proof. 1t is sufficient to show that ¥ @ Ker «, is an End, (3 D P,)-
module [12, Prop. 1.1]. Let g, be the projection of ¥ P, onto P,
and feEndz(X P P,). We will be done if we show f(Kern,) S
Y@PKerrw,., Let xeKerm, Since q,o(f|P)eHomg(P;, P,), flx)=
Qoo N)@) + <+ + (o, o )@)€ Kerm, + +-- + Kerrw, & 2P Kerrz,.

REMARK. If [ is finite or R is left perfect, then the converse is
true, that is, if ¥ M, is quasi-projective, then f(Kerw,) < Kerr,
for every a,bel and fe Homg(P,, P,).

CorROLLARY 1.5. If M is quasi-projective and has a projective
cover, then M’ is quasi-projective.

ProrosiTiON 1.6, If M, and M, are quasi-projective and have
projective covers P, and P, which are isomorphic and M, D M, is
quasi-projective, then M, = M,.

Proof. The proof of the dual theorem for quasi-injective modules
[7, Prop. 2.4] can be dualized.

Bass has shown [4. p. 473] that if R is a left perfect ring and P
is a projective module, then P = ¥ @ Re; where Re;/Ne,; is simple and
e; i1s an idempotent in RE. This result will be stated in a different
form in the next proposition.

ProposiTION 1.7. Let R be left perfect. Then P is projective if
and only if P= >, @ (Re;)*” where Re,; is the projective cover of a
stmple module, e; is an indecomposable idempotent, k is the number
of mom-isomorphic simple modules, and Re; % Re; if ©+ + j.

Proof. Ne, is small in Re; [4. p. 473]. Hence Re; is the projec-
tive cover of Re;/Ne; and is indecomposable by Proposition 1.3. Since
R/N is left Artinian [4, p. 467], and the simple R-modules and the
simple R/N-modules are the same, there are only a finite number of
nonisomorphic simple modules. Also, simple modules are isomorphic if
and only if their projective covers are isomorphic.

ProrosiTION 1.8. Let R be semi-perfect and M be a finitely
generated, quasi-projective module. Then M is indecomposable (non-
zero) if and only if End,(M) is a local ring.
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Proof. (i) If Mis notindecomposable, then End (3 ) has a nonzero
idempotent ¢ which is different from the identity. Since neither e
nor 1 — e is a unit, End,(M) is not a local ring.

(ii) If M is indecomposable, then M = Re/Je where J’ is an ideal
of R and e¢ is an indecomposable idempotent. Thus M = R*e* where
R* = R/J. R* is semi-perfect [4, Lemma 2.2]. Since M is inde-
composable as an R*-module, ¢* is an indecomposable idempotent. In
addition End;(}M) = End;.(R*e¢*) = ¢*R*e¢*. Finally, e*R*e¢* is a local
ring because R* is semi-perfect and ¢* is indecomposable [10, p. 76].

LEMMA 1.9.  Let R be semi-perfect and 1= e, + +++ + e, where
ey, »* e, are orthogonal, indecomposable idempotents. If

Rel/Jlel @ Rez/Jzez @ e @ Rem/Jmem

s quasi-projective where J;, 1 =1, <<+, m, 1s an tdeal, then there is
an ideal J such that Je;, = Je; for © = 1, +«+, m.

Proof. The projective cover of 3\, €D Re;/J;e; is
S\ @ Re; —— 3, @ Reifd.e; — 0

where Kerw = 3. - P Jie;. Since End (3, B Re;) = >, 7, P, Pe;Rey,
it follows that Jie;-e;Re; < Jse; for ¢,5 =1, «++, m [12. Prop. 2.2]. Let

J:é@&@@(é@eﬁei)fc(l - gei)

Then J is an ideal because B = >\7., @ D L, B e;Re;. Also, Je; = Jie;
for 1 = 1.+, m.

REMARKS. 1. The proof for Lemma 1.9 remains valid if any sub-
collection of e,, «--¢, is used rather than the first m of them.

2. The result that for a semi-perfect ring 1=¢ + <+ + ¢,
where e, -+, e, are orthogonal indecomposable idempotents can be
found in [10].

THEOREM 1.10. Let R be left perfect. Then M is a quasi-
projective module if and only if

M= 38 (Re,/Je)

where J s an ideal, e, -+, e, are indecomposable idempotents, the
number of nonisomorphic simple R-modules is k, and Re,, ++-, Re,
are the corresponding mnonisomorphic projective covers. In addition
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the decomposition 1s unique up to automorphism.

Proof. (i) liet M be quasi-projective. If M = 0, then we can
choose J = R and be done. If M # 0, let P— M — 0 be the projective
cover of M. By Proposition 1.7 P = 3\, @ (Re;)*"” where Re,, « -+, Re,
are the nonisomorphic indecomposable projective covers of all the
simple modules. By Proposition 1.3 M = >, L, @ S..,, D M,.; where
card (I;) = g(i). Proposition 1.6 shows that M, = #,, for every
a,bel,. From Proposition 1.1 2{,, = Re;/J;e; with J; an ideal and
e; an indecompotent. As a result of Lemma 1.9 and the remark
following it, there is an ideal .J such that Je, = Je; for ¢ = 1, «--, k.

{(ii) Conversely, if M=%, P (Re;/Je;)*™ with the same notation
as in the statement of the theorem and J %= R, then Propositions 1.2
and 1.4 show that M is quasi-projective. If .J = R, then M = 0 and
is, of course, quasi-projective.

{(ili) Uniqueness. Using Proposition 1.8 and a generalized Krull-
Remark-Schmidt theorem which was proved by Azumaya [1, Thm. 1],
we have the following result: if >,... P M, and >,,.; P M| are two
decompositions of quasi-projective module into indecomposable, modules,
then there is a 1 to 1, onto mapping f: A — B such that M, = M;,,.

REMARKS. 1. Theorem 1.10 is true for semi-perfect rings if M
is finitely generated.

2. If M is nonzero in Theorem 1.10, then J can be chosen is the
radical of the ring.

2. Quasi-injective modules. In the first section a decomposition
theorem for quasi-projective modules was obtained. The motivation
for attempting to prove this proposition came from a paper by Harada
on quasi-injective modules [7]. Now Theorem 1.10 will be used to obtain
a characterization for quasi-injective modules over left Artinian rings
which have a finitely generated, lower distinguished (contains an
isomorphic copy of every simple module), and injective module. This
class of rings includes quasi-Frobenius rings and finitely generated
algebras over commutative Artinian rings [2].

ProrosiTioN 2.1. Let R be left Artinian. Then R has a finitely
generated, lower distingwished, injective module if and only if the
injective envelope of every simple module 1s finitely gemerated.

Proof. (Given by G. Azumaya). Assume @ is finitely generated,
lower distinguished, and injective. Let @, ++-, Q. be the non-
isomorphic injective envelopes of all the simple modules. Then
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Q=>F, BRI where 0 < (1) < - [2, Thm. 11, p. 268]. Since @
is lower distinguished, 4(7) == 0 foreach ¢ =1, ..., k. It follows that each
Q; is finitely generated. The converse is clear.

PropoSITION 2.2. If R is left Artinian and has a finitely
generated, lower distinguished, injective module, then every inde-
composable quasi-injective module is finitely generated.

Proof. Let M be indecomposable and quasi-injective, and let @
be its injective envelope. @ is indecomposable [7, Proposition 2.3],
so it is the injective envelope of a simple module [2, Thm. 1, p. 268].
Hence, Q is finitely generated by Proposition 2.1. Since R is left
Noetherian, M is finitely generated.

REMARK. If R is perfect, then every indecomposable quasi-projec-
tive module is finitely generated by Proposition 1.7.

The following proposition was proved by Azumaya for the class of
rings in the last two propositions and will be stated without giving
his proof.

ProrosITION 2.3. (Duality Theorem). Let R be a left Artinian
ring which has a finitely generated, injective, and lower distinguished
module Q, and let S = Endx(Q). Then for any finitely generated left
R-module X, X* = Homg(X, Q) is a finitely generated right S-module
and (X*)* = Homy(X*, Q) = zX. The same is true for finitely
generated S-modules [2, Thm. 8, p. 262].

PrOPOSITION 2.4. If R is left Noetherian and M is quasi-ingjective,
then M is quast-injective.

Proof. Let Q be the injective, envelope of M. Since R is left
Noetherian, Q' is the injective envelope of M*. With this result and
a theorem of Johnson and Wong [9, Thm. 1.1], a procedure which is
similar to the one found in the proof of Proposition 1.4 can be used
to see that M7 is quasi-injective.

THEOREM 2.5. Let R be left Artinian and have a finitely
generated, lower distinguwished, and injective module Q. Then M is
quasi-injective if and only if

M= 3, @ [Hom(e:Sles], Q)

where S = Endz(Q), e; is an indecomposable idempotent in S for
t=1, -,k J i3 an ideal of S, the number of nonisomorphic simple
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R-modules is k, and for i +j €S #e;S. This decomposition s
untque up to automorphism.

Proof. If M =0, we can choose J = S. Thus we will assume
that M is a nonzero quasi-injective module. It is known that if R
is left Artinian, then it is left Noetherian and has only a finite
number of simple R-modules. Harada has shown that for left
Noetherian rings M = >, M, where the M,’s are indecomposable
quasi-injective modules and that this decomposition is unique up to
automorphism [7, Prop. 2.5]. If Q, is the injective envelope of M,
then it is the injective envelope of a simple module (see proof of Prop.
2.2). By the dual theorem of Proposition 1.6 and the result that
nonisomorphic simple modules have nonisomorphic injective envelopes,
M=t PM* and M; & M; for i + J.

As a result of Proposition 2.2, M, is finitely generated. By the
Duality Theorem Homz(M;, Q) is a finitely generated, indecomposable,
quasi-projective, right S-module. Also, S is right Artinian [2, Thm.
6, p. 259]. Hence, Homg(M;, Q) = e;S/e;J; where e¢; is an indecom-
posable idempotent in S, and J; is an ideal of S. Since >,u)2 D M;
is a direct summand of M it is quasi-injetive. It follows that
Hom (351520 @ M, Q) = Xig16020 D Hom(M;, Q) = X000 D €:S/e:J; and is
quasi-projective. For 7 =j5 M, 2 M;, so ¢S #¢;S. By Lemma 1.9
and a remark following it we can choose J; = J for g(i) = 0. In
addition M; = Hom (Hom (M;, Q), Q) = Homg (¢;S/e;d, Q).

(ii) Suppose M = 3. P (Homg (¢;S/e;J, @) with the same no-
tation as in the statement of the theorem. Let M' = 3 ,i). @
Homg(e;S/e;J, @). Then Hom, (M', Q) = >\ ,u= D e:S/e;J which is
quasi-projective by Theorem 1.10. Thus M’ is quasi-injective. Let
m = max{g(?)};=y,...,, and M" = (M')". Proposition 2.4 gives us that
M"” is quasi-injective. Therefore the direct summand M is quasi-
injective.

COROLLARY 2.6. Let R be quasi-F'robenius. Then M s quasi-
injective if and only if

M= '”; @ (Hom, (¢;R/e.], R))*™.

Proof. R being quasi-Frobenius implies R is left Artinian, self in-
jective, lower distinguished, and finitely generated [2, Thm. 6, p.
259]. Also, R = Endz(R).

COROLLARY 2.7. Let R be a finitely generated algebra over a
commutative Artintan ring K. Then M is quasi-injective if and
only if
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k
M = 3, @ (Homg(e;Rle,J, F))*™
1=1
where F' is the K-injective envelope of K/jrad K.

Proof. R has a finitely generated, lower distinguished, injective
module @ such that R = Endg(Q) [2, Prop. 19, p. 273]. The functors
Homy(-, F) and Homg(-, Q) are naturally equivalent for (finitely
generated R-modules {2, Thm. 20, 275]. ,

COROLLARY 2.8. Let R be a finite dimensional algebra over o
field K. Then M is quasi-injective if and only if

k
M= P Homg (¢;R/e; ], K))*™.
Proof. K = F in Corollary 2.7.
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COMPLETIONS OF DEDEKIND PRIME RINGS AS
SECOND ENDOMORPHISM RINGS

JAMES KUZMANOVICH

The purpose of this paper is to show that if }/ is a maximal
two-sided ideal of a Dedekind prime ring R and P is any
maximal right ideal containing M, then the M-adic comple-
tion R of R can be realized as the second endomorphism
ring of E=FE (R/P), the R-injective hull of R/P; that is, as
end (xE) where K=end (E). The ring K turns out to be a
complete, local, principal ideal domain,

This paper was motivated by a result of Matlis [6] which
says that if P is a prime ideal of a commutative Noetherian
ring R, then the P-adic completion of the localization of R
at P can be realized as the ring of endomorphisms of
E=E(R|P), the R-injective hull of R/P,

Since R is a full matrix ring over a complete local
domain L [4], we are able to approach the problem by con-
sidering first the case that R is a complete local domain,
then by means of the Morita theorems we pass to the case
R=R, and finally pass to the general case,

I. Introduction. A prime ring R is called a Dedekind prime
ring if it is Noetherian, hereditary, and a maximal order in its
classical quotient ring @ (see [3]). A ring R is called local if the
nonunits of R form an ideal.

If R is a Dedekind prime ring with a nonzero prime ideal M,
then M is a maximal two-sided ideal and N M" = 0 (see Robson [7]).
Let R = R, be the completion of R at M in the sense of Goldie [3].
In this situation combining results of Goldie ([3], Theorem 4.5) and
Gwynne and Robson ([4], Theorem 2.3) yields the following theorem.

THEOREM 1.1. Let R be a Dedekind prime ring with a maximal
ideal M. Then (i) R has a unique maximal two-sided ideal M, M 1is
the Jacobson radical of R, and RN M? = M.

(ii) R is a full k x k matric ring over a domain L which has a
unique maximal ideal N, and L/N = F where F is a diviston ring.
Also R/M?=R/M? (each coset of M?” has a representative in R).

(iii) R is a prime principal ideal ring and L 1s a complete, local,
prineipal ideal domain. The only one-sided ideals of L are the powers
of N.

721
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For the rest of this section let R, M, R, M, L, and N be as in
Theorem 1.1. Let x be the generator of N; then N = xL = Lx and
Nt = g*L, = Lux*.

2. The Ring L. This section will be concerned with the con-
struction of the L-injective hull of (L/N), and with showing that
Theorem 4.4 holds for L.

LeMMA 2.1. L/N* can be embedded in L/N**' as a right L-module
via the map h,: L|N* — L/N** defined by h, ([u + N*]) = [au + N*'].

Proof. h, is clearly additive and right L-linear. Suppose
hi(Ju + N*]) = [0 + N**']. From the definition of %, it follows that
zw e N so that wu = 2**'u, for some % in L and u = z*u’ € N*.
Hence [u + N*] = [0 + N*] and =, is a monomorphism. A similar
argument shows that 7, is well-defined.

The maps {k,} and the right L-modules {(L/N*),} give rise to a
directed system. Let K, be the direct limit of this system. Then E,
can be considered as an ascending union of a family of submodules,
{(S;);}, which is totally ordered by inclusion and where each (S;), is
isomorphic to (L/N7),.

Lemma 2.2. Comnsider (L/N*™**Y),. Take aec N?/N**'*' and
de NA\N*, The equation yd = a has a solution in (L/N?++),.

Proof. ae N?/N*++' g0 that a = [#?v + N?*+]. de N \N?* go
that d = x?u where « is a unit in L. In L, xPvu~! = wa? since

N? = g, = La’}p. Let Yy = [w + N:n+t+1]. yd
= [w + N?***d = [wd + N?**| = [waru + N7+
= [%pqulu + Np+t+1] — [xvap+t+1] = q.

PROPOSITION 2.3. E, is tsomorphic to the L-injective hull of the
simple right L-module (L/N),.

Proof. E, contains a copy of (L/N),, namely S,. Thus it is
enough to show that E is an essential injective extension of S,. S,
is essential in E for if a ¢ F, a e S, for some integer k. Let ¢ be the
first such integer: then a e S,\S,_,, a is a generator for S,, and aL = S,.
Thus aLNS, =S, and S, is essential. Since L is a principal ideal
domain, it is a hereditary two-sided order in its quotient division ring.
In order to prove E, is injective it is sufficient by a result of Levy
([5], Theorem 3.4) to show that it is L-divisible. Take ac F and
0#deL. acsS, for some ¢t and d € N?\N?+' for some p. yd = a has
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a solution in S,.,;;, and hence in E, by Lemma 2.2. FE is thus an
essential injective extension of S, and hence is its injective hull.

Let K = end,(F) and let K act on E by left multiplication; E then
becomes a left K-module. Let H = endx(E); in similar manner E then
becomes a right H-module. Ed = F (since E is L-divisible) for all
nonzero d in L; thus E is a faithful right L-module. Hence L may
be considered as a unital subring of H.

LEMMA 2.4. The S,’s are the only proper L-submodules of K.

Proof. Suppose M, is a submodule of F with generating set {m;} .
Since E = US,;, each m; is in some S,. Let k; be the first k& for
which m; e S;. Then m; €S, \S;,_, and m;L = S,,. M = 3m;L = XS,
so that if {k;} is bounded, M = S,, where k, = max {k;}, and if {k}
is not bounded, then M = E,.

LemMaA 2.5. If aeS, and if beS,_,, then there is a qe K such
that q(b) = a.

Proof. Assume that ¢ is the first integer for which beS,...
Then ann,(b) = N"** which is contained in N* which in turn is contained
in ann;(a). Thus the map G:bL — aL defined by g(bd) = ad is well
defined. F, is L-injective so that ¢ can be extended to an endomor-
phism ¢ of E. ge K.

ProrosiTION 2.6. Each S, is a cyclic left K-submodule of xE, the
composition length of (S,) s m, and the S,’s are the only proper
K-submodules of K.

Proof. If ge K,q(S,) is an L-submodule of E of composition length
less than or equal to n» and hence must be contained in S, by Lemma
2.4; hence each S, is a left K-submodule. Each .(S,) is cyclic via
Lemma 2.5; in fact, any L generator of S, will be a K generator of
S,. This implies that (S, is simple and inductively that the com-
position length of (S,) is #. The proof of Lemma 2.4 shows that
these are the only K-submodules of E.

LeEMMA 2.7. Let H; be the annihilator of S; in H. Then H; is a
two-sided ideal of H, H;,, is properly contained in H;, and N H; = 0.

Proof. H, is clearly a right ideal of H. If ke H, then (S;)h is a K-
submodule of E of composition length less than or equal to 7. By
Proposition 2.6 it must be that (S;)hCS; so that each S; is H-invariant.
As a result H; is a left ideal and hence an ideal. The inclusions are
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proper, for H;N L = Niand N, = N*'. Since E = U S;, anything in
N H; would annihilate all of £ and hence be zero.

ProrosiTiON 2.8. H = L. That is, L s the second endomorphism
ring of K.

Proof. Take fe H. By Proposition 2.6 there is a nonzero y €S,
such that S, = Ky = yL. Hence there is a p, € L such that yf = yp,.
Also, if z€S,, z = ky for some ke K and

2f—mp)=(ky)(f—p)=k0=0. Hence f— p,ecann,(S)=H,.

Inductively suppose that there is a p; e L such that f— p, e H,.
Now take yeS;;\S;. %(f— »;)€S;., so that there is a de L such
that y(f—p;)=wyd. If z2ze€S;;,, z2z=ky for some ke K. Then
(f — p:) = (ky) (f — p:) = k(y(f — p:) = k(yd) = (ky)d = 2d and hence
f—p—disin H;,. Let p;y, = p; + d; then f— p,., e H;.,.

The sequence {p;} is Cauchy in L, for p, — p, = (0, — F) + (f — D)
an element of H, + H,; but H, + H, = H, if n <m. Thus p,=p, is in
H,NL = N*. L is complete; therefore {p;} converges to some element
p of L. It only remains to be shown that p = f. Take zc E; z¢€ S,
for some n. {p;} converges to p so that there is a positive integer
M such that p,, — pe N* for all m greater than M. Take m greater
than M + n. zf = zp,, = zp. 2z was arbitrary; therefore f = p.

3. The Ring K. In this section it will be shown that K is a
complete, local, principal ideal domain.

LEmMMA 3.1. Let L, E, and K be as in §2. Let J denote the
Jacobson radical of K and let A, = anng(S,). Then

(i) K is a local domain.

(ii) J=A4, J')c4,NA, =0, and NJ" = 0.

(iii) K 1is complete in the topology induced by the A,’s.

Proof. (i) K is local since it is the endomorphism ring of an
indecomposable injective module. To prove that K is a domain it is
sufficient to show that every nonzero endomorphism of E, is an epi-
morphism. Let 0+ ke K. If k(E)+ E, k(F) =S, for some n by
Lemma 2.4. Ann,(S,) = N*; take 0 2 be N*. Since E is L-divisible,
Eb = FE. Asaresult S, = k(E) = k(Eb) = k(E)b = S,b = 0 contradict-
ing the fact that & == 0.

(ii) The radical of K, J, is the set of all endomorphisms of £,
whose kernel is essential (see [2], page 44). Since (S,), is the unique
minimal submodule of E, ker(k) is essential if and only if %(S,) = 0;
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therefore J = A4, and JS, = 0. Inductively suppose that J*'S,_, = 0.
JS,cS,_, since it is contained in the radical of K(S,), S,_,. Hence
J"s, = J*(Js,) which is contained in J*'S,_, which is zero, hence
JrcA,N A4, = 0 since anything inN A, would annihilate all of the S,’s
and hence all of E. NJ" = 0 since J"C A,.

(ili) Let {f;} be a Cauchy sequence in K with respect to the
topology induced by the decreasing family {A4,}. Let zeE. z¢S,
for some p. Since {f;} is Cauchy, there is an integer M such that
fo— funed, for n, m greater than M. Define f(x) = fy..(x). It is
clear that fe K and that f; — f by the nature of the construction.

Pick jeJ\A,. There is such a j, for if y,€ S,\S, and if 0 = y, € S,,
then there is a je K such that j(y.) = v, by Lemma 2.5. jeJ\A4..
In fact if seS,.,\S,, then j"s is a nonzero element of S,. The proof
is by induction. If seS,\S,, then s = y,u for  a unit in L. Hence
js = jy.u = y,u # 0. Inductively suppose that ;7" 's is nonzero for all
s in S\S,_, and take seS,.\S,. jseS, by an argument in the
previous proof. The claim is that js¢ S,_,. If it were, then j*'s = 0
which contradicts the induction hypothesis since sd e S,\S,-, for some
d in L. Hence js¢ S,., so again by the induction hypothesis j"s =
J"(gs) # 0.

LEMMA 3.2. Let K, J, j, E, and L be as above.
(i) J=jK.

(ii) J = Kj.

(iii) J" ="K = Kj".

Proof. (i) Let xed. Let y,eS\S,. «(y,) = yeS,since xeJ. Let
J(¥,) = v,; ¥, is a nonzero element of S, since jeJ\A,. Then there is
an element d in L such that ¥y = yd = j(¥.)d = j(y.d). By Lemma 2.5
there exists k, e K such that k(y,) = v.d. If se€ S, then s = y,¢ for
some ¢ in L. %(s) = x(y.0) = X(y)c = uc = (Gk(y.))c = jk(y.c) = jk.(s).
This says that x — jk, € A,.

Inductively suppose that there exist &, ,---, k,_, such that

2=0— Gk, + J%hy 4 oo + 7" ko) €A, If
Yn+1 € Sn+1\sn7 then jn(ynﬂ) =

a nonzero element of S, by the above choice of j. Also 2(y,..) €S,
since ze€ A4,. Hence by the argument above there is a k,c K such
that z — j"k,c A,.,. The sequence {jk, + -+ + j"k,} converges to «
in the A, topology by the nature of the construction. Also, since
J*c A, the sequence {k, + -+ + j*'k,} is Cauchy and hence by the
completeness of K converges to some element & of K. Also by the
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construetion 5k = x. Since = was arbitrary in J, J = jk.

(ii) is proven by an argument similar to that of (i).

(ili) J=j7K= Kj by (i) and (ii). Inductively suppose that
J"=7"K = Kj*. Then J**' = J*J = (j*K)(JK) = j(Kj)K = "G K)K =
J"7 K. Similarly J** = Kj»+ti.

ProposiTioN 3.3. K as above.

(i) J*= A, for all n.

(ii) J* are the only onme-sided ideals of K.
(iili) K 4s a complete principal ideal domain.

Proof. (i) J = A, by Lemma 3.1. Inductively suppose that
A, =J" JHC Ay A, =" JYJ" ="K K ~ K[jK = K|J
which is simple. Therefore either A4,,., = J*** or 4,., = J". But by
the induction hypothesis j”¢ A4,., so that A, = J"*.

(ii) It is sufficient to show that given ze K, *K = K or that
2K = J* for some p. Take x¢ K and suppose that «K = K, then
is not a unit and hence z e J?** for some p. By Lemma 3.1 x = 5%k,
and k¥ must be a unit; for otherwise %k = jk, for some k, in K and
®=7%k, e J?t. Asaresult xK =j°kK =j°K = J*. Similarly Kx = J*.

(ili) K is a principal ideal domain by Lemma 3.2 and (ii). K
is complete by (i) and Lemma 3.1.

4. The Ring R. Let R, M, R, and L be as in Theorem 1.1.
Then R is the full & x k matrix ring over L. Let e;;, %, 5 = 1,2, «++, n
be a complete set of matrix units for B. Let M, be a right L-module
and let M* = M, --- @ M,, a direct sum of n copies of M. Let f,
be the identity map on M,, and let f;, 1 =2, .-+, n be an isomor-
phism from M, to M;. Then M* can be made into an R-module by
defining fi(m)e;; = f;(m) and fi(m)e,; = 0 if ¢+ k. “*” is a category
isomorphism from the category of right L-modules to the category of
right R-modules. There is also a category isomorphism e, from the
category of right R-modules to the category of right L-modules
defined by (Az)e, = Ae,. M and M%*e, are isomorphic for any right
L-module M (see [1], or [5] page 137).

PROPOSITION 4.1. R is the second endomorphism ring of the R-
injective hull of the simple right R-module.

Proof. Let E be the L-injective hull of the simple right L-module
as in §2. Then E* is the R-injective hull of a simple right R-module
since * is a category isomorphism. R/M is simple Artinian and M is
the Jacobson radical of R so there is only one isomorphism class
of simple right-R-modules. Let K = endz(E*) and take geK.
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q(E*e;;) = q(E*e:) = q(E*e;)e;;; thus each E*e;; is K-invariant and
B = yF*e, D xFep @ ++- D xE*e.. Each e; is a K-isomorphism
so that E* is decomposed as a direct sum of & mutually isomorphic
K-modules. Thus each K-endomorphism of E* can be given by
multiplication by a matrix of homomorphisms. The remainder of the
proof shows that the entries in this matrix are of the desired forms.
Bach ¢ e K restricted to E*;, is an L-endomorphism of E*;. Each
L-endomorphism of E*e,; can be extended in one and only one way
to an R-endomorphism of E*; namely, if ¢ is an L-endomorphism of
E*e,;;, then its unique extension ¢ is defined by q(z) = >.k..q(ze;;)e:;
for ze¢ E*. Hence K = end, (E*e;) via the restriction map. By pro-
position 2.8 each element of end.(E*e;) can be given by right multi-
plication by an element of e¢;;Re;;. If h: E*e;; — E*e;; is a K-homomor-
phism, then heé;; is a K-endomorphism of E*e¢;; where ¢,; denotes right
multiplication by e;;. Hence hé;; = &;re;; for some re R. If ze E*,;,
then (2)h = zhe;; = zheje;; = ze,reqe; = zere; so that h is given by
right multiplication by an element of e;Re;;. As a result every K-
endomorphism of E* is given by right multiplication by an element
of R.

R can be considered as a subring of R; as a result every R-module
is automatically an R-module. Also, if M is the maximal two-sided
ideal of R, then M?N R = M” and every coset of R/M” has a
representative in R (Theorem 1.1).

LEMMA 4.2. E* as in the proof of Proposition 4.1, then (E*)z is
the ascending union of R-modules 0C B,C B, C - -+ where the composition
length of B, is n. These are the only R-submodules of E*. Furthermore,
the B;’s are the only R-submodules of E* and every R-endomorphism
of E* is an R-endomorphism. That 1is, the structure of E* as an
R-module is identical to its structure as an R-module.

Proof. The first part follows since it was true of E and * is a
category isomorphism. Let B; = S;*. A category isomorphism pre-
serves the submodule lattice. Note that the composition length of
(B.)z is m; since M is the radical of B, B,M" = 0. In order to prove
that the B,’s are the only R-submodules of E* it is sufficient to show
that aR = aR for all ac E*. Take ac E*. Clearly aR c aR. Take
FeR. aeB, for some n so that af* = 0. By theorem 1.1 there is
an m in M" so that ¥ + m = rc R, then aF¥ = a¥ + 0 = a7 + am =
a(F + m)ar. Thus aRcaR and aR = aR.

Let ¢ be an R-endomorphism of E* and take ac E* and 7eR.
It must be shown that g¢(a¥) = ¢(a)?. Since a € E*, a € B, for some .
The B,’s are the only R-submodules of E* and the composition length
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of B, is n, so that ¢(B,) B, and q(a) € B,. As above there is an
me M such that # + m = re R. B,M" = 0. Then

q(a¥) = q(a¥ + 0) = q(a7 + am) = q(a(¥ + m)) = q(ar)
= q(a)r = q(@)(T + m) = q(a)T + q(a)m
= q(a)F + 0 = q(a)F .

Thus ¢ is an R-endomorphism.
LEMMA 4.3 E* s the R-injective hull of (B))g.

Proof. By Lemma 4.2 (B,)); is an essential submodule of E*,.
E* is an injective R-module since * is a category isomorphism; in
particular E* is a divisible R-module so that E* is a divisible R-
module. R is a hereditary two-sided order so that E* is an injective
R-module by [5], Theorem 3.4.

THEOREM 4.4. Let R be a Dedekind prime ring with a maxvmal
two-sided ideal M, and let P be a maximal right ideal of R containing
M. Then the R-endomorphism ring of the R-injective hull of R/P is
a complete principal ideal domain.

Proof. Let R, R, L, E,, and E* be as above. Then by Lemma 4.3
E* is the injective hull of a simple right R-module which is anni-
hilated by M. (B,)r = R\P since both are simple modules over the simple
Artinian ring R/M; thus E* =~ F(R/P). By Lemma 4.2 end,(E*) =
endz(£*) which is isomorphic to end,(£) since* is a category isomor-
phism. Hence the result follows by Proposition 3.3.

THEOREM 4.5. (Main Theorem) Let R be a Dedekind prime ring
with a nonzero prime ideal M, and let P be a maximal right ideal
containing M with E(R/P) the R-injective hull of R/P. Then R, the
completion of R at M, is isomorphic to the second endomorphism ring
of E(R/P).

Proof. Consider E*; as above E* =~ E(R/P). By Lemma 4.2 the
R and R structures of E* are identical. Thus R is second endomor-
phism ring of E(R/P) by Proposition 4.1.
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ON GENERALIZED TRANSLATED QUASI-CESARO
SUMMABILITY

B. KwEE

Let « > 0,3 > —1. The (C,, @, 5) transformation of the
sequence {s;} is defined by
PR I+n+2'a+p+D) & e+ Ik +n+1) s
"7 T+ DI+ D) = Te+DI(a+B+n+Ek+2)

and the (C;, «, B) transformation of the function s(x) is de-
fined by

L+t o[~ x*7's@)
" = oD ¥, G

Some properties of the above two transformations are
given in this paper and the relation between the summability
methods defined by these transformations is discussed.

dx .

1. For any sequence {x,} the Hausdorff summability (H, p,) is
defined by the transformation

n

b = >, <:)(An~k#k)sk ’

k=0
where
A%k = #k ’
Aty = M — Mgy

Azzk — AA’"—IH,C .

Transposing the matrix of the (H, y,), transformation we get the
matrix of the quasi-Hausdorff transformation

= ([
t, = Z ( )(Ak_n/’en)sk ’
k=n \ N

which will be denoted by (H*, ¢,). Ramanujan [8] introduced the
(S, ¢,) summability, which is defined by the transformation

= (k+n
tn = Z ( >(Akﬂn)3k .
k=0 n

Thus the elements of row 7 of the matrix of the (S, z,) transformation
are those of the corresponding row of the (H*, p,) transformation
moved » places to the left.

It is known [8] that if (H, u,) is regular and if ¢, — 0 as n— oo,
then (S, ¢,.,) is regular; conversely, if (S, &,+,) is regular, then (H, p,)

731
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can be made regular by a suitable choice of z,.
When

1
(n + oz) ’
n
(H, p,) reduces to the Cesaro summability (C, «). Borwein [3] intro-
duced the generalized Cesiro summability (C, «, 8) which is (H, p.)

t =

with
(n+,8)
_ n
(1) TRy axey
)

The aim of this paper is to discuss properties of the (S, f£,..)
summability with g, given by (1) for @ > 0, 8> —1 and of the ana-
logous functional transformation. We shall denote this summability
by (C;, &, B). The case in which 8 = 0 has been considered by Kuttner
[6] and a summability method similar to (C,, @, 8) has been discussed
by me [7].

A straightforward calculation shows that the (C,, «, 8) transfor-
mation is given by

R LR L3 RUCETES
@t (@t k= D+ 1k +2) - (k+m)
= @+p+rl)a+B+2 r(@atrBtn+l+k)
_IBrn+la+p+ )¢ Ta+ Wik +n+1)
I'm + )I'B + DI(a) & Th+D)I(ats+n+k+2)

(2)

It is clear that, if (2) converges for one value of n, then it con-
verges for all n. Further, a necessary and sufficient condition for
this to happen is that
(3) 5, 2

e

should converge.

Let s(x) be any function L-integrable in any finite interval of
2 = 0 and bounded in some right-hand neighbourhood of the origin.
Let «a > 0,8 > —1, and let

(4) 9 =9, a,p)

= F(C( + B + 1) yﬁHSm ma_1s(w)
I'e)l'ie + 1) o (¢ + y)erEr

If g(y) exists for y > 0 and if
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limg(y) = s,
el
we say that s(z) is summable (C,, a, B) to s.
It is clear that a necessary and sufficient condition for the con-
vergence of (4) is that

(5) r $(2) g

1 ght?

should converge.

2. The relationship between sequence-to-sequence and func-
tion-to-functions transformations. Given any sequence {s,}, let the
function f(x) be defined by

f@y=s, mM<az<n+1;m=0,12 ).

Then the (C,, a, 8) summability of {s,} is equivalent to the (C,, «, B)
summability of f(x) for @ > 0, 8 = 0 (see [6] Theorem 4). However,
the proof breaks down when S > 0. We can prove that they are
equivalent for —1 < 8 < 0 as follows. Write

T+ k)Ck+n+1)
'k+1)I'a+ B+ n+k+2)

k+1 wa——l
b ) = |, e

a(n, k) =

As in [6], we may suppose that s, = 0. Then the result would follow
if, corresponding to equation (11) of [6], we proved that, if (3) con-
verges, then uniformly for 0 < 0 < 1,

(6) 3% [a(n, 1) = bl + 0, k)]s = o ) -

Choose an integer @ such that Q = 8 + 3. From equations analogous
to those of the last line and line 6 from bottom of p. 709 of [6], we
find that

_ ka—q kd—Q
(1) atn, ) = bn -+ 0,1) = Zp(O) o+ G

where p(6) is a polynomial in ¢ (which may be different for each term
in the sum), and the sum is taken over those integers g, » which are
such that

g=1,r=1, g, rnotboth1l, ¢g+r=Q.
Since the convergence of (3) implies that

s, = o(k**?) ,
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and since @« > 0, Q@ = B + 3, we see that the contribution to the ex-
pression on the left of (6) of the “0” term in (7) is

o(_l ) :

nA*

Hence the result would follow if (corresponding to Lemma 2 of [6])
we could prove that the convergence of (3) implied that, for relevant

q, 7,

o ka-—q _ 1
(8) L Sk

Now write
Vp = mgc ,,,:::rz
so that v,— 0 (and this is all we know). The sum on the left of (8) is
;1 -—(—lc—lc_%;;g(vk — Vpry)
9 5 atpie— atpom
D et}

The first term on the right of (9) is o(1/n#*) (since r =1, > 0). The
expression in curly brackets in the second term is

Joa+pti—a )
(& + n)=+e+r

(and this result is best possible). This gives the required result when
B =0; but if 8> 0, all that we can deduce in the “worst” cases
(which are ¢ =1, =2 or ¢ = 2, r = 1) is that the sum (9) is o(1/n).

Of course, the fact that the proof breaks down does not imply
that the theorem itself is false. My guess is that the theorem pro-
bably is false for p > 0; but I have not actually got a counter example.

3. Theorems. The following two theorems with 5 =0 are
Theorem 1’ and Theorem 2’ given by Kuttner [6]. The proof of
Theorem 1 is similar to that of Theorem 1’ in [6], and Theorem 2
follows from Lemma 1 and Lemma 2 of this paper.

THEOREM 1. Let a>0,8> —1 and r = 0 and let s(x) be sum-
mable (C, r)* to s and (4) converge. Then s(x) is summable (C,, a, B) to s.

THEOREM 2. Let a > a’'> 0,8> —1, and let s(x) be summable
(C,, a, B) to s. Then s(x) is summable (C,, &', B) to s.

1 For definition of the (C, r) summability of s(v), see [7].
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In §5, we shall prove

THEOREM 3. Let «>0,8> 8 > —1. Suppose that s(x) is sum-
mable (C,, a, B) to s and the integral

Sw _ilx)_.dx
1 opf 2

converges. Then s(x) is summable (C,, a, B') to s.

The sequence {s,} is said to be summable 4; to s if

.mm=cr—mmi(”+”ymn
n= n
converges for all x in the interval 0 < 2 < 1 and tend to a finite limit
s as t—1—. The A, method is the ordinary Abel method.

It is known (see [1] and [2]) that 4, D A4; for A > ¢ > —1. For
other properties of this summability method, see [1] and [6]. We
shall prove

THEOREM 4. Let > —1, 8> —1. Suppose that the sequence {s,}
is summable A; to s and that (3) converges. Then the sequence 1is
summable (C,, v + 1, B) to s.

4. Lemmas.

LeEMMA 1. Let a>a' > 0,8> —1. Suppose that (5) converges.
Then

- ' g) = I'(@) Y=ty — pye-et
Y g(y; o, :8) - F(a’)F(a — a,) SO t (?/ t) g(ts Q, ,B)dt *

The proof of this lemma is similar to that of Lemma 4 in [6].

LEMMA 2. Let
Ho) = | (o, s@)dy -
Then in order that
s(y) — s (Y — o)
should imply
t(x) — s (€ — o0)

Jor every bounded s(y), it is sufficient that

[Nl viay < &,
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where H 1is independent of x, that

.

|| letw, 9)lay—0
when & — oo, for every finite Y, and that

§°° ow, vy — 1

when x — co.
This Theorem 6 in [4].
5. Proof of Theorem 3. Let

o) = |20 au

ub+?

for « > 0. Then ¢(x) is continuous in (0, ), and é(x) —0 as x— co;
hence ¢(x) is bounded in (B, ) for any B > 0, say

lo(@)| = M

for x = B, where M may depend on B if B is small, but may be
taken as an absolute constant for large B. It follows that

) gl = |1 (G) @)

N R
_ ’(Bi t)a+ﬁ+1¢(B)

(10) Fa+p+ 1)4: - i = ( — >a+ﬂ¢(m)dx’

) dm

< 19(B)| + (a6 |
<(x+B8+2M.

Since s(x) is bounded in some right-hand neighbourhood of the
origin, there exists B, > 0 such that
[s(x)| = K
for 0 < « < B,. By partial integration, we obtain
tﬂ+1SB° 2 's(x) due| < K(a + 28 + 2) .
o (@4 )t - a(@ +1)

By combining (10) and (11) it follows that g¢(¢, &, B) is bounded
in any finite interval (0, T'). Since it tends to s as t— <, g(¢, a, B)
is bounded in (0, ). Thus, for ¥ > 0, the integral

(11)
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_ D@TE +1) (* gy s
R | = wrr-att, @, it

converges. In view of the definition of ¢(¢, «, B) it follows that

12) I = lim I(A)

A—oo

where

I4) = s (t — y)ﬁ‘ﬁ'“‘dtS: —(a—;gc:——;)g?mdx :

It follows from (10) by dominated convergence that, for fixed A,

4 o a—1
— ) 2T®) g
|, ¢ = o] CE TR

as B— c. Hence, by Fubini’s theorem

(13) I(A) = S: x“—ls(x)dx-g: ((tx;y————%_ll—dt

We will now show that, for fixed v,

14 S”,a—l d rwdtﬁo

( ) 0 T S(x) T 4 (x + t)a+ﬁ+1

as A— oo, It is clear that for large A the inner integral in (14) is
O(A~*=F-1) uniformly in 0 < <1, so that the contribution to (14) of
the range 0 < ¢ < 1 tends to 0 as A — . Now write

v = |72 qu;

z uﬂ,'*'z

thus we are given that v(x) exists and that it tends to 0 as @& — co.
The contribution to (14) of x > 1 may now be written

It is easily seen that, for fixed v, A and large x, the inner integral
in (15) is O(x~—*—#~'); thus, integrating by parts, (15) becomes

(16) O

gt "=y a4 B+ Dt — (8 — B)2]
+ Sl @ w(m)dmL G T o dt .

Now for fixed ¥ and large A, uniformly in 0 < & < A, the inner in-
tegral in (16) is
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O{Sjt*”—ﬁ’“zdt} = O(A—

Hence

|
<SA/10g'A S . 1) a8 () O(A=* ) day
O(A—a—,e —ISAIIOEA ‘”ﬁ'dx>

1

+0(A-a-ﬂ'—1 sup Ia/f(x)ISA ma+ﬁ'dx> —0(1) .
Allogdd

= (A[logd)
Nothing that for fixed ¥ and large ¢
(t — y)p='— = t—F'—1 + O(tF—#7) ,
and also that

g @t B+ Dt — (B = B2y _ g,
0 (x + t)=+os?

we see that, for large A uniformly in a = A, the inner integral in
(16) is

[l s 8 s Dt = el g
0 @ + )=+

=@+ B+ D — (8 — B2
+ O{SA (ﬂ; + t)a+ﬁ+2 dt}

= of=er=" vty + ofo=er= | prrath + Of " ¢ervar)

= O+ AF#) + O+~

(except that, in the case B — 8 = 1, we must insert an extra term
O(xz—***log x)). It is now clear that the expression (16) tends to 0
as A— o, and this completes the proof of (14). We deduce from
(12), (13) and (14) that

—_ “ a—1 w (t — y)ﬁ—ﬁ,~l
I= SO x s(m)dxgy Wdt

_I'e=—p1I'a+p +1) S“’ ¥ s(w)
I'a + 8 +1) o (x + y)rrett

_IB-8@r@+1) '

Thus, in view of the definition of I, we have
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'+ 1)
I'g—pg)I'E + 1)

The kernel of this last transformation can easily be verified to satisfy
the conditions of Lemma 2, and the theorem now follows.

0, a, 8) = ngw 15t — )=yt @, B)dt .
Y

6. Proof of Theorem 4. It follows from the convergence of
(3) that for s> —1, s, = o(v**?). We can easily prove that the func-
tion ¢"**(1 — t)**#'** has a maximum when

_ kE+n
k+n+r+/+1

For large k + m, this maximum is O((k + n)~*—#~'). Hence, if g’ >
B + 2, we have, the inversion in the order of integration and sum-
mation being justified by absolute convergence,

I'(B + n + 2) Y1 pyipil) e )\J+k> k}
F(n+1)r(5'+1)sot(l (A latd {;0( . sit* rdt

_ F(IB’ + n + 2) - ()\: + k )slgltlwn(l _ t)).+,s'+1dt
17 T I'(n+LHIE +1) =\ k|

(B +n+2) v+ +2) & I'N+k+D)(k+n+1)
T'n+ 1) +)I'(n+1) = T+ 1) ' (n+8 +n+k+3)

=t N+ 1, 8) .

By analytic continuation, (17) holds for 8’ = 8. Hence

_ I'B+n+2 Y1
o+ 1, ) = o lB A Sot (1 — tyeft)dt

FB+1+2 (% o eovpry . e
C I(n+ D)I(B+1) S 1 — ey (1 — e™)dy -

By Lemma 2 the result with follow if

. I'G+mn+ 2) T (1 _ o=vyrp—(ai1)y
(i) F(n+1)]”(,8+1)go(1 e V)yre= iy < H

where H is independent of n,

. '+ n+2) v o= V\rp— (DY
(ii) Tn - DB+ D So (1 — e ¥)re~te¥dy — 0

when % — o, for every finite Y, and

'+ n+2) T 1 oY= DY
(i) nn+nm3+ngﬁ1 eryetidy —1,

when % — . Since
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“ . p—Y\np—(8+1Y :F(%—{—I)F(B—}—l)
So(l ey TE+n+2

(i) and (iii) are satisfied. We have I'(n + B + 2) ~ nf*'['(n + 1), and
the integral in (ii) is, by changing the variable,

1—e~Y
S (1 — tyedt .

0

Hence (ii) is satisfied.
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DIFFERENTIAL SIMPLICITY AND COMPLETE
INTEGRAL CLOSURE

YVES LEQUAIN

Let R be an integral domain containing the rational num-
bers, and let B’ denote the complete integral closure of R,
It is shown that if R is differentiably simple, then F need
not be equal to R’, even when R is Noetherian, and then
the relationship between R and R’ is studied.

Let & be any set of derivations of R. Seidenberg has shown
that the conductor C = {xce R|xR' C R} is a Z-ideal of R, so that
when R is &-simple and C = 0, then R = R'. We investigate here
the situation when C = 0.

The first observation that one must make is that it is no longer
true that B = R’ when R is differentiably simple, even when R is
Noetherian. We show this in Example 2.2 where we construct a 1-
dimensional local domain containing the rational numbers which is
differentiably simple but not integrally closed. This counterexamples
a conjecture of Posner [4, p.1421] and also answers affirmatively a
question of Vasconcelos [6, p. 230].

Thus, it is not a redundant task to study the relationship between
a differentiably simple ring R and its complete integral closure. An
important tool in this study is the technique of §3 which associates
to any prime ideal P of R containing no D-ideal a rank-1, discrete
valuation ring centered on P; by means of this, we show in Theorem
3.2 that over such a prime ideal P of R there lies a unique prime
ideal of R’. When R is a Noetherian & -simple ring with {P,}... as
set of minimal prime ideals, Theorem 3.3 asserts that B’ = ... {R.| R,
is the valuation ring associated with the minimal prime ideal P,};
Corollary 3.5 asserts that R’ is the largest <r-simple overring of R
having a prime ideal lying over every minimal prime ideal of R.

1. Preliminaries. Our notation and terminology adhere to that
of Zariski-Samuel [7] and [8]. Throughout the paper we use R to
denote a commutative ring with 1, K to denote the total quotient
ring of R, and A to denote an ideal of R; A is proper if A= R. A
derivation D of R is a map of R into R such that

D(a + b) = D(a) + D(b) and D(ab) = aD(®d) + bD(a)

for all a,be R.
Such a derivation can be uniquely extended to K, and we shall

741
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also denote the extended derivation by D. D is said to be regular
on a subring S of K if D(S)c S. If & is a family of derivations
of R, A is called a <r-ideal if D(A) c A for every De &r; when & =
{D}, we merely say D-ideal. If R has no &-ideal different from (0)
and (1), R is said to be <-simple. We use D®’(x) to denote z, and
for n =1 D™ (x) to denote D(D™ Y (x)), i.e. the ™ derivative of u;
by induction one proves Leibnitz’s rule:

D®™(ab) = 3, CiD"~"(@)D¥ () .

We assume henceforth that <& is a family of derivations of R
and that De &. Let ¢: R— S be a homomorphism onto; then

D'(p(r)) = P(D(r))

defines a derivation D’ on S if and only if the kernel I of @ is a D-
ideal. Suppose that I is a <7-ideal, and write <’ to denote the set
of derivations of S thus induced by <; if A is a =r-ideal of R, then
P(A) is a o'-ideal of S, and conversely if B is a ©’-ideal of S, then
@ Y(B) is a —r-ideal of R containing I. Thus, in particular, if A is
a maximal proper <r-ideal of R, then R/A is &’-simple.

LEMMA 1.1. Let D be a derivation of R, M a multiplicative
system of R, and h: R— R, the canonical homomorphism. Then,
we can define a deritvation on R, which we also call D, by

D(h(r)(h(m))™) = [M(m)(D(r)) — R(r)(D(m))](R(m*))~" .
Furthermore, if A is a D-ideal of R, then h(A)R, ts a D-ideal of
Ry, and if B 1is a D-ideal of R,, then h(B) is a D-ideal of R.

Proof. ker h = {xeR|xm = 0 for some me M} is a D-ideal of
R since 0 = D(zm) = xD(m) + mD(zx) = amD(m) + m*D(x) = m*D(x).
Hence D induces a derivation on R/ker &, a derivation which can be
then extended to R,. The remainder of the lemma is straightforward.

LEMMA 1.2, Let =& be a family of derivations of R, and sup-
pose that R contains the rational numbers. Then, the radical of a
-ideal of R is a <r-ideal.

Proof. See [2, Lemma 1.8, p. 12].

COROLLARY 1.8. If P is a minimal prime divisor of a <r-ideal
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A, and P does mot contain an integer #0, them P is a Z-ideal.
Proof. Localize at P and apply 1.1 and 1.2.

THEOREM 1.4. Let A be a maximal proper <r-ideal of R, then

(i) A is primary.

(ii) If R/A has characteristic p = 0, then VA is a mawimal
ideal.

(iii) If R/A has characteristic 0, then A is prime.

Proof. (i) Suppose #,ycR,x¢ A and xye A; then, Uy, (A:
y)DA:y > A. But Up-, (4:y") is a =-ideal; hence, by the maxi-
mality of A, Uy, (4: y") = R and there exists » such that y"ec A.

(ii) Let P be a maximal ideal of R containing A. Consider the
ideal B = (A, {#* |xe P}) c P; since R/A has characteristic p, B is a
—-ideal; hence, by the maximality of 4, B= A and P = V4.

(iii) Since R/A has characteristic 0, A contains no integer other
than 0, hence the prime ideal P = 1A contains no integer either, and
by 1.3 P is a ©r-ideal. Then, by the maximality of A4, P = A.

COROLLARY 1.5. Let R be of characteristic 0. Then R is <&-
simple 1f R contains the rational numbers and has no prime -
ideal different from (0) and (1). If R is Z-simple, then R is a
domain.

One should note that a <r-simple ring R always contains a field,
namely F'= {xe R | D(x) = 0 for all De &}; moreover, if the charac-
teristic of R is p # 0, 1.4 shows that R is a primary ring and hence
is equal to its total quotient ring; so this case will not be of interest
in our further considerations, and throughout the remainder of this
section we shall be dealing with a <r-simple ring of characteristic 0,
which is then a domain containing the rational numbers.

DEFINITION 1.6. Let R be a domain with quotient field XK. An
element xe K is said to be quasi-integral over R if there exists an
element de R, d # 0, such that da"c R for all » = 1. The set R’ of
all elements of K that are quasi-integral over R is a ring, called the
complete integral closure of R. R is said to be completely integrally
closed if R = R’. Note that if R is Noetherian, the concepts of in-
tegral dependence and quasi-integral dependence over R for elements
of K become the same.

LEMMA 1.7. Let R be a domain with quotient field K, S a ring
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such that Rc Sc K, and & a family of derivations of R regular
on S. Then S is &r-simple if R is Z-simple.

Proof. If B is any <-ideal of S, then BN R is a &-ideal of
R, and if B is different from (0) then BN R is also different from
(0) since SC K.

THEOREM 1.8. Let R be a domain of characteristic 0 and R’ its
complete integral closure. Then R' is <r-simple if R is o-simple.

Proof. By [5, p. 168], any Dec & is regular on R’, hence the
theorem follows from 1.7.

2. Example of a 1-dimensional local ring which is D-simple
but not integrally closed. First, in this section, we modify an idea
of Akizuki in [1] to construct some 1-dimensional local ring R of
arbitrary characteristic such that the integral closure R is not a
finite R-module.

THEOREM 2.1. Let k be a field of arbitrary characteristic, Y
an indeterminate over k, T =a,Y + a,Y® + 2o +a, Y"1+ o0 an
element of E[[Y]] which is transcendental over E[Y]'. Set

0, =Y 0,= (0, —a,_ )Y

for r = 2 (alternatively 0, = a, + @, Y* + ooe + a,Y*¥ + ...); for
r=1, set

tr=(‘9r*a,.)2 and ﬂr:”—(alY—i—---—i—arY”—‘).

Set also T =Fk[Y,m, t,t, -+, t,-+-] and P = (Y,n)T. Note that
TcE[Y]] and that P YE[[Y]]. Then,

(i) For r>1,t,, = Y¥(a + t,) + 2a,Yw, and P is a mazimal
ideal of T.

(ii) For r=1,72 = Y¥ "' tr and k(Y,w) is the quotient field
of T.

(iii) The ring R = T, s a 1-dimensional local domain.

(iv) The integral closure R of R is not a finite R-module.

Proof. (i) For r > 1, we have
tr = (0,0 — a,)" = (Y770, = Y"(a: + 1) + 20, Y0, — a,) .
But
Y@, —a,)=Y[r - (@,Y + -+ + 0, Y Y] = Y=, ,

1 Such an element exists; take for example r = a1 Y + a2 Y3+ «+- + @, V2" -1 + ...
with ar %0 for every r= 1.
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hence ¢, , = Y¥(a® + ¢,) + 2a,Y7,. Since furthermore P c YE[[Y]],
l1¢ P, and P is a maximal ideal of T.

(ii)
T, =T —{(,Y + ««+ +0a,Y")
= YV Y e o YT )
=YY", - a);

thus 72 = Y%, and k(Y, ) is the quotient field of T.

(iii) Let us show that Y belongs to every nonzero prime ideal
of R. Since k(Y, ) is the quotient field of R it suffices to show that
R[Y'] = k(Y,w). Let Bek[Y,x]; then B = X r,s;w* with s;ek[Y].
For any integer » > 1, set f, = S ,8:(a0, Y + «++ + a,Y*"); then

f¢+1 — ési(axy b oeee o, Yo ar+lY2T'\L1——.])i — fr + Y27'+1.~1hr+1
2=0
with hr+1€k[Y]9 and since 27 — 1 > r, we have f" = bo + blY e
+b,Y" + Yrg, and
fr+1 = bo + b1Y + eee - br YT + br‘i’l Yr+1 + Yrr%zgrﬂ-l

with by, +++,b,,b,., ¢k and ¢,,9,..€k[Y]. Now, since
T=17, 4+ (@Y + e +a, Y, B=3sa=10, +f
=0

with 6, e T. Hence, there exists b,, b, <+, b,, «++ €k, 0y 22,0,y +++€T
and Gy 22y Gpy o2+ € k[Y] such that

*) B = Z, b, Y + mo, + Yy, .

Note that z,e P and therefore that x, is a nonunit in R.

If b, %0, with » = 1, the relation (*) gives that 8 = b, + (b,Y +
70, + Y?,) is a unit in R and thus that e RcC R[Y™].

If b=5b = -+ =b,_, =0 and b, # 0, the relation (*) gives 8 =
Y, + Yyg,) + m,0, where w, = b, + Yy, is a unit in R; then

B(Y™w, — 7,8,) = Yrur — m20% = Y¥(w? — Y -2 %)
where w? — Y% 3% is a unit in R, so that e R[Y'].
If b, = 0 for every » = 0, then by the relation (*) we have

ge) (@, YT ) YoMV = (0) .

Thus, if gek[Y, n], either e R[Y'Jor 8 =0. Ifnpek(Y,n),
then 7 = v\ with v, Nek[Y,x],» % 0, so that ne R[Y']; hence
R[Y'] = k(Y, 7).
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Now,
= (Y0) =[aY+ @ —-a)YP=(t—-a)Y*+ 20, Y7

so that Y'e R[z'}, k(Y, ) = R[Y '] < R[z'], and 7 belongs also to
every nonzero prime ideal of R. Thus PR = (Y, n)R, which is the
unique maximal ideal of R and which is contained in every nonzero
prime ideal of R, is the only nonzero prime ideal of R. As further-
more PR is finitely generated, R is a 1-dimensional local ring.

(iv) First, let us show that 9, = 7Y '¢ T. Suppose that 9,e T =
klY,m, b, -+, ¢, ---]; then 4, = f(x, t,, ---, t,) where f is a polynomial
in #+ 1 indeterminates over k[Y]. For » < ~, by (i), ¢, can be ex-
pressed as a linear combination of 1, ¢, and = with coefficients in k[ Y],
hence 0, = f(n, t, -+-,t,) = F(n, t,) = F(Y0, {0, — a,)") where F' isa
polynomial in two indeterminates over k[Y]. Furthermore, by defini-
tion 0,_, = Y* 7', + a,_,, hence 6, = Y2/‘26/+ By with 5, e k[Y] and
we have

(**) Y0, = G(Y 0, (0,— ay))

where G is a polynomial in two indeterminates over k[ Y'|; but 7 being
transcendental over k[Y], 6, is transcendental over %[ Y] also, and the
relation (**) has to be an identity, which is absurd. Thus, 6,¢ T.
Now, let R* be the completion of R with the (PR)-adic topology;
{7.},=0 18 a Cauchy sequence in R. Suppose that =,e P*R for some
r = 1; since P? isa primary ideal of T, we haver, e PPRN T = P*c YT,
and 7t = 7w, + (@, Y + +++ + @, Y* ) e YT which is absurd since 0, ¢ 7.
Thus, for every » = 0,7, ¢ P’R and g8 = lim, 7, is 0. However, we
also have £° = lim, % = lim, Y*"'-*, = 0; hence R* has a nonzero
nilpotent element and R is not a finite R-module [1, p. 330].

ExamMpPLE 2.2. Let @ be the rational numbers, (X, «--, X,, +-*)
a set of indeterminates over @ and £k = Q(X,, ---, X,, --+). Let

T=bXY + oo +bX. Y 4+ .0

be transcendental over k[Y] with b, @ — {0} for every ¢ = 1°. Con-
struct the rings T = k]Y, x, &, +++, ¢,y ---] and R = T asin 2.1, On

the quotient field k(Y, n) = Q(X,, ---, X,, »++; Y, m) define a derivation
D by

D(@) =0 for every ¢e@

DY) =1
D(7) = 8b,X,Y* + bX,
D(X) =0

2 There exists such a = since k is countable.
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D(X,) = —Tbb' X, Y?
D(X) : (2 — )b, b X, Y220

Then,

(i) D is regular on R

(ii) R is a 1-dimensional local D-simple ring which is not inte-
grally closed.

Proof. (i) Since R = T,, it suffices to show that D(T)c R.
By definition of D we already have D(k) c R, D(Y)e R and D(x) € R;
hence it remains to show that D(¢,) € R for every » = 1. Differentiat-
ing m = Y¥"'%,, we get 27, D(r,) = Y2 D(t,) + (27 — 2) Y0,
but t,e YR by 2.1, hence D(t,) e R if and only if z,D(x,)e Y* 'R.
Let us show that in fact we have D(rx,)e Y¥"'2R. From 7, =17 —
bX,Y we get D(r) = D(r) — b X, = 3b,X,Y* by induction, if we
suppose that D(z,_) = (2" — 1), X, Y** and if we differentiate the
relation 7, = 7,_, — b, X, Y*, we get D(x,) = (2" — 1)b, . X,,, V¥ "¢
Y*"'2R. Hence D is regular on R.

(ii) The only prime ideal of R which is not (0) or (1) is PR =
(Y, 7)R; it is not a D-ideal since D(Y) = 1; thus by 1.5, R is D-simple.
Furthermore by 2.1. R is a 1-dimensional local, not integrally closed,
domain.

3. On the complete integral closure of a Z-simple ring. We
have seen in the preliminaries that a <r-simple ring of characteristic
p # 0 is equal to it total quotient ring. In this section we are con-
cerned with rings of characteristic 0. Henceforth, R will denote a
ring containing the integers.

THEOREM 3.1. Let R be a ring, D a derivation on R, P a prime
ideal of R containing no D-ideal other than (0). Define v: R\{0} —
{nonnegative integers} by v(x) = n tf DV(@)eP for 1 =0,++e,n — 1
and D"™(x) ¢ P. Then,

(i) R is domain.

(ii) v is rank-1-discrete valuation whose valuation ring R, con-
tatns R and whose maximal ideal M, lies over P.

(iii) D s regular on R, and R, is D-simple.

Proof. (i) If n is any integer, D(n) = 0 and nR is a D-ideal
of R; hence 0 is the only integer contained in P. Now, (0) is a D-
ideal, hence by 1.8 any minimal prime divisor @ of (0) is a D-ideal

also; then, by the hypothesis made on P, we have (0) = @ and R is
a domain.
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(ii) Let z and y be two nonzero elements of R, and let v(x) = n,
v(y) = m,n < m. For every ¢ such that 0 <7 < n — 1, both D" (x)
and D" (y) belong to P, hence D (x + y)e P and

v@ + y) = n = inf {v(x), v(y)} .

Let & be such that 0=k =<n+m —1. For 0 =<1 =< inf{k, n — 1}
we have D% (x)e P, hence also CiD®(x)D¥* 9 (y)e P; for n <k and
n=1=<k we have 0=k —i1<k—n=<m—1, hence D¥¥(y)ecP
and CiD®(x)D*?(y) e P; thus

D¥(wy) = 3, CiDY @D (y) e P
Now,

D(n+m)(xy) — %ﬁn C;’_’_mD(i)(w)D(nﬁ-m—i) (y); gl C:;+MD(i)(x)D(n+m—i) (y)

4 'nin C£+MD(’£J({U)D(”+M_1)(:I/) € P

i=n-+1
whereas Cr.,,D™(x)D™ (y) ¢ P since C}.,, D™ (x), D' (y) ¢ P; thus
D™ (xy) ¢ P, v(@y) = 1 + m = v@) + v(y)

and v is a valuation, rank-1-discrete since its value group is the group
of integers. Furthermore, we obviously have Rc R, and M,N R = P.

(iii) Let ab™ be any element of R, with a,be R, b == 0, v(a) =
v(b); then D(ab™) = [bD(a) — aD®)]b*. If v(a) > v(b), then v(D(a)) =
v(a) — 1 =z v(b) and (D)) = v(b) — 1 so that

v(bD(a) — aD()) = inf {v(d) + v(D(a), v(@) + v(D(®)} = 2v(b)

and D(abY) e R,. If v(a) = v(b) = 0, then v(bD(a) — aD(D)) = 0 = 2v(b)
and D(ab ) e R, If v(a) = v(b) = n >0, then v(bD(a)) = v(aD(®)) =
2n — 1, so that D*®(®bD(a) — aD()) € P for every k < 2n — 2; further-
more we have

D& (bD(@) = 3, CiraD¥ (B)D*(a) = a, + C5,_, D™ (B) D (a)

with a, € P, and similarly D®*?(aD()) = «a, + Cz,_,D™ (@) D™ (b) with
a,e P, so that D**"(®D(a) — aD(®)) = a, — a,€ P; hence, v(bD(a) —
aD®)) = 2n and D(ab~')e R,. Thus D is regular on R,. Moreover,
R, is D-simple since if A %= (0) were a D-ideal of R,, then A N R +~ (0)
would be a D-ideal of R contained in P, which would be absurd.

THEOREM 3.2. Let R be a domain with quotient field K, S a
ring such that R Sc K and D a derivation of R regular on S.
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Let P be a prime ideal of R such that R, is D-simple. Then,

(i) There is at most one prime ideal Q of S lying over P, Q
being a minimal prime ideal when P 1s.

(ii) If S is the complete integral closure R’ of R there is ex-
actly one prime ideal P’ of R’ lying over P.

Proof. (i) Let @ be a prime ideal of S such that QN R = P.
Being regular on S, D is also regular on S,, and S, is D-simple since
S; D Ry. Define v: R\{0} — {nonnegative integers} by v(x) = n if

DY(x), +++, D" P(x)e P and D™(x)g¢ P,
and w: S\{0} — {nonnegative integers} by
w(y) = m if DO(y), «-+, D" (y) e Q

and D™ (y)¢@. By 3.1, v and w extend to valuations of K; further-
more, for x¢ R we have D*(x)e P if and only if D" (x)e @ since
QN R = P; hence v = w, and @ = M, N S where M, is the maximal
ideal of the valuation ring R, of w.

If P is a minimal prime ideal of R, suppose that @' is a prime
ideal of S such that 0 < @ Q. We have 0 < Q@ NRcQNR=P
and @ N R = P by the minimality of P; then @ = @ since @ is the
only prime ideal of S lying over P.

(ii) By [5, p. 168] every derivation of R is regular on R’. Being
a rank-1 valuation ring, R, is completely integrally closed and contains
R'. Then, P' = M, N R is a prime ideal of R’ lying over P; of
course, by (i), P’ is unique.

THEOREM 3.3. Let R be a Noetherian -simple ring and R its
integral closure. Let {P}.., be the set all the minimal prime ideals
of R. Then,

(1) For every e A, there exists De = such that Rp,6 is D-
simple, and there exists a unique prime ideal P, of R lying over P,.
(ii) {Pac. is the set of all the minimal prime ideals of R.

(iii) Let De = such that D(P,) & P,, w, the valuation associated
by 3.1, and R, its valuation ring. Then R, = R;a (hence, any two
derivations D and D' such that D(P,) & P, and D'(P,) & P, give rise
to the same valuation w,).

(iv) R = NacsR0.

Proof. (i) Being <r-simple, R is a domain containing the
rational numbers, and for any ae /4, there exists De & such that
D(P,) & P,, and by 1.3, R, is D-simple. Then, by 3.2, there exists
a unique prime ideal P, of R lying over P,.
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(ii) That every P, is a minimal prime ideal of R is given by 3.2.
Now, let P be a minimal prime ideal of R, and let P= PN R; let M
be a minimal prime ideal of R contained in P; by [3, (10.8), p. 30]
there exists a prime ideal M of R lying over M; since P is the only
prime ideal of R lying over P, we have M c P by [3, (10.9), p. 30],
hence M = P, and P= PN R = M is a minimal prime ideal of R.

(iii) Since R is Noetherian, R is a Krull ring [3, (33.10), p. 118],
and R[‘;a is a rank-l-discrete valuation ring. As furthermore R;,ac R,
we get Rz, = R,.

(iv) R is a Krull ring and {P,},., is the set of all the minimal
prime ideals of R; thus R = Nuci B, = Nucs Rae

COROLLARY 3.4. Let R be a Noetherian Z-simple ring with
quotient field K. Let S be a ring such that R c S c K and such that
every De &7 is regular on S. Then, the following statements are

equivalent:
(i) For every minimal prime ideal P of R there exists a

(unique) prime tdeal @ of S lying over P.

(ii) S ts tntegral over R.

(iii) For every prime ideal M of R there exists a (unique) prime
ideal N of S lying over M.

Proof. That (ii) = (iii) is a consequence of [3, (10.7), p. 30] and
3.2; that (iii) = (i) is obvious. Now, let {P,},., be the set of the
minimal prime ideals of R, {w.}.., the associated valuations and {R.}..,
the valuation rings of the w,’s. For any aed, let De & be such
that D(P,) & P,, and let @, be a prime ideal of S lying over P,; S,
is D-simple, the valuation associated to Q, is equal to w, and S < R,.

Hence, SC R = MNaes Re-

COROLLARY 3.5. Let R be a Noetherian <Z-simple ring with

quotient field K, and R its integral closure. Then,

(i) R is the largest =r-simple overring of R in K having a
prime ideal lying over every prime ideal of R.

(ii) R is the largest Zr-simple overring of R in K having a
prime ideal lying over every mimimal prime ideal of R.

Proof. Apply 3.4.

The author wishes to acknowledge the many helpful discussions
on the topics of this paper he had with Professor Ohm.
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ON NONNEGATIVE MATRICES

M. LEwIN

The following characterisation of totally indecomposable
nonnegative n-square matrices is intreduced: A nonnegative
n-square matrix is totally indecomposable if and only if it
diminishes the number of zeros of every n-dimensional non-
negative vector which is neither positive nor zero. From
this characterisation it follows quite easily that:

I. The class of totally indecomposable nonnegative n-
square matrices is closed with respect to matrix multiplica-
tion,

II. The (n —1)-st power of a matrix of that class is
positive,

A very short proof of two equivalent versions of the
Konig-Frobenius duality theorem on (0, 1)-matrices is supplied
at the end.

A matrix is called mnonnegative or positive according as all its
elements are nonnegative or positive respectively. An #n-square matrix

A is said to be decomposable if there exists a permutation matrix P

such that PAP* = [g OD], where B and D are square matrices;

otherwise it is indecomposable. A is said to be partly decomposable
if there exist permutation matrices P, @ such that

B0

} where B and D are square

matrices; otherwise it is totally indecomposable.

Whereas the notion of indecomposable matrices first appeared in
1912 in a paper by Frobenius [2] dealing with the spectral properties
of nonnegative matrices, totally indecomposable matrices were intro-
duced fairly recently apparently by Marcus and Mine [10]. Their
properties have been studied in several papers on inequalities for the
permanent funection.

In [11] Minc gives the following characterisation of totally in-
decomposable matrices:

A nonnegative n-square matrix A, n = 2, is totally indecomposable
if and only if every (» — 1)-square submatrix of A has a positive
permanent.

A well-known theorem states:

THEOREM 1. If A is an indecomposable nonnegative n-square
matriz then

753
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(A+ID)"">0[3],]9].

An indecomposable matrix is primitive if its characteristic value
of maximum modulus is unique.

Wielandt [15] states (without proof) that for primitive n-square
matrices we have

An2—2n+2 > O .1

By using solely the properties of total indecomposability we
establish a different characterisation for totally indecomposable matrices
from the one given by Mine. Using part of the characterisation we
show that if A is a totally indecomposable nonnegative n-square
matrix then A > 0. This result is best possible as for every n
there exist totally indecomposable n-square matrices A for which
A™?* % 0. Theorem 1 then follows as a corollary of the latter result.

We should like to point out that Theorem 2 is by no means
essential for the proof of Theorem 3. Two independent proofs of
Theorem 3 are given in §4. It seems justified however to present
Theorem 2 on its own merit.

We conclude with a very short proof of two equivalent versions
of Konig’s theorem on matrices.

2. Preliminaries. |S]| denotes the number of elements of a
given set S. Let M, be the set of all nonnegative n-square matrices,
let D, be the subset of M, of indecomposable matrices and let T, be
the subset of D, of totally indecomposable matrices. Let A< M, and
let p and ¢ be nonempty subsets of N ={1,---,n}. Then Alp|q],
A(p|q) is the |p| x |¢]| submatrix of A consisting precisely of those
elements a;; of A for which iepand jeq, 1¢ p and j ¢ q respectively.
Alp|q) and A(p|q] are defined accordingly. We can now formulate
equivalent definitions for matrices in D, and T,:

D. 1. AeD, if Alp|N — p] =+ 0 for every nonempty p < N.

D. 2. AeT, if Alp|q] # 0 for any nonempty subsets p and ¢
of N such that |p|+ |q| = n.

Let us now establish some connections between indecomposable
and totally indecomposable matrices.

LemMa 1. IfAe(D,—T,) then A has a zero on its main diagonal.?
Proof. Since A¢ T, there exists a zero-submatrix A[p|q] with

||+ {g] = n; but since AeD,, N q #* @, which means that A has
L A proof is supplied in [5].

2 Lemma 1 is part of Lemma 2.3 in [1] but the shortness of our proof seems to
justify its presentation.
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a zero on its main diagonal.

CoroLLARY 1. If AeD, then A+ IcT,.

Proof obvious.

3. The main results. Let A = (a;;)e M, and let v denote an
n-dimensional vector with a,(v) its ith entry.

Deﬁne: Jk = {.7 Ar; = 0}7 Ik = {%: Qi = 0}’
I(v) = {i: a;(v) = 0}, I.(v) = {it ai(v) > 0} .

Let R, denote the space of m-tuples of real numbers.
Let X, be the set of all nonnegative vectors in R, which are
neither positive nor zero. We then have the following

THEOREM 2. A mnonnegative m-square matricz A is totally in-
decomposable if and only if | I(Ax)| < |I(x)]| for every z¢e X,.

Proof. Let AeT, and xc X,. A necessary and sufficient condi-
tion for a;(Ax) = 0 for some 7, is

(1) I(x) < J;, -

If I(Ax) = @, then there is nothing to prove, so we may assume
(2) I(Az) + @ .

x e X, implies

(3) IL(z)+ @ .

(1), (2) and (3) imply that A[I(Ax)|I.(x)] is a zero-submatrix of A.
Since Ae T, by assumption, we have (by D. 2.)

[ 1(A2) | + [ I(2) | < n = | I(2)| + [ L.(x)]

and hence | I(A%)| < | I(x)| which proves the first part of the theorem.
(It is not generally true however that I(Ax) < I(x) as it may happen
that ax) >0 and a;(Ax) = 0, a situation which differs somewhat
from that in the similar case for indecomposable matrices (5.2.2
in [o]).

Let now A¢ T,. Then A contains a zero-submatrix A[I|J] such
that I, J = @ and |I| + |J| = n. Choose now @ ¢ R, such that

(4) I(x)=J.

Then clearly v ¢ X,. We have I(x) = N — I,(x) = N — J, and hence
|I(x)| = |I|. For eI we have J; 2 J, and hence by (4) I.(2) < J;,
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so that for i¢el according to (1) a;(Ax) =0 and hence I(4x) D I.
Then |I(Ax)| = |I| = |I(x)|. This completes the proof.

X, in Theorem 2 may of course be replaced by its subset Y,
consisting of the 2" — 2 zero-one vectors.

Theorem 2 admits of two simple corollaries which we present as
Theorems 3 and 4.

THEOREM 3. If A s a totally indecomposable nonnegative n-square
matrix then

A >0.

Proof. 1If for some j, we had |I;| =n —1 then A would be
partly decomposable and hence |I; | <n — 2 for je N and the rest
follows.

Theorem 1 follows from Theorem 3 as an immediate consequence
of Corollary 1. For A = I + P where P is the n-square permutation
matrix with ones in the superdiagonal, so that a;; =1 if ¢ =7 or
t=7—1, a, =1 and a;; = 0 otherwise, it is easy to show that
A"* % 0, which shows that our result is best possible.

THEOREM 4. The product of any finite number of totally in-
decomposable nonnegative n-square matrices is totally indecomposable.

Proof. It is clearly sufficient to prove the statement for two
matrices. Let therefore A, Be T,. Choose an arbitrary element %
of X,. We then have

(5) | I(ABz) | < | I(Be) | < |I)|

by Theorem 2. Since x was arbitrary, (5) applies to all elements of
X,. Again by Theorem 2 it follows that AB is totally indecompo-
sable, which proves the theorem.

4. Independent proofs of Theorem 3. A lemma of Gantmacher
[3] states that if Ae D, and xze X,, then I[(4 + Dz] < I(x).

The following proof of Theorem 3 assuming the lemma has been
suggested by London®: Let Ac T,. Using the fact that a matrix in
T, possesses a positive diagonal d, put

A= -C-IK—PT(A _aP)=1 PrA_Twhere 0<a<minayas;ed)
[44

3 D, London, oral communication.
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and P = (p;;) is an n-square permutation matrix such that p; =1 if
and only if a;;e€d. Then Ae T, implies 4,¢ T,.
We have A = aP(A, + I); since A, D, we obtain

I(Ax) = L[P(A, + D)z] = L[(A, + Dzl L) ,

for ze€ X,. Then I(A"'x) = @, and A" > 0.

Another proof has been kindly suggested by the referee of this
paper: We show that if A is totally indecomposable, then if xe X,,
then

[ I(Az) | < [I(z)] .

The theorem then follows immediately.
Suppose | I(Ay)| = | I(y)| for some ye X,.
Put |I(y)| = s. There are permutation matrices P and @ such

that
0 0
PAy = l: } and Q'y = [ J
% v

where u is an (#» — s)-dimensional nonnegative victor and » is an
(n — s)-dimensional positive vector: The 0’s represent s zero components
in each case.

Al AZ

We now write PAQ = [A A] where A, is s X s, A, is s X (n — 8),
3 4,

A;is (m—s)xs and 4, is (n — s) X (n—s). Then [j‘ jﬂ[?]] = [0]
3 Ay w
and so A,V =0. Thus 4, =0 and hence A¢ T,, a contradiction.

5. Konig’s Theorem. Let A be an m X = matrix. A covering
of A is a set of lines (rows or columns) containing all the positive
elements of 4. A covering of A is a minimal covering of A if
there does not exist a covering of 4 consisting of fewer lines. Let
M(A) denote the number of lines in a minimal covering of 4. A
basis of A is a positive subdiagonal of A of maximal length. m(A)
denotes the length of a basis of A. The jth column of A is essential
to A if M(A(@J)) < M(A).

We now give the two versions of Konig’s Theorem and their
proofs:

K. T. 1. If A is an m X n matriz, then m(A) = M(A).

K. T. 2. If Ais an n-square matric, then A has k zeros on
every diagonal (k> 0) if and only if A contains an s Xt zero-
submatriez with s +t=mn + k.

This is a generalized version of a theorem of Frobenius. The follow-
ing theorem appears in [8] (we reproduce it here in a hypothetical
form).
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E. T.: If A is an m X n matric and K.T.I. holds for A, then
there exists a minimal covering of A (called essential covering) contain-
tng precisely the essential colummns of A (and may be some rows).

Proof of K. T.1. m(A) < M(A) holds trivially. The theorem is
clearly true for 1 x n» matrices for all n. Assume that the theorem
is true for all ¢ x % matrices, # < m and all n. Let Abean m X n
matrix. Consider A’ = A({m}|N]. A’ is an (m — 1) X n matrix so
that K. T.1, holds for A’ and hence E.T. holds for A’. Let Q be
the essential covering of A’.

Case 1. @ is a covering of A. Then m(A) = m(4’) = M(4A') =
M(A).

Case 2. @ is not a covering of A. Then there exists j,€ N for
which a,,;, > 0 which is not covered by @ and hence the j;th column
is not essential to A’. Then clearly there exists a basis b of A’
without elements in the jith column. Then b =b"U{a,.;} is a sub-
diagonal of A and hence M(A4) < M(A’) + 1 = m(4A") + 1 < m(A4). This
proves K. T. 1.

Proof of K. T.2. Necessity. If A has k zeros on every diagonal
then m(A)<n —k. By K.T.1, M(A) <n — k. Apply a minimal
covering to A. Then there remains an s X t zero-matrix of A which
is not covered, with s + ¢ = 2n — M(4) = n + k.

Sufficiency. Let A contain an s X t zero-submatrix with s +¢ =
% + k. Then there are positive elements on at most 2n — (v + k) =
n — k lines, meaning that there are at least k& zero-rows, which
proves the sufficiency.
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SPECIALITY OF QUADRATIC JORDAN ALGEBRAS

KEviIN McCRIMMON

In this paper we extend to quadratic Jordan algebras
certain results due to P, M. Cohn giving conditions under
which a Jordan algebra is special, the most important of
these being the Shirshov-Cohn Theorem that a Jordan algebra
with two generators and no extreme radical is always special.
We also prove that the free algebra on two generators x, y
modulo polynomial relations p(x) = 0, ¢(y) = 0 is special, and
by taking a particular p(x) we show that most of the properties
of the Peirce decomposition of a Jordan algebra relative to
a supplementary family of orthogonal idempotents follow im-
mediately from the analogous properties of Peirce decomposi-
tions in associative algebras.

Throughout we will work with algebras over an arbitrary (com-
mutative, associative) ring of scalars @. A (unital) quadratic Jordan
algebra is defined axiomatically in terms of a product U,y linear in y
and quadratic in x [4, p. 1072]. We can introduce a quadratic Jordan
structure ' in any unital associative algebra U by taking

Uy = zyx .
Any (Jordan) subalgebra of such an algebra 2* is called a special
Jordan algebra. A specialization of a quadratic Jordan algebra ¢ is
a homomorphism of ¥ into an algebra of the form 2U-.

With any quadratic Jordan algebra X we can associate its special
universal envelope, consisting of a unital associative algebra su(J) and
2 (universal) specialization o,: 3 — su(J)* such that any specialization
0: 3 — A+ factors uniquely through an associative homomorphism su(o):
su(J) — 2,

N
au\ /sulo)

su(3)
Ssu() carries a unique involution, the main tnvolution =, such that
the elements of J°» are [symmetric: &+ = x°«. This association is
functorial—if ¢: ¥ — & is a homomorphism of quadratic Jordan algebras
there is induced an associative homomorphism su(®) making

(1)

3-8
J
su(Q) — su(Y)

su(¢)
761
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commutative. An algebra & is special if and only if it is imbedded
in su(Y) via a,.

For any set X we have a free quadratic Jordan algebra FJ(X),
a free special Jordan algebra FS(X), and a free associative algebra
F(X) on the set X (over the ring @®). We have F'S(X) imbedded in
F(X) as the (Jordan) subalgebra of F(X)* generated by X, and F(X)
with this inclusion map serves as special universal envelope for FS(X)..
When X consists of just two elements X = {«, y} we know FJ(z, y) =
FS(z, y) by Shirshov’s Theorem. For all these see [3].

1. Cohn’s theorem and criterion. We consider a set X = {x;}:;
where the indices are linearly ordered. The free associative algebra
F(X) carries a reversal involution, whose action on a typical monomial is.

(mil...xin)* = e

n

@, .

The subspace H(F(X), *) of *-symmetric elements is a Jordan sub--
algebra of F(X)* containing X, hence containing FS(X). Cohn’s:
Theorem measures how far FS(X) is from being all of H(F(X), *).

CouN’s THEOREM [1, p. 257; 2, ex. 2 p. 9]. Q(F(X), *) is the
Jordan subalgebra of F(X)* generated by 1, X, and all the n-tads

{xil cee x%} =y v By, W, e By

where n =4 and &, < 1 < o0 < by

Proof. Clearly $ = §(F(X), *) contains X and all n-tads. Con--
versely, to show the subalgebra & generated by such elements is all
of § we must show & contains all {x; «--2;}=a; «--2; +a; «--u,;
and all «; -+ a; yo; -, (Where y is either 1 or one of the ;) since:
these clearly span . Now the w; ---x; yx; -+ ;) = UM1 eoe U,iny'
are generated by X alone, so we need only generate the {w; ---u, }.
We do this by induction on n. The result is trivial for » = 2, 3 since:
w2} = @, 0 @y, {222} = U,%.l,,isaci2 where zoy and U,.,y are the
linearizations of x*(=U,1) and U,y. We assume % = 4 and that all
{; +++; } for m < n are in K.

Our first task is to show

(3) @iy oo i) = Efw oon ) (mod &Y

for any permutation m. It suffices to do this for the generators
(12 --- n) and (1n) of the symmetric group S,. For the transposition
(1n) we have

{w;, coowy )} + {22y, coe 2,2} = U, 0

- Tiy®g,

AL {xiz cen win—x}
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by our induction hypothesis, and for the cycle (12 .- )

(s, « -

ﬂ/'in}"*—{mb L T}Zﬂ?ilO{xiz-“:Ui}EO.

in®

If all the indices are distinct then (3) shows that {x; ---w;} is
congruent to + an n-tad, which belongs to & by hypothesis, so
{w; «--;} also belongs to ®. If two indices coincide, (3) shows
{w, cevwecen e} = {ow, --- a0 = Uday, -+ ;) = 0 by induc-
tion. In either case, {x; --- xin}e@

Since there are no m-tads for m = 4 if there are only three vari-
ables, we have the following useful corollary.

COROLLARY. For m < 3, the subalgebra of F(x, «++,x,)" generated
by Ty 200y Uy 15 all Of ‘@(F(xlv Y xm)y ;E:)'

The next result gives a criterion for when a homomorphic image
of a special Jordan algebra is again special.

CouN’s CRITERION [1, p. 255; 2, p. 10]. If & is a special Jordcm
algebra and & an ideal in I then J/& s special if and only of I
K = & where & is the ideal in su() generated by K.

Proof. A standard functorial argument shows that the algebra
su(X/R) = su(I)/R and the specialization of I/ induced from I —
su() — su(Y)/] by passage to the quotient serve as special universal
envelope for /& (i.e., satisfy the universal property (1)). The kernel
of this specialization is & N &/&, so the specialization is injective (i.e.,
X/ is special) if and only if N & = K.

In particular, for ¥ = FS(X) and su(J) = F(X) we obtain

COROLLARY. FS(X)/® is special if and only if &0 FS(X) =
where & 1is the associative ideal in F(X) generated by the Jordan ideal
& in FS(X).

2. Shirshov-Cohn theorem. The extreme radical of a unital
quadratic Jordan algebra ¥ is the set of elements z such that U, =
U.,, = 0 for all z in &; this always forms an ideal. Since 22 =201=0
for such elements, the extreme radical is always zero when ic @.

PROPOSITION [1, p. 260]. If & is an ideal in FS(x, y, z) having a
set of gewerators {k} such that all tetrads {xyzk} belong to £, and if
FS(x, y, 2)/R has zero extreme radical, then FS(x,y, z)/R is special.

Proof. By the Corollary to Cohn’s Criterion FS(x, y, z2)/® will be
special if & N FS(x, y,2) — ®. To prove that any p(, ¥, 2) in &N
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FS(z, y, 2) belongs to & it will suffice to show it is in the extreme:
radical modulo &,

(i) Uyr=prpef

(ii) U,,r=prq+qrpe® (g, reFS(w,y¥,2)
since we are assuming FS(z, ¥, 2)/® has no extreme radical.

It will be enough to prove the stronger results

(1) prp*e®

(iiy p+p*e® (pe& reFS(,y,2)
since p = p* if pe & N FS(x, v, 2) and then prq e & has prq + (pro)* =
prq + qrp.

We tackle (ii)’ first. The proof is the standard one [2, p. 11].
It suffices to comsider p = skt for s, t monomials in «, 4,2 and k a
generator of &, since such elements span &. As swt + t*ws* is a
symmetric element of the free algebra F(z, v, z, w), by Cohn’s Theo-
rem it is a sum of Jordan products of #, y, 2, w and the tetred {xyzw}
where each term in the sum has a factor w or {xyzw}. But then
(applying the homomorphism F¥z,y, 2z, w) — F(x, y, z) sending = — =,
Yy—yY,2—2 w—k) we see p + p* = skt + t*ks* is a sum of Jordan
products of =z, ¥, 2, k and the tetrad {xyzk} where each term has a.
factor ke & or {xyzk} e & (by our hypothesis), so p + p* falls in the
ideal K.

Since (i)’ is not linear in p we must first consider a general »p =
2p; = Zs;kit;. Here prp* = 2iprpf + 2ic(pirpf + pyrpf). By (ii)"
the latter sum is in & since the p,»p} belong to ® if p, does, so once:
again we need only consider an individual p,: to consider prp* for
p = skt. Now prp* = sktrt*ks™ = skhks* for

h = trt* e 9(F(z, y, 2), *) = FS(z, y, 2)

by the Corollary to Cohn’s Theorem. But since £ is an ideal in
FS(z, y, z) this yields ¥’ = khk = Uhe R, and if s=s, -+-s, where
each s; is an x, y, or z then sk's* = U, --- U, kE'e®. Thus prp* e
in all cases, finishing (i)’ and the Proposition.

Shirshov-Cohn Theorem [1, p. 261; 2, p. 48]. Any unital quadratic
Jordan algebra on two generators without extreme radical is special.

Proof. By universal properties, any quadratic Jordan algebra J
on two generators is a homomorphic image of the free quadratic Jordan
algebra FJ(x, y) on two generators, hence (by Shirshov’s Theorem) of
FS(z, y): X = FS(z, y)/{ for some ideal 8. We now apply the Propo-
sition; we can forget about tetrads, since we are not concerned with
the variable z.

More precisely, let {k} be a set of generators for &, let 3 be the
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ideal in F'S(x, v, 2) generated by 2, and let € be the ideal generated
by z together with the k’s. Then FS(z, y) = FS(v, v, 2)/3 and

FS(w, 9)/® = (FS(x, y, 2)/8)/(¢/3) = FS(x, v, 2)/¢ .

Bach {xyzk(x, y)} or {vyzz} belongs to ¥—the latter is {axyz’} = U, .y
and the former is a sum of Jordan products of z, y, z each term of
which has a factor 2z, so in fact the tetrads belong to 8 — 2. Since
FS(z, v, 2)/8 = & has no extreme radical, we apply the Proposition to
conclude  is special.

Note that if 1€ @ then the extreme radical is automatically zero,
so in that case we obtain the usual Shirshov-Cohn Theorem that any
Jordan algebra on two generators is special. A standard example [2,
ex. 3 p. 12] shows that this stronger form does not hold in general:
if & is the ideal spanned by =27 «*, «°, a2 --+ in the free algebra

FJ(z) = FS(z) = F(x)

on a single generator over a field @ of characteristic 2 then the coset
Z in FS(x)/8 has &* = 0 but Z° = 0 so FS(x)/f cannot be special. (Of
course, &’ is in the extreme radical).

An algebra & is power-associative if each subalgebra @[z] generated
by a single element forms an associative algebra under the natural
structure induced from & [5, p. 293], and strictly power-associative
if it remains power-associative under all scalar extensions. Power-
associativity amounts to the condition that a polynomial relation
p{z) = 0 implies zp(z) = 0. In the previous example it was the failure
of this condition which led to trouble. However, the following example
shows that imposing power-associativity is not by itself enough to
guarantee speciality; the condition is necessary but not sufficient.

Exampre. If & is the ideal in FJ(z, y) over a field @ of charac-
teristic 2 generated by U,y and all monomials of degree =6, then
I = FJ(x, )/ is a strictly power-associative algebra generated by
two elements which is not special.

Proof. J = FJ(z, y)/R = FS(z, y)/{ is not special by Cohn’s Cri-
terion since & N FS(x, y) > &; indeed, U,U,x = syryx = xy(U,y) be-
longs to & and to FS(z, »), yet not to & To see this, recall that
the ideal generated by U,y is spanned by all M, --- M,(U,y) and
M, -+ MUy )m for me FS(x,y) and M, =U,, U,, U,,, V., V,, or
I. The part of the homogeneous ideal & of x-degree 3 and y-degree
2 is spanned by U, (U.y), V.V,(Uy), V,V(U,y), i.e., by

Yy + yryad, 2eyryr + 2yry + yryrd, yrtye
+ xyaty + 2Pyxy + yayat,
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hence by 2*yaxy + yryx® and yx’yx + xyx’y in characteristic 2, so that
zyxyx is not in K.

We will show & is power-associative; since any extension &, has
the same form over £ that & does over @, the same argument will
apply to all J,, and consequently ¥ will be strictly power-associative.
We must show that if p(z) e & for some polynomial p then also zp(z) e K.

First we get rid of the constant terms. Let z = a,1 + w where w
contains the homogeneous parts of z of degree =1. Then the degree
zero part of p(z)e & is p(a,), and since & is homogeneous and contains
only terms of degree =3 we have p(a,) = 0. Thus if g(\) = p(M + a)
we have ¢(0) = p(a,) = 0, so q has zero constant term, and

() = q(z — &, 1) = q(w) .
Therefore
2p(2) = a,p(2) + wp(r) = a,p(z) + wa(w) ,

and it will be enough if wg(w) lies in K.
This shows we may assume (after replacing p, z by ¢, w) that
p(\) and z have no constant term:

PAA) = TN+ oo + VAN 2=2, 4 co0 + 2,

for z; homogeneous of degree ©. We next get rid of the degree one
term 2z, =ax+ By. If v,= -+ =7v,_,=0 but v, 0 then the degree
r term of p(z)e R is 7,2, so by the homogeneity of &

2= (ax+ BY) =ax" + BY + -

lies in &. Since all elements of & have z-degree =2 and y-degree =1
we see " = 8" = 0. Thus o = 8 =0 and 2, = 0 as desired.

We are reduced to considering z = z, + 2; + 2, + 2; (modulo terms
of degree =6); in this case z* for & = 3 consists entirely of terms of
degree =6, s0 p(2) =72 + 7.2* and zp(z) = v2* mod K. If v, = 0 tri-
vially 2p(z) e ®, while if v, £ 0 then 7,2 + 7.2 = 7%, + 7% + (72, +
Y,28) + (V125 + Ve © ;) € & implies z,, z,€ & by homogeneity, so v =
Y7 + 2,0 2;)€ & In all cases zp(z) belongs to &, and J is power-
associative.

We can improve slightly on the theorem. In dealing with asso-
ciative algebras U with involution * in situations where 3¢ @ it is
sometimes more convenient to work with certain “ample” subalgebras
of §(2, *) rather than just with (2, *) itself. A subspace & of H(, *)
is ample if & contains 1 and all aka™ for ac ¥ and ke . (In parti-
cular, & contains all norms aa* and traces a 4 a*, so if 3e® then
& = ). We will say a Jordan algebra is reflexive if J°* is an ample
subspace of H(su(Y), 7) (and strongly reflexive if Jo+ = H(su(F), m)).
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By the Corollary to Cohn’s Theorem & = FJ(,, -, ,) is strongly
reflexive for m < 8, but its homomorphic images may not be. How-
ever, they do inherit reflexivity:

THEOREM [2, p. T7] If s reflexive so is any homomorphic image.

Proof. Let ?: §— & be an epimorphism. To see that f‘f’u is
ample in @(su(?g), 7) we use (2) to see that (setting - = su(®)) any
awa” for & = y(a)esu(3) = p(su(d), T = ¥(2) e I = A" = $(I™)
has the form (a)y(x)y(a)” = y(aza™) € y(J*) = J°+ and hence belongs
to J°=.

COROLLARY. Any quadratic Jordan algebra with three or fewer
generators is reflexive. :

Since any algebra & which is both special and reflexive has § =
Qo ample in (su(), 7) we have the improved result

SHIRSHOV-COHN THEOREM [2, p. T7]. Any quadratic Jordan algebra
on two generators without extreme radical is isomorphic to an ample
subalgebra of H(U, *) for some associative algebra WA with involution.

Again, if €@ the only ample subspace of $(, *) is (A, *) itself.

3. An example. In this section we consider the free special
algebra FS(x, y, z) on three generators, together with three relations
(@) =0, q(y) = 0, r(z) = 0 where p()\), ¢(A), (\) are monic polynomials
of degree m, m,l respectively. (We allow any of these to be zero, in
which case we take the degree to be o).

By singling out powers of z, y, z greater than or equal to n, m, [
we can write any monomial in F(z, y, ) uniquely as a word

W = W, AWy *** WGy

where (i) each w, is an %, %, or 2* for 1 = n,j = m, k = I; (ii) each
a, is a monomial containing only powers a°, %/, z2* for ¢ < m,j < m, k <l;
(iii) there is no coalescing between the w,’s and the a,’s in the sense
that if w, = 2* then @, cannot end nor a.,, begin with a factor z
(similarly if w, is ¥’ or 2*). Since p, g, r are monic it is easy to see
(writing i12nasi=c+mne,j=masj=9+mfik=las k=v+lg
for0<e<m0=7<n,0=v<landef,g=1) that F(a, y, 2) has
a basis consisting of the

( 4 ) m = M, ANy ¢« MWy
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where the a, satisfy (ii) and (iii) and the m, are either x*p(x)°, ¥7q(y)”,
or 2'r(z)’. We say m, has weight w(m,) = e, f, or g and m has weight
w(m) = Jw(m,).

THEOREM. If & is the (Jordan) ideal in FS(z, y, z) generated by
the elements p(x), vp(x), 4(¥), Ya(y), r(2), zr(z) for some monic p(r), ¢(N),
r(\) then FS(x, y, 2)/8 s special.

Proof. By the Corollary to Cohn’s Criterion it suffices to show
& N FS(z, v, 2) c K. So suppose f(x, ¥, z) € & is symmetric. It is easy
to see that the elements m (as in (4)) of weight =1 form a basis for
& (they are all contained in &, and they span an associative ideal
containing p, v, q, ¥q, r, 2r which are the Jordan generators for & and
associative generators of &). Since the reverse m* of an element m
again has the form (4), f(z, v, 2) is a linear combination of elements
m + m* and of symmetric elements m = m*.

Consider the homomorphism of the free algebra Fl(zx, v, 2, p, q, 1)
on 6 free generators onto F(zx, ¥, ) sending v — x, y — ¥, 2 — 2z, p — (%),
qa—q(y), r—r(z). Each m 4+ m* has a pre-image of the form n + n*
where if m is as in (4) then n = am,a.m, + -+ m,a,., for a, as before
and 7, either a*p®, y’¢’, or #’'r?; such » + »n* is symmetric in F(x, ¥,
2,,9,7), hence by Cohn’s Theorem a Jordan product of z, ¥, z, »,q, 7
and n-tads {x; «--2;} for 4 < n < 6, where we order the variables
r<p<y<qg<z<r. Applying the homomorphism, m + m* is a
sum of Jordan products of =z, ¥, 2, p(x), ¢(y), (2) and n-tads. But all
the n-tads reduce to Jordan products of x, ¥, z, p(x), ¢(y), 7(z) together
with xp(z), yq(y), zr(z)—for example, the 6-tad

{z p(x) v q(y) 27(2)} = {wp(®) ya(y) 2r(2)} -

Thus m + m* is a sum of Jordan products at least one factor of
which is a p(x), q(y), r(z) or xp(x), yq(y), 27(2) (since m is of weight =1
and so has at least one factor p(x), ¢(¥), or 7(z)). This means that
m + m* falls in the Jordan ideal &.

A similar but more involved argument works for the symmetric
m = m*. Consider the homomorphism of the free algebra on 9 gen-
erators F(x,y,z,p,4q,7,0,¢,7) to F(x, y,2) sending 2 —2,y— ¥,
z— 2z, p— p(®), ¢ — q(y), r— (), ' — xp(®), ¢’ — ya(y), v’ —2r(z). We
claim m = m* has a pre-image n = n* which is symmetric in Fl(z, v,
z2,p,q7r9,¢, 7). (Once we have this we argue as before; we have
to worry about n-tads for 4 < n <9 now, where we order the varia-
bles s <p<p <y<qg<qg <z<r<7r, but again all n-tads reduce
to ordinary Jordan products in F'S(z, y, ) since xpp’ — xp(x)x, ©p —
xp(zx), pp’ — p(x)xp(x) etc.—for example, the 7-tad {x ¥ q ¢’ 2 » +'} reduces
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to {z ¥ q(¥) va(y) 2 7(z) zr(z)} = {x yq(y)’y 2r(z)*2}—and thus again m = m™*
falls in &). If m = ama, -« M, = m* = ai m, «+- aimaf we
have a, = af,, @, = af, -+, Qs = aF and m, = My, My = My_,, +++ by
uniqueness of the representation (4). Therefore n = an,a, «++ 1,04,
will be a symmetric pre-image of m if the n, are symmetric pre-images
of m,. So consider m, = &'p(x)’. Now xp® is not symmetric when
xz, p are free variables, so we must find an alternate representation.
If ¢ = 2¢’ is even then x*p(x)’ = 2% p(x)’x* has the symmetric pre-image
o' px¥, similarly if e = 2¢' is even then x*p(x)° = p(x)”x*p(x)” has
pre-image p®x‘p’, while if ¢ =2¢’ + 1 and ¢ = 2¢’ + 1 are both odd
rpix) = z¥p(x) (zp(x))p(x) v’ has symmetric pre-image a7p*p'p 'z
(here we need the extra free variables p’, ¢/, v/). We also note that
since m is of weight =1, n contains at least one factor p,q,r or
o, 9, ¥. As we said above, this is enough to allow us to complete
the proof that m = m* falls in f.

Since FJ(x, ¥) = FS(#, v) by Shirshov’s Theorem, specializing z — 0
gives

COROLLARY. If p(\), g(\) are monic polynomials then FJ(x, y)/R
is special for £ the ideal generated by p(x), xp(x), ¢(v), ¥aly).

It is essential (in the general case where 1 ¢ @) that we take xp(x)
and yq(y) along with p(x) and ¢(y). Indeed, in our pathological one-
generator example we divided out by #* but not 2, and it was this
«* that came back to haunt us. However, the Example of § 2 shows
that the condition »(z)e & = zp(z) e is not by itself enough to
guarantee speciality.

It is also essential that the relations involve only one variable at
a time. The situation becomes much more complex when the variables
are intermixed. For example, if & in FS{x, y, z) is generated by
a? — y* then FS(z, v, 2)/$ is not special, but it & is generated by
Uy — x, Uy* — 1 then F/R is special. Thus speciality depends very
much on the particular relations chosen.

4. Applications to Peirce decompositions. We define the free
Jordan algebra on X with n (supplementary, orthogonal) idempotents
FJ(X;e, +-«,e,) to be the quotient FJ(X U Y)/® where Y = {y,, +-+, ¥.}
is disjoint from X and & is the ideal generated by 1 — ., ¥* — Y.
U, ¥;, ;o yi(i # j). The cosets e; = y; + & are supplementary ortho-
gonal idempotents in FJ(X;e, ---,¢,) = FJ(X U Y)/®, and one has
the universal property that any map X — & of X into a Jordan alge-
bra § with n supplementary orthogonal idempotents f,, ---, f, extends
uniquely to a homomorphism FJ(X;e, ---, ¢,) — & sending e, — f;.
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Consider the following properties of the Peirce decomposition of
an arbitrary Jordan algebra  relative to a supplementary family of
orthogonal idempotents e, «--, ¢, [2, p. 120-1; 4, p. 1074-5].

(PD 0) E;=U, and E;;, = U., = £ form a supplementary

family of orthogonal projections on &, so & = @AY, for
Si]’ = Ew(mc}) = Sm
and for elements x,, of the Peirce spaces ,, and distinct indices
1,7, k, 1,

(PD 1) a% e so I C Jus

(PD 2) aheJu+ I 50 Jf C I + Juy

(PD 3) @iic ¥ €I 80 Jui o i S Jis

(PD 4) 2o yn€Jim 50 Jij° S C S

PD 5) @0 U =0, 80 Iy oI, =0 1L {p, g} N {r, s} = O

(PD 6) Uxuyiiesz‘u 50 US“SH C S

PD 1) U, yueJin s0o Us, i C Jis

(PD 8) Ux“yu =m0 U (50 Ysy) — Yis © Uej(xij)y S0 USHS‘{J =3

®D 9 U, Y. =0, so Ug, ., =0 if {r,s} < {p, ¢}

(PD 10) {w;¥:25,) = (@is0 Yiy) 0 255 =Ts5 0 (Yi5°%55)s 80 {Z 0 585:1 S35

(PD 11) {29,250 = (@s5 0 Yii) © 205 = T 0 (Yi0%52), SO {30158 501 © i

(PD 12) {ws%i525 = (@5, 0 ¥5y) o250 = Daj 0 (Yj0%50)s 80 AJ0N 15300 S Vin

(PD 13) {w;yiRi} = (@50 Yin) © R = @50 (Yy102)s S0 {J0 St = I

(PD 14) {w;¥i2nt = Uei{(xij ° Yii) © Fpif = Uei{xij o (Y » Ziciis SO

{0y © Jis

(PD 17) {@;¥izi} = ®is o (Yai © 25)s 80 {J5iS6iSii} S S

(PD 18) {2i,¥,:%i) = @5 0 (Ysi © Zar)s S0 {S 6530k} i

(PD 19) {2,420 = 0, 50 {$peSredto) = 0 unless the indices may

be linked

(PD 20) U, e, = Ui

(PD 21) ;0 U5, = Yijy @i © Yis = Tis © (Us5 © Yiy)y UsyRis 0 Ysy = g5 0

(25 © (X5 0 Y,y)) so that V, =1, Vai, = Vo Vi, ey =
Vxnvmvxii on Jij.
It is an easy matter to verify these for special Jordan algebras, since
if A = X, 2, is the Peirce decomposition of the associative algebra A
then § = Y,.,3y; for Ji; = Ay, + Uy is the Peirce decomposition of the
Jordan algebra J = .

We claim that if these relations hold in & = FJ@; e, ---, &)
(taking X = {%} to consist of one element) they hold in any . (This
is why there are two “missing” relations

(PD 15) {xyy,%i) = U (@i o i5) o 25} = U das; o (y55 © 2,00}, s0

(I35 54} © S

(PD 16) {wiy:52:5t = Ueﬂ{(wii ° Yij) © Zis} 80 {JuTiiSiit C Juis
these do not seem to follow from &, and must be verified directly).

The reason for this is that for any collection of elements z., from
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distinet Peirce spaces J;; there is an element x = Yx;; having the x;

as its Peirce ij-compoments; there is a homomorphism & — & sending
Z—x and &;—e;, so the Peirce components Z;; of ¥ map into the
Peirce components x;; of #. Hence any relation holding among the
%;; will also hold for the z,;. That is, any relation involving elements

from distinct Peirce spaces will hold in & if it holds in & This im-
mediately applies to (PD 1-5), (PD 7), (PD 9-14), (PD 19-20), and the
first two parts of (PD 21). The same argument works for (PD 0): if
I=23E,; Ey=E, E,E,,=0o0n&then [ = SE;;, E} = E;;, E,,E,, =0
an any z, so the E;; are supplementary orthogonal idempotents).

The remaining formulas can be derived from the previous ones
by various stratagems. For (PD 17-18) we use the relation

{abb} = a o b* {abc} + {acb} = ao(boc)

valid in any Jordan algebra. In (PD 18) {x;¥;i®i} = @5 o (Ys: © 2ar) —
{w:i20Yiit = @i o (Yjs © 2) since UsijSik =0 by (PD 9), and similarly
in (PD 17) since Usg,.J:;; = 0. (This argument also shows either one
of (PD 15), (PD 16) implies the other).

For (PD 6), (PD 8), and the last part of (PD 21) we use

dfart], = Uy + Uso = Uy + fooy} = Uy + @ oy

Now the relations

(PD 6) U, »i€eJu

(PD 8) U,,@i; = a0 U, (x%)

(PD 21y VU(:cH)x“ = Va?“ on J;;
will be inherited from &, and this remains true over any scalar ex-
tension 2 of @, so we can linearize to get

U, Yii + @i o Yii € Jus
Ux“yw + /Uw °Yi; = Yij ©° U (xfj) + @i © U (lcif ° yz])
Vitesess + Vet = Ve Ve Veso + V3 Vers + Vo V2

.
i1’ Tijez, i iq

The first of these 1mp11es (PD 6) via (PD 1), the second implies (PD 8)
via (PD 2), and the third implies (PD 21) since we already know
Ve =Vzand so V, ., = Vo, Vi + Vi, Voo

Thus the task of verlfying Peirce relations for an arbitrary Jordan
algebra & reduces to verifying them for the free Jordan algebra § on
one generator with idempotents. The whole point of this reduction is

that & is special, and we already remarked that the relations were
easily verified in any special algebra.

THEOREM. The free Jordan algebra FJ(x; e, <+, e,) on one gen-
erator with n supplementary orthogonal idempotents is special.
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To show FJ(x; e, ---,e,) = FJy(x;e, ---,e,) is special it will be
enough if it is imbedded in a special algebra FJ,x;e, +--,¢,), =
FJ,(x;e, <+, ¢e,). We choose 2 as follows. Consider the polynomial
ring @[\, ¢+, M) The element 2 = JI;.; (\; — \;) is homogeneous in
the \’s and the coefficient of AP"\;=2...AL_ in g is 1, so ¢ is not a
zero divisor in @[, -+, A,]. This guarantees @ is imbedded in Q =
D[Ny, ++ oy N [1/1]; the important thing about 2 is that each A, — ); is
invertible in 2. Since g is not a zero-divisor in

FJ@(X; €, * o, en)® @D"u vy, 7%] ’
FJ (X;e, «+-, ¢, is imbedded in FJ(X; e, +++,e,), = FJ(X; €, ++,¢,).

PROPOSITION. For any X, FJ(X; e, ++-, ¢,) = FJ (X, y)/® where &
is the tdeal generated by p(y) = I (¥ — N1) and yo(y).

Proof. Consider the polynomials p(\) = I (A — \;) and p,(\) =
Iliwes O = X))/ TLswes (i — 2y) in 2. We have p,(\) = 1, pi(ny) = 0 if
g # 1. Therefore 1 — >, p(\) is of degree <» — 1 yet has % roots
Ay, ***, Ay S0 it must be identically zero, and similarly for x=> n;p.(\):

SN =1, Snpi(h) = N

(We always assume n > 1 since for n = 1 FJ(X; e) = FJ(X; 1) = FJ(X)
has only the trivial idempotent e, = 1). Also

UpiaJpJ‘(?V) = p(N)D(N), Bi(V) o (V) = 20:(M)pi(N),
2V — (A = DA — X D)D) = i (V) P5(N)

are all divisible by p(») and belong to the (Jordan) ideal generated
by p(\) and Ap(n).

These conditions imply that the elements €; = p,(y) in FJ,(X, y)
satisfy 3¢ =1,3N€ =y, U, 0;eR, ¢, 0¢;eR, 8 —¢;efR, so the
cosets e¢; = &; + & in FJ (X, y)/® form a supplementary family of
orthogonal idempotents. (Note »;(y) is defined since we are allowed
to divide by N; — \; in Q). We show FJ,(X, y)/&® is isomorphic to
FJ,X;e, ++-,¢,) by showing it has the wuniversal property of the
latter. Given any map @ of X into a Jordan algebra & with idempo-
tents f,, -+, f. We have a homomorphism FJ,(X, ) — & sending x —
P(x), ¥y — >, Nif;. Then €; = p,(y) is mapped into

(2N S5) = 2oV = S

p(y) into p(3 N,f5) = 3 p(N)f; = 0, and yp(y) into 3% X;p(\;)f; = 0. Since
»(y) and yp(y) generate & we have an induced homomorphism

FJ(X, )/ — I
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sending e; — f;. The uniqueness follows since FJ (X, y)/® is generated
over 2 by X and the ¢; (because > N6, = ¥).

Applying the Proposition when X = {x}, we have
FJ(J(CU: €, ", en) = FJQ(xy y)/‘@

where £ is generated by »(y) and yp(y). By the Corollary to the
Theorem of the previous Section (with ¢(A) = 0), FJ,(x, v)/R is special.
Therefore FJ(x;e, «--,e,) C FJy(x;e, ++-, ¢, is special too, completing
the proof of the theorem.

The algebra FJ(z, y;e, ---,¢,) on two generators is no longer
special, since it has the exceptional algebra $(€,) as a homomorphic
image (€ a Cayley algebra); indeed, the exceptional algebra can be
generated by two elements x, ¥ and the idempotents e, e, e; [2, ex.
1 p. 51].
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SINGULAR PERTURBATIONS OF DIFFERENTIAL
EQUATIONS IN ABSTRACT SPACES

HussaiN S. Nur

In a recent paper, Kisynski studied the solutions of the
abstract Cauchy problem ex"(f) + z(¢) + Ax(t) =0, x(0) =
and 2°(0) = z; where 0 <t < T, ¢ > 0 is small parameter and
A is a nonnegative self-adjoint operator in a Hilbert space
H. With the aid of the functional calculus of the operator
A, he has showed that as ¢ — 0 the solution of this problem
converges to the solution of the unperturbed Cauchy problem
2 (t) + Ax(t) = 0, x(0) = x,. Smoller has proved the same
result for equation of higher order.

The purpose of this paper is to study the solution of a
similar problem and allowing the operator A to depend on ¢.

To be precise, we shall show that if the initial data is taken
from a suitable dense subset of H, then the solution of the Cauchy
problem:

(1.1) ex(t) + () + A@t)x(t) = 0, 2(0) = x,, z*(0) = @,
converges to the solution of the unperturbed Cauchy problem
1.2) 2 (t) + A@)x(t) = 0, 2(0) = =,

as e—0 where 0<t< T, ¢>0 is a small parameter, A(¢t) is a
continuous semi-group of nonnegative self-adjoint operators in H with
infinitesimal generator A.

2. The problem (1.1) when H = R,. Before considering (1.1)
in the general case, it is necessary to consider (1.1) in the case
when H = R, (i.e., the real line). Thus we consider the Cauchy
problem:

2.1) ew(t) + u(t) + e*u(t) = 0. u0) =z, u(0) =,

when t =0, £ =0. ¢ > 0.
According to theorem (1) in [2], equation (2.1) has two linearly
independent solutions:

m—1

Uy = >, Uy, (t)e? + e Ey W, = mjl u;;(t)e? + em K,
0 0

Uy = 3w () + By, w = S @dt)us(t)e ] + B,
0 0

775
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where u;;(t) (¢ = 1,2) are C= functions on [0, T] and u,(¢) (¢ = 1, 2)
does not vanish at any point of [0, T] and FE,, E, are functions of ¢
and others, but bounded for small ¢ = 0.

Hence the general solution of equation (2.1) is % = c,u, + ol
Solving for ¢, and ¢, by using the initial condition we obtain u =
TS + 48 and w = 2,8, +~ 2,8, where

oo = H(e)[us(0)u,(t) — 2:(0)us(t)]
oy = H7(e)[u,(0)ua(t) — u(0)u,(t)]

(2.3) P
Sip = So = d‘-tsoo
. _4a
Sy = S = 57Sm
dt
and

Hie) = u,(0)us(0) — ,(0)ui(0)
How taking the limit as ¢ — 0, we find that

oty €, )u) — 2,0(1)

2.4
@4 Sui(t, &, 1) — 0 .

Consequently, u(t, €) — w,u,(t). From equation 15 in [2] we find that
u,0(t) is the solution of the equation

(2.5) u -+ ey =0

and this is what we wished to show.

3. Estimates for the Functions s;(¢, &, ¢#). In this section we
would like to find estimates for the functions s;(t, ¢, ) (¢,7 =0, 1).
We may do so by solving for u, () (t=1,2;7=0,1,---,m — 1)
from equation 15 in [2]. Since this would be rather tedious we will
take the simpler approach of estimating wu.(¢, ¢, 1) and wu(t, ¢, 1)
(¢ = 1,2). Multiplying (2.1) by u* and integrating between 0 and ¢
we obtain:

2 2
e Wou _ 1

t
—p\vwet =¢.
2 2“So

i
+ S u? b
0
Consequently
t
w<2el| + #S u’ertdt .
0

Now using Bellman’s lemma, we obtain
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(3.1) u? < 2/cle”” .

For estimating u-(¢), we multiply equation (2.1) by e#u*, integrating
between 0 and ¢ and using Bellman’s lemma we obtain:

(3.2) w(t) < 287 elet .

In [2] page 323 we proved that for all small ¢ = 0 H(e) # 0, there-
fore we see that (2.3), (3.1), and (3.2) yield,

(3.3) 5] = K(e) exp (%)

K(e) is a bounded function in ¢, and
(34) l Sot [ = K(G) exp (eeﬂt/z)

K(z) is a bounded function in ¢.
To obtain an estimate for s;; (4,5 = 1, 2) we write equation (2.1)

‘in amatrix form as:

U =AU

‘when

0 1
i ).
—&exp(pt)y &

Hence

U = exp [SA(s)ds] = (SOO Sm)

SIO Sll

and from the equation

il 1 00 a1 O 1
annfe )= (0 N ey —e)
S, Su S,y Su/\—é&exp(pt) —¢

@35 0 1\/sy% Su
- (~ & exp(pt) — ) (310 Sn)
we obtain
(3.6) 8o = —SuE7t eXp (Lt)
(3.7) S = Sp — €78y .

4. The problem (1.1) in abstract Hilbert space. We shall
now consider the problem (1.1) in any Hilbert space H with
norm || - |[].
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Since {A(t)} is a semi-group of a nonnegative selfadjoint operator
in H, with infinitesimal generator A, there is a resolution of the
identity FE,. such that A(¢) has the spectral representation:

A(t) = Swe"tdE’,, .

We shall next use the functional calculus of the operator A(f). For
fixed ¢ > 0, ¢ = 0, we define the operator S;; on H by

(4.1) Sii(t, &) = sz(t, e, E, (i,5 = 0,1)

where the s;,(t, ¢, t) are defined by (2.3). If we let D denote the
dense domain of the operator e¢*® for all ¢, then our estimates (3.2)
through (3.7) imply that D is contained in the domain of Sj;(¢, ¢)
for every 7,5 = 0, 1.

For 2z, and %, in D, we write

(4.2) @ () = Sylt, e)a, + Sult, o),

and we see that x.(¢) is in the domain of A(¢) for every ¢ > 0. We
now state the main theorem.

THEOREM. Let x.(t) be defined as in (4.2) when x, x, are in
D. Then x(t) is the unique solution of the Cauchy problem (1.1)
and x.(t) converges to the solution of (1.2) as ¢ — 0.

To prove this theorem we first prove the following lemmas:

LEMMA 1. For xe D, (d/dt)S;i(t, e)x exists and

(4.3) (d/dt)Sis(¢, &) = r(d/dt)sia(t, & MdEx (1,7 =0,1).

Proof. We shall prove the lemma for ¢ =7 = 0. Since the proofs.
for the other cases are similar, they will be omitted. For ze D and
t = 0 fixed, we have:

" Sult + At e) Sol®) . gt E)xlz

_ S [Soo(t -+ At, €, ) — 8ylt, &, 1) — st & #)]Zd | B
Jo At ‘

= Lt &0 1) = silte e T By

where ¢t < ' < ¢ + 4t, using the theorem of the mean and (2.3)..
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Now there is a T such that ¢t + 4t < T for all 4¢ sufficiently
small, so that if we use (3.3) through (3.7) we see that

Islo(t’y N ﬂ) — 310(t9 g, ﬂ) l = [SIO(t,y g, ﬂ) I + [Sm(ty &g, #) |
< el K(e)e?' " < Nie, T)e"”

where N(e, T') is a constant depending on T and ¢ only. Therefore
the funection |s,(t, ¢, &) — sw(t, &, #)|* is summable with respect to
the measure d || E.x|* if 4t is sufficiently small. Furthermore,

lim [s1:(t's &5 12) — su(t, &, /’!)]2 =0.
At -0

So that the Lebseque dominated convergence theorem yields:

lim S:[sm(t’, & 1) — su(t, & WA || Exlf = 0.

At—0
‘This completes the proof of the lemma.
LEMMA 2. For xeD and t = 0, we have

(4.4) lgi_r)gl Sult, €)x — exp (——XA(S)dS)&;N =0
(4.5) 15111‘;1 || Sult, €)x|] = 0.

Proof.

” Sult, e — exp (- SA(s)ds) x “
-,

14 2
From (3.3) we see that [soo(t, g M) — exp <— e”*ds is summable with

respect to the measure d || F.x|* and, as we have seen in (2.4) and
(2.5), the integrand converges pointwise to zero. We apply the
Lebesgue dominated convergence theorem to conclude that the integral
likewise converges to zero as ¢—0. This proves (4.4). Relation
(4.5) follows from (2.4) and (2.5) likewise.

(sults &, 1) — exp (- Ste‘”ds» rd | B

LEMMA 3. Let B be a bounded operator in H. If x*(t)+ Bx(t)=0,
0=t=0, and 2(0) = 0, then x(t) = 0.

The proof of the above lemma is in [3] and therefore will be
omitted.

The proof of the theorem. That x.(t) defined by (4.2) is a solu-
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tion of (1.1) follows at once from Lemma 1 by direct verification..
The uniqueness of x.(f) follows from Lemma 3 just as in [1]. Finally,.

since exp(—gtA(s)ols)ac0 is the solution of (1.2) Lemma 2 shows that.

1515{)1 “ x.(t) — exp ( - StA(s)ols>9c0 =0.

This completes the proof of the theorem.
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A NON-COMPACT KREIN-MILMAN THEOREM
D. K. OATES

This paper describes a class of closed bounded convex
sets which are the closed convex hulls of their extreme points.
It includes all compact ones and those with the positive
binary intersection property.

Let K be a closed bounded convex subset of a Hausdorff locally
convex linear topological space F. Denote by EK the extreme points
of K, by co EK their convex hull and let co EK be its closure. We
are interested in showing when

K =co EK .
The principal known results are the following:

THEOREM 1.1. If either
(a) K is compact;
or (b) K has the positive binary intersection
property,
then K = co EK .

Case (a) is the Krein-Milman Theorem [3, p. 131]. Case (b) was
proved by Nachbin in [6], and he poses in [5, p. 346] the problem of
obtaining a theorem of which both (a) and (b) are specializations.
This is answered by Theorem 4.2. For the whole of this paper, S is
a Stonean (extremally disconnected compact Hausdorff) space.'

A simplified version of Theorem 4.2 reads as follows:

THEOREM 1.2. Let X be a normed linear space. Then any
norm-closed ball in the space B(X, C(S)) of continuous linear oper-
ators from X to C(S) 1is the closure of the convexr hull of its extreme
pornts 1 the strong neighborhood topology.

The result concerning the unit ball of a dual Banach space in its
weak*-topology and that concerning the unit ball in C(S) in its norm
topology are special cases of Theorem 1.2.

A sublinear function P from a vector space X to a partially or-
dered space V satisfies

P@ +y) = P(x) + P(y)
and
1 Theorem 2.3 and its proof are valid when S is zero-dimensional.

781
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P(tx) = tP(x)

for all #, ¥ in X and ¢t = 0.

A linear operator T from X to V is dominated by P if Tx < Px
for all  in X. The set of all linear operators from X to V dominated
by P will be written L(P).

2. Let P be a sublinear function into C(S), where S is Stonean.
We obtain a compact approximation to L(P) by considering a finite
partition Z = {U,, ---, Uy} of S into disjoint open-and-closed sets. Let
C(S,) denote the set of all function in C(S) whose restrictions f| U,
are constant. The constant values will be written as f(U,).

LEMMA 2.1. Let P be a sublinear function from a vector space
X to C(S,) and let L(P,) be the set of all linear operators from X
to C(S,) dominated by P. Then

EL(P,) & EL(P) .
Proof. Suppose Te EL(P,). For k=1,+++, M let t, be chosen

arbitrarily in U,. If G, He L(P) and T = 1/2(G+ H) define G', H' ¢
L(P,) by

G,x = ];2—;21 (Gx) (tk) X}, H,x = k-z=:1 Hx(tk)xk

where ¥, is the characteristic function of U,. Since 1/2(G’ + H') =T
and Te EL(P,), we have G’ = H' = T. Hence, for each xe€ X and
E=1,..-, M,

G'x(U,) = H'»x(U,) = Tx(U,)
so that
Gx(ty) = Hx(ty) = Tx(t) .
Since ¢, was chosen arbitrarily in U,, G = H= T. Hence T EL(P).

" DEFINITION 2.2. Let X and E be linear topological spaces and let
B(X, E) be the space of all continuous linear operators from X to E.
The strong neighborhood topology for B(X, E) is the topology with a
base given by sets of the form

N(T; Liy 20y Ly U) = {Se%(X, E): (T'—’S)xze U,i=1, ""n}

where #,, ++-,2,€ X and U is a neighborhood of 0 in E.

If E is normed, then we write
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N(T; ®yy ooe, 2,5 €) for N(T; %, +++,2,; U) when U is the open
&-ball about 0.

THEOREM 2.3. Let %7 be a finite partition of S into nonempty
open-and-closed subsets. Let P be a sublinear fumction from a linear
space X into C(S,.). Then L(P) =co EL(P), with the closure in
the strong meighborhood topology of B(X, C(S)).

Proof. Let Z7 be any finite partition of S into nonempty open-
and-closed sets. From Lemma 2.1, co EL(P) 2 co EL(P,). Now L(P,)
can be linearly identified with a certain compact convex subset of a
finite product X* x ... x X*, where X* is the algebraic dual of X
with the topology w(X*, X). Hence, from the Krein-Milman Theorem,
co EL(P,) = L(P,).

Let Te L(P) and let N(T; @, +++,,; €) be a strong neighborhood
of T. The functions {T#;: =1, ---,n} are continuous so for each
fixed ¢ there is a finite covering

7 ={Vieer, Vi}
of S by open sets such that
Var (Tz;, Vi) <e

for all k.
Since S is zero-dimensional, there is a finite partition

w = {Uv R UM}

of S into nonempty open-and-closed sets that simultaneously refines
770, «e. 7™ By taking a further refinement if necessary, % may
also be assumed to be a refinement of %7 and then the functions P(x)
are constant on each of the sets U,.

For each k. =1, ..., M define a sublinear functional ¢, on X by
q(x) = sup {Txz(t): te U). From the Hahn-Banach Theorem, there
exists a linear functional ¢, on X dominated by g,. Define T;: X— C(S.,)
by

M
T = kZ:.l 31(2) Av,, -
Then T,e€ L(P,) and, for 1 =1, «++, m,

(T, = T)a:|| = sup Var(Tw;, Uy) <e .

DeEpucTION of THEOREM 1.2. With X and S as in the state-
ment of the theorem, let B, be the closed unit ball in B(X, C(S)).
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The set B, is L(P), where P is the sublinear function P(x) = ||z] e,
e being the unit function in C(S). By Theorem 2.3 B, = co EB, and
the result for any closed ball then follows by a scalar multiplication
and translation.

3. Nachbin’s problem. Let K be a closed bounded convex
subset of a linear topological space E. Recall that K has the positive
binary intersection property if every pairwise-intersecting subfamily
of

{xt + M\K: x€ E, » =0}

has nonempty intersection.

If K is bounded and has the above property, it may be shown to
be centrally symmetric with a unique centre ¢, and to have the binary
intersection property where the restriction A = 0 is removed. This is
proved in [6].

Results in [4] and [2] then show that the set K, = K — ¢ gener-
ates a subspace of E which is a hyperconvex normed space and iso-
morphic to C(S), with S Stonean.

THEOREM 3.1. Let E be a locally convex Hausdorff Ilinear
topological space containing a closed bounded convex subset K with
the positive binary intersection property. Let p be a continuous sub-
linear functional on a locally convex Hausdorff linear topological
space X.

If L is the set of linear maps T: X— E such that for all x in
X

Tx e % [p(x) — p(—2)] e + —;— [p(x) + p(—2)] K,

where e is any extreme point of K,, then L = co L, with the closure
taken in B(X, E) with the strong neighborhood topology.

Proof. Because p is continuous the set L(P) is closed in the
space B(X, E) in the strong neighborhood topology. Since K is
centrally symmetric, K, has the binary intersection property and is
linearly isomorphic to the unit ball in a space C(S) with S Stonean.
The isomorphism may be chosen as in [4] so that e is mapped onto
the unit function of C(S). Using e to denote also this unit function,
we may define a sublinear function P(x) = p(x) e from X to C(S),
which is the situation of Theorem 3.1. with 27 = {S}.

Given Te L(P), 2, +++,2,€ X and ¢ > 0 there exists Aeco EL(P)
with



A NON-COMPACT KREIN-MILMAN THEOREM 785

(T— Az, ceK, (t=1,+4,m).

Given a neighborhood U of 0 in E, there exists » > 0 with K, & »U,
since K is bounded. So choosing & = = there exists Aecco EL(P)
with

(T— Ao, er" K, SU (=1,-,n),

which completes the proof.

DEDUCTION OF THEOREM 1.1. (a) Let p, be the sublinear func-
tional defined on F'* by

px(f) = sup {f(k): ke K} .
Then, from the bipolar theorem,
L ={ge F**: g(f) = px(f) {for all fe F*}

is identical with the canonical image K of K under the evaluation
map. Now apply Theorem 3.1 with F=R, K=[-1,1], ¢e=1 and
X = F'*, taken with the topology of uniform convergence on compact
subsets of F. This shows that K is the closure of co EK in the
topology w(F**, F'*), which is equivalent to K being the w(F, F'*)
and hence the strong closure of co EK in F.

(b) Apply Theorem 3.1 with X =R and E = F. Then, under
the natural isomorphism of B(X, E) and E, K, corresponds to L,
which satisfies L = co EL. Since E is a linear topological space we
have

K =coEK .
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OPERATORS THAT COMMUTE WITH A
UNILATERAL SHIFT ON AN INVARIANT
SUBSPACE

LavoN B. PaGe

A co-isometry on a Hilbert space 577 is a bounded opera-
tor having an isometric adjoint, If V is a co-isomeiry on
57 and _# is an invariant subspace for V, then every
bounded operator on .7 that commutes with V on .+ can
be extended to an operator on 57 that commutes with V,
and the extension can be made without increasing the norm
of the operator, This paper is concerned with unilateral
shifts. The questions asked are these: (1) Do shifts enjoy
the above property shared by co-isometries and self-adjoint
operators? (The answer to this question is “‘rarely’’.) (2)
Why not? (38) If S is a shift, . is an invariant subspace
for S, S, is the restriction of S to _, and T is a bounded
operator on .7 satisfying T'So = SiT, how tame do T and
.77 have to be in order that T can be extended (without
increasing the norm) to an operator in the commutant of S?
Extension is possible in a large number of cases.

The result mentioned above for co-isometries is due to Sz.-Nagy
and Foias [8]. (An excellent exposition on the problem is found in
[3]; see Theorem 4 in particular.) For self-adjoint operators the state-
ment is trivial for the simple reason that every invariant subspace is
then reducing and any commuting operator on a subspace can be ex-
tended by simply requiring it to be zero on the orthogonal complement
of the subspace.

Recall that a unilateral shift S is an isometry having the pro-
perty that N7-, S5~ = {0}. The Hilbert space dimension of the
subspace (S277)* is called the multiplicity of S. Within the class of
partial isometries on 57 the unilateral shifts are in a sense as far
removed as possible from the co-isometries and the self-adjoint partial
isometries. For shifts have no self-adjoint part, and far from being
co-isometric if S is a shift S** goes strongly to zero. (These and
other simple properties of shifts may be deduced from problem 118
and the surrounding material in Halmos [5].)

II. We begin with a complex Hilbert space 57° (not necessarily
separable) and a unilateral shift S on 527 It is well known that shifts
decompose the underlying Hilbert space in the following way:

o7 = @i S"& where %« = (S57),

787
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(See for example Halmos [5], problem 118).

We also fix an invariant subspace . of S. By S, we denote
the restriction of S to _#, S, = S|_# The commutant of S is the
algebra of bounded operators on 27 which commute with S and is
denoted by .o%.

The invariant subspaces of S are known to the following extent.
Every invariant subspace of S is the range of a partial isometry in
%% whose initial space reduces S. (This well known result appears
in many forms. The particular form cited here appears in [7], see
proof of Theorem 1.) Particularly when a function space model is
used these operators are often referred to as inner functions or rigid
functions.

Finally we will fix a bounded operator 7T on ..# which commutes
with S,. As indicated earlier the problem being considered is that of
extending T to an operator on 57 lying in .%% and having norm
equal to || T|l.

THEOREM 2.1. If S is the simple shift, 1.e., if dim & = 1, then
T has an extension in .57 whose norm 1is equal to || T|l.

Proof. This theorem will follow from a later result. (See Remark
2.4 below.) The simple shift can be represented as the usual shift on
the Hardy space H? of complex valued functions on the unit circle
(Helson [6], chapter 1). It is instructive to sketch a proof in this
setting where _» = BH? with B an inner function in H2 Also Be
+#, and T:B— Bg for some g in H*. The fact that 7'S, = S,7 allows
one to argue that 7: Bf — Bfg for all fec H=, and finally using stand-
ard techniques one shows that ge H=, that T is multiplication by ¢
on _, and hence that 7T has an obvious extension to an operator on
H? which commutes with S. The extension does not increase the
norm.

ExAMPLE 2.2. T does not mnecessarily have a bounded extension
which commutes with S if S is a shift of multiplicity two, i.e., if
dim® = 2.

Proof. Here we let 57 = H* P H?. Vectors in 57 will be written
as ordered pairs (f, g). Let x be the identity function on the unit
circle, y(e*) = e, and then the shift S of multiplicity two on 57 is
S:(f, 9) — (0f, 19)-

Let _# be the subspace of 57 consisting of all vectors of the
form (f, yg9) where f,ge H*. Clearly S_.# & _#. Define T on 2
by T: (f, 9) — (%g, 0), the bar denoting complex conjugate. It is trivial
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to verify that T is a bounded operator mapping _# into _#, and
that 7S = ST on _#. But it is equally easy to see that T can have
no extension in .. For if 7" is an extension of T to 57, then we
must have 7"S: (0, 1) — (1, 0), whereas everything in the range of ST’
must be orthogonal to (1, 0).

It becomes apparent in the discussion which follows that the re-
ason we obtain different answers in the case of the simple shift as
opposed to nonsimple shifts is that the simple shift is the only shift
having an abelian commutant. Recall that _# = BS# where B is a
partial isometry in .%% and B*S# reduces S. Let A, be the operator
on 57 defined by

A, = B*TB.
Since BB* is the orthogonal projection onto .# we have
BB*TBS = TBS = STB = SBB*TB = BSB*TB ,

or BA,S = BSA,. Now the range of A, is contained in the range of
B* which is a reducing subspace for S. Since B is isometric on the
range of B* we can infer from the last eguation that A,S = SA,.
Thus A, satisfies the three conditions

(i) Ared;

(ii) TB = BA,

(i) (Al = 1TV
Clearly an operator A in o4 is an extension of T if and only if
AB = TB. Thus it follows that 7 has an extension in .27 if and only
if there exists an operator 4 ¢.97% such that AB = BA,, i.e., the pro-
blem is now one of solving the operator equation AB = BA, for Ac
. (B and A, are already in .%%.)

A hyperinvariant subspace for S is a subspace which is invariant
under every operator which commutes with S.

ProrosiTioN 2.3. If _#Z 1s a hyperinvariant subspace of S, then
T has an extension in .7 whose norm is || T||.

Proof. The fact that _# is hyperinvariant guarantees that B
can be chosen so as to have the additional property that B commutes
with every operator in .o/. (Douglas and Pearcy [2], Theorem 5).
Thus A.B = BA,, and T possesses the desired extension by the re-
marks above.

REMARK 2.4. Since every invariant subspace for the simple shift
is hyperinvariant, the above proposition contains Theorem 2.1.
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There is a relationship between T having an extension in .o and
a factorization of a familiar type. From the definition of A, it is
clear that range A} Srange B*. Thus by a standard factorization
result (Douglas [1]) there exists a bounded operator D on 57 such
that A, = DB.

ProrosITION 2.5. If A, = DB where De &%, then T has an ex-
tension in V.

Proof. Suppose De . % and A, = DB. Then BA, = BDB. Sett-
ing A = BD it follows from the remarks made preceeding Proposition
2.3 that T has an extension in .o%.

III. In order that an operator A on 5% commute with the shift
S it is necessary that every subspace S"5#(n = 0) be invariant under
A. The proposition below is a slight generalization of this statement.
For n=0, let P, =1— S"S**, the orthogonal projection onto the
orthogonal complement of S*5#

ProrosiTiON 3.1. If Ae .o, then there is a constant a such that
NPAS| < all| P.f|| for every n =0 and every fe 5~ In fact a can
be chosen to be ||A]l.

Proof. If n =0 and fe 2~ write f= S"9 + h where g = S*"f
and h = P,f. Then since S*S" =T and P,A* = P,A*P,, | P,Af]|| =
P ARl = A IR] = JAI P SI

With T defined initially on _# Proposition 3.1 indicates that it
is fruitless to look for an extension of 7 in .o/ unless T initially
satisfies a similar condition on _# Henceforth we assume that there
exists a constant a such that

(*) | PIf|| = el Pofl|
for all fe _# and n = 0.

It is easy now to see that in Example 2.2 T could have no ex-
tension in .97 because condition (*) is not satisfied. If in that example:
we take f = (0, ¥), then ||P,f]|| =0 but ||P,Tf|| = 1 when n = 1.

Whether condition (*) is sufficient to guarantee that 7 has an
extension in A; we have been unable to determine (see Remark 3.6).
We have been able to show, Example 3.5 below, that such an extension
cannot always be made without increasing the norm.

The next theorem indicates the existence of a certain subspace
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%" between _# and 57 and also invariant under S to which 7T, if
T satisfies condition (*), can always be extended without increasing
the norm and so as to commute with S. Two corollaries indicate that
frequently o7 is all of £

If fesoz, letolf, )= inf{||f—gll:ge _~}.

THEOREM 3.2. Let 27" be the set of all fe 57 such that
0(S*, ) — 0

as n— co. Then % s a (closed) subspace of 57 which is invariant
under S, and if T satisfies condition (*) on _# then T has an ex-
tension to an operator T' on <7~ satisfying T'S = ST’ on %~ and
Tl =17l

Proof. It is easy to verify that 97 is a linear manifold and that
S & %. To see that 97 is closed, suppose that f is in the closure
of 2#°. Then for ge 97,

o(S"f, A2) < |8 — S*gll + o(S"g, A) .

By choosing ¢ sufficiently near to f and n sufficiently large, the two
terms on the right can be made as small as desired.

We next describe the manner in which T extends to %77 Sup-
pose fis in 977 Let {g,} be a sequence in _~Z such that lim ||S"f —
9.1l =0, and set A, = S/ — ¢,. Now if m = =,

|8 Tg, — 8*"Tg,|| = [|S*"TS" g, — S*"T¢.||
=TI IS™"gn — gull = I TIS™ Ry — Rl
= TR+ Rl

and the last expression goes to zero as #n, m — co. Thus we have
shown that the sequence {S*"Ty,} is a Cauchy sequence. To extend
T to 97, if fe 7z~ we select a sequence {g,} in _# such that

1S"f — gall — 0

as n— co and set T'f = lim S*"Tyg,. In light of the earlier remarks
in this paragraph it is easy to see that the way in which 7"f is de-
fined here is independent of the sequence {g,} chosen and coincides
with the original operator T in case fe _#. It is also clear that the
extension does not increase the norm.

To see that T’/ = %7, we assume fe 7. Let {g.} be a sequ-
ence in _# such that ||S"f — ¢,/ — 0. Now making use of the fact
that T satisfies condition (*) we have |[|P,Ty.|| < «||P,g.!|, and the
right-hand side here goes to zero. Furthermore,
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o(S*T'f, #) < ||S*T'f — S"S**Tq,|| + 0(S*S*"Tq,, A7) .

The first term on the right goes to zero by the definition of 7"f, and
the second goes to zero because Tg,.c . and {|P,Tg,||— 0. Thus
T'fe 7.

Finally we show that 7S = ST’ on %7, If fe %7; let {9.} be
a sequence in _# such that ||S"f — g,||— 0. Then

| T'Sf — ST'f|| < lim sup [|S*"TSg, — SS*"Tg,|
= lim sup [|S**" Ty, — SS** Ty, ||
< lim sup [[S*S*" ™ Tg, — Tg, || + limsup || Tg, — S"S*Tg,||
<« limsup || P,19,l] + a lim sup || P.g.ll =0 .

Frequently the subspace 27~ of Theorem 3.2 will be all of 5£
The two corollaries below give examples of this occurrence.

COROLLARY 3.3. If dim _#* < oo, and if T satisfies (*), then T
has an extension in .57 whose norm 1is || T]||.

Proof. Let %7 be the subspace of Theorem 3.2. Assume that
2 is an eigenvector for the operator on 27 ' obtained by compressing
S to 7°t, the operator (I — P)S|%# "+ where P is the orthogonal
projection of 27 onto %. Let A be the corresponding eigenvalue,
so IM =1 and Sz = ¥ + Az where y = PSx.

Then S%r = Sy + MSz = (Sy + \y) + M. In general

S™x =y, + N

where y,e¢ %7 Now if |[A| = 1 then [|Sz|]* = ||¥]} + ||«]*, implying
that ¥ = 0 since S is a contraction. But this would imply that X is
an eigenvalue of S, and since S is a shift S has no eigenvalues.

Thus |»| < 1, and A2 — 0 as n — o, implying that a e 977 This
too is a contradiction and we have shown that in fact (I — P)S|%# *
can have no eigenvalues and hence since %77+ is finite demensional we
must have dim 27 * = 0. The proof is now complete in light of
Theorem 3.2.

There is a special type of invariant subspace for nonsimple shifts
which is encountered frequently in the literature. Such subspaces are
the ones which, in the Hardy space model (Helson [6], chapter 6),
correspond to operator valued analytic functions on the unit disk as-
suming unitary values on the boundary. ¥or a general invariant
subspace the corresponding rigid function (see Halmos, [4]) can be
required only to assume partially isometric values.

There is an equivalent abstract formulation of the condition that
an invariant subspace correspond to a unitary valued function. First
of all it is evident that the minimal unitary extension of a unilateral
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shift is a bilateral shift of the same multiplicity. If we continue to
let S and £# denote respectively a unilateral shift and the space on
which it acts and now let U and .27 denote respectively the minimal
unitary extension of S and the space .°¢” on which U acts, then for
each subspace .# of 57 invariant under S it is clear that _# is
invariant under U as well. It can be shown without great difficulty
that in the Hardy space model _# corresponds to a unitary function
if and only if the smallest reducing subspace for U containing _# is
OF itself.

COROLLARY 3.4. If the smallest reducing subspace for U which
contains . is O (where U and 27 are as in the preceeding par-
agraph) then every operator T on . satisfying (*) has an extension
wm 5 whose norm s || T||.

Proof. Recall that _# = Bo#” where B is a partial isometry in
. From the folklore of the field we know that B has a unique
extension to an operator on .9; call it B’, which commutes with U.
(This also can be deduced from the lifting theorem of Sz-Nagy and
Foias, Theorem 4 of [3].) Now the range of B’ reduces U and con-
tains _#Z. Hence by assumption B’ 27 = 97

Let fe &~ Since the subspaces U*"57, n = 0, span %%, for each
€ > 0 there is an integer n = 0 and a ge U*"5# such that

1B’y — fll <e.

We have U"B'g = B'U"ge BS# = _#, and ||S*f — U"B'g|| <e&. Thus
we have shown that % = 52 in Theorem 3.2 and therefore that T
has the desired extension.

Our final task will be to show that in general condition (*) on T
and _# is not sufficient to guarantee an extension in %7 with norm
equal to || T||. Because the condition is sufficient in the rather inclusive
instances already considered, it is not surprising that some care must
be exercised in constructing the following example.

ExamprrE 3.5. We take S to be a shift of multiplicity 7 on 5%
Let {e;}'-, be an orthonormal basis for (S2#°)*. We take the subspace
# of 27 to be the smallest invariant subspace for S containing the
following vectors:

Uy, = €, + Sey, Uy = € + Se,, u; = €5 + Se,, u, = €, + Se; .

The operator 7' is defined on a dense linear manifold in _#Z by
requiring that
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Tu, = s, Ty = u,, and Tu; = Tu, =0

and by requiring that TS = ST. (The linear manifold referred to is
the linear span of the vectors P(S)u,, k= 1,2, 3,4, where P(S) is a
polynomial in S.) .

Some elementary calculations show that T is in fact bounded on
this linear manifold, and that moreover ||T'|| <13/ 2. Further-
more it can be shown that 7 on _# satisfies condition (*) where the
constant « can be taken to be 1 2.

Finally one shows that any extension of T to 5# which is to
commute with S on 5 must map e, + ¢, to 2¢,, and must hence have
norm not less than 1 2. Thus T cannot be extended to an operator
which commutes with S on £# without increasing the norm.

REMARK 3.6. It is peculiar in the above example that we could
show only that any extension of T to an operator in .%% must have
norm not less than « where « is the constant in (*). This leads
naturally to the following conjecture.

CONJECTURE. If T on _# satisfies (*) then 7 has an extension
in .94 having norm less than or equal to a.
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PROPERTIES OF FIXED POINT SETS ON DENDRITES

HELGA SCHIRMER

Every nonempty closed subset of a dendrite can be the
fixed point set of a self-map, but in general it cannot be the
fixed point set of a map with special properties, Necessary
conditions found here for the fixed point sets of homeomor-
phisms and monotone surjections of dendrites are mainly
concerned with the order of the possible fixed points, and
extend earlier results by G. E, Schweigert and L. E, Ward,
Jr.

1. Introduction., It was proved in [3, 4] that every closed,
nonempty subset of the =n-ball B* can be the fixed point set of a
self-map of B", but that not all such subsets can be the fixed point
set of a homeomorphism of B*. We investigate in this paper related
questions for dendrites. The first result (Theorem 3.1) shows that
again every closed nonempty subset can be the fixed point set of a
self-map of a dendrite.

It is already known that not every closed nonempty subset A of
a dendrite D can be the fixed point set of a homeomorphism of D,
or even of a monotone surjection of D. Results for homeomorphisms
by G. E. Schweigert [5] and generalizations for monotone maps by
L. E. Ward, Jr. [7] show that A cannot consist of one end point
of D:

THEOREM 1.1. (Schweigert and Ward). Let f: D—D be a
monotone surjection of a dendrite D which leaves one end point e of
D fized. Then there exists at least one fived point distinct from e.

We extend this theorem in several ways. In §4 we prove more
details about the order (see [8, p. 48]) of the possible fixed points if
the fixed point set consists of only finitely many points. The theorem
by Schweigert and Ward states that the fixed point set of a monotone
surjection cannot consist of one end point, i.e., of one point of order
one. We show in Theorem 4.1 that it also cannot consist of two
points of order two, and in the case of a homeomorphism it cannot
consist of three points of order three. But it can consist of » points
of order » for all n > 3. We further strengthen Theorem 1.1 by
proving a restriction on the fixed point different from e: if f is a
homeomorphism, then it can be chosen of an order = 2 (Theorem 4.5).
This is no longer true for monotone surjections.

The work by Schweigert and Ward is concerned with fixed point
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sets containing one end point. In §5 we investigate fixed point sets
which contain almost all of the end points, and show that they must
contain also all points of a sufficiently high order (Theorem 5.1). In
particular we can conclude that if a monotone surjection leaves all
but one of the end points fixed, then it leaves in fact all points of
order = 2 fixed (Corollary 5.5).

In §4 we saw that a distinction exists between fixed point sets
of homeomorphisms and of monotone surjections. In the final paragraph
(§6) we show that such a distinction no longer holds for finite
dendrites, i.e., that a subset of a finite dendrite can be the fixed
point set of a homeomorphism if and only if it can be the fixed point
set of a monotone surjection (Theorem 6.1). The same is true for
open maps of finite dendrites, but nothing is known so far about fixed
point sets of open maps of arbitrary dendrites.

Ward actually proved Theorem 1.1 not only for dendrites, but
more generally for trees, i.e., he did not assume that the space has
a metric. It is likely that most or all of the results of this paper
can be extended to trees. The metric of the dendrite is used crucially
in the proof of Theorem 3.1, and it is also used implicitly in the
parts of the paper concerning the order of a point as this concept
was developed in [8] for the metric case.

2, Dendrites. A dendrite D is a metric continuum (i.e., compact
connected Hausdorff space) in which every pair of distinet points is
separated by a third. We use the partial order structure of dendrites
which was developed by Ward [6, 7]. Take an arbitrary point re D
as root, and define a partial order < on D by <y if © = r, & separates
r and ¥y, or x = y. Then » < « for every x e D. Define

L(a) ={yeD|y < a},
M(a) ={yeDla < y}.

The sets L(a) and M(a) are closed in D. Let [a, b] = M (a)N L(b); it
is a nonempty closed chain (i.e., it is linearly ordered) if a < b. Let
(a, b) be the interior of [a, b]. A point m is called a maximum of a
subset A of D, written max A, if m <4 « for each 2 e A. It is shown
in [6, Theorem 1] that every nonempty closed subset of D has a
maximum.

We also need in the following some results about dendrites, in
particular about the order of points and about arcwise connectedness,
which can be found in [8]. Frequently we use the next lemma which
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characterizes the order o(a) of a point a [8, p. 48] in the case where
it is finite.

LEMMA 2.1. Let a be a point of a dendrite D. If either the
order o(a) or the number of the components of D\{a} is finite, then
these two numbers are equal [8, p. 88].

ae D is called an end point if o(a) = 1, a cut point if ofa) = 2,
and a branch point if o(a) = 3.

LEMMA 2.2. Every maximum of D is an end point, and every
end point is either a maximum or a 1oot.

Proof. Let m be a maximum of D. If m is not an end point,
then it is a cut point [8, p. 88], and therefore m separates D into two
disjoint separated sets A and B [8, p.42]. Choose A and B so that
the root 7 is in A, and take any ye B. Then m separates » and v,
i.e., m < y. But this is impossible if m is a maximum. Hence m is
an end point. Let now e be an end point with ¢ r. As e is not
a cut point, the set D\{e} is connected, and e cannot separate any
two points of D\{e}. So ¢ < @ is not possible for any « e D, and hence
e is a maximum of D.

It follows from [6, Theorem 5] that M(x) is connected for all
x€ D, and therefore M(x) is a subdendrite with root x [8, p. 89]. The
space D, and hence M(x), are not only connected, but they are also
arcwise connected, and the arc between any two of their points is
unique [8, p. 89]. We write arc ab for the unique arc from a to b if
a,beD.

LemMMmaA 2.3. If b,b,eD and m = max [L(b,)N L(b,)], then arc
bb, = [mb,] U[mb,].

Proof. The sets [mb;] = M(m)N L(b,), where 7 = 1,2, are connected
chains and hence arcs [7, Theorem 1; 6, Theorems 4 and 6; 8, p. 36].
As [mb,] and [mb,] have exactly one point in common, [mb,] U [mb,] is
an arc, and hence it is the unique arc b,b,.

An immediate consequence of Lemma 2.3 is

LEMMA 2.4. If the comnected subset A of D contains the points
b, and b, then it also contains max [L(b,) N L(b)].

We finally state a lemma concerning homeomorphisms and monotone
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maps (i.e., maps where f~(y) is connected for all points of the range
of f) which is crucial in most of the following work. Its proof can
be found in [6, Lemma 13 and p. 156].

LemMA 2.5. If f: D ->» D is a monotone surjective self-map of
a dendrite D, then it is isotone (i.e., x <y tmplies f(x) = f(v)). If
f: D> D s a homeomorphism, then it is strictly isotone (t.e., x <y
tmplies f(x) < f(y))-

From now on all monotone surjections are assumed to be
continuous.

3. Fixed point sets of arbitrary maps on dendrites. We show
in this paragraph that any closed nonempty subset can be the fixed
point set of a self-map of a dendrite.

THEOREM 3.1. Let A be an arbitrary closed monempty subset of
a dendrite D. Then there exists a map f: D— D with A as its fized
point set.

Proof. Give D the convex metric d (see [1, 2]). As D is acyeclic
and complete, it follows that for every #, ¥y € D the point

z=te+ 1 -0y 0=t

is a unique point of D. As D is compact, it is bounded, hence the
diameter diam (D) is finite. Select a point a € A, and define

o d) oy [y dod)

f($)=m diam(D)]x for every ze D .

Then f is the desired map.

Note that the result is not true any longer if we ask in addition
that f is surjective. It is e.g., not possible to construct a map from
the unit interval onto itself such that its fixed point set consists of
one end point of the interval.

4, Nonexistence of some finite fixed point sets. Theorem 1.1
by Schweigert and Ward shows that the fixed point set of a monotone
surjection on a dendrite cannot consist of one point of order one.
We investigate in this paragraph the existence of fixed point sets on
dendrites consisting of % points of order =, for arbitrary positive
integers n. The main result is stated in the following theorem.

THEOREM 4.1. Let f: D - D be a surjective self-map of a dendrite.
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(i) If f is monotone, then the fixed point set of f camnot comsist
of m points of order n for n =1 or n = 2.

(ii) If f is a homeomorphism, then the fixed point set of f cannot
consist of m points of order m for n =1, n =2 or n = 3.

The proof of Theorem 4.1 is lengthy and will be accomplished
in several parts. The next lemma is used in the proof of part (i) of
Theorem 4.1 and in the proof of Theorem 4.5 below.

LEMMA 4.2. If a 1is a point of order two tn D and different
from the root, then it is a point of order one im the subdendrite M(a).

Proof. As o(a) =2 in D, we can assume that D\{a} = K,UK,,
where K, and K, are the two components of D\{a} and the root
re K,. As K, is arcwise connected, we have

K, = {x|a¢arc rx}
= {z|ag¢[rz]} = D\M(a) .

Hence K, = M(a)\{a}, so that M(a)\{a} is connected and o(a) =1 in
M(a).

Proof of part (i) of Theorem 4.1. Because of Theorem 1.1 we
only have to prove the nonexistence of a fixed point set consisting of
two points of order two.

Let f:D - D be a monotone surjection which has two fixed points
of order two. Take one as root 7, and let a be the other fixed point.
As f is isotone (Lemma 2.5), we have f(M(a)) S M(a). The restric-
tion f|M(a): M(a)— M(a) is monotone, as for any ye f(M(a)) the
counterimage f~'(y) is connected in D and hence (see [8, p.88])
()N M(a) is connected in M(a). If f|M(a): M(a)— M(a) is onto,
then it follows from Theorem 1.1 and Lemma 4.2 that f has a second
fixed point on M(a), and part (i) of Theorem 4.1 is proved.

Assume now that f(M(a)) = M(a), and choose g e M(a)\f(M(a)).
As f is surjective, there exists p € D\M(a) with f(p) = ¢, and because
f is isotone, we have f([ra]) = [ra], so that in fact p € D\{M(a) U[ra]}.
Let m = max [L(p)N L(g)]. Then » < m < a and hence r < f(m) < a.
But in fact f(m) = a: as f([mp]) = [f(m)q] and ac[f(m)q], there
exists an « € [mp] with f(xz) = a. But we also have f(a) = a, so that
by Lemma 2.4 the connected set f~'(a) must contain

max [L(z)N L(a)] = m, i.e., f(m)=a.
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So we see that if f has no other fixed points but » and a, then there
exists m earc ra\{a} with f(m) = a. If we take a instead of » as
root, then an analogous argument shows: if f has no other fixed
points but » and a, then there exists mearc ra\{r} with f(n) = r.
But as f(arc ra) = arc ra, the existence of m and n implies the
existence of a fixed point on arc ra different from » and «. Hence
f must have a fixed point different from » and a, and part (i) of
Theorem 4.1 follows.

We now set out to prove part (ii) of Theorem 4.1. This is done
with the help of the next two lemmas. The first is stated in much
more generality than is needed here for the sake of its use in the
proof of Theorem 5.1 below. We say that f: D— D permutes the
set of » points {b;|7 =1, 2, -++, »} of D if it transforms the set {b;}
bijectively onto itself; the identity transformation of the b, is included
as a possibility.

LEMMA 4.3. Assume that the monotone surjection f: D — D leaves
the root of D fixed and that it permutes the set of points
{blli = 1! 2’ M} n} ’

where n = 2. Then

m = max [éL(bi)]
s a fixed point of f.

Proof. Let r be the root of D. As » < m < b;, the fact that f
is isotone (see Lemma 2.5) implies
ré f(m) éf(bz) = bk<iy k = 1! 27 tt ey /n)

and hence f(m) < m. But f([rb;]) = [rb.], so that there exists for
1=1,2, ¢+, m an x; with »r <m < x; < b; and f(x;) = m. Therefore
the connected set f~'(m) contains all x;, and as

max [D:L(:ci)] = max 