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ON DOMINATED EXTENSIONS IN LINEAR
SUBSPACES OF

E. M. A L F S E N AND B. HIRSBERG

The main result is the following: Given a closed linear
subspace A of ^c(X) where X is compact Hausdorff and A
contains constants and separates points, and let F be a com-
pact subset of the Choquet boundary dAX with the property
that the restriction to F of every A-orthogonal boundary
measure remains orthogonal. If aoeA\F and a0 ^ Ψ \F for
some strictly positive ^4-superharmonic function ¥, then a0

can be extended to a function a e A such that a ^ Ψ on all
of X. It is shown how this result is related to various
known dominated extension-and peak set-theorems for linear
spaces and algebras. In particular, it is shown how it gen-
eralizes the Bishop-Rudin-Carleson Theorem.

The aim of this paper is to study extensions within a given linear
subspace A of ^C{X) of functions defined on a compact subset of the
Choquet boundary 3AX, in such a way that the extended function
remains dominated by a given A-superharmonic function ¥. (Precise
definitions follow). Our main result is the possibility of such extensions
for all functions in A\F provided F satisfies the crucial requirement
that the restriction to F of every orthogonal boundary measure shall
remain orthogonal (Theorem 4.5). Taking Ψ = 1 in this theorem we
obtain that F has the norm preserving extension property (Corollary
4.6). This was first stated by Bjork [5] for a real linear subspace A
of ^R{X) and for a metrizable X. A geometric proof of the latter
result was given by Bai Andersen [3]. In fact, he derived it from a
general property of split faces of compact convex sets, which he proved
by a modification of an inductive construction devised by Pelczynski
for the study of simultaneous extensions within ^R{X) [12]. Our
treatment of the more general extension property proceeds along the
same lines as Bai Andersen's work. It depends strongly upon the
geometry of the state space of A, and Bai Andersen's construction is
applied at an essential point in the proof. Note however, that this
is no mere translation of real arguments. The presence of complex
orthogonal measures seems to present a basically new situation. Ap-
plying arguments similar to those indicated above, we obtain a general
peak set-and peak point criterion (Theorem 5.4 and Corollary 5.5) of
which the latter has been proved for real spaces by Bjork [6]. In
§ 6 (Theorem 6.1) it is shown how the Bishop-Rudin-Carleson Theorem
follows from the general extension theorem mentioned above. In § 7
we assume that A is a sup-norm algebra over X and study the inter-
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568 E. M. ALFSEN AND B. HIRSBERG

relationship between our conditions on F and a condition introduced
by Gamelin and Glicksberg [9], [10]. Finally we should like point out
that some related investigations have been carried out recently by
Briem [7]. However, his methods are rather different. The geometry
of the state space is not invoked, but instead he applies in an essential
way a measurable selection theorem of Rao [14].

We want to thank Bai Andersen for many stimulating discussions
of the problems of the present paper. Also we are indebted to A. M.
Davie for the counterexample at the end of § 7.

1* Preliminaries and notation* In this note X shall denote a
compact Hausdorff space and A a closed, linear subspace of C^C{X),
which separates the points of X and contains the constant functions.

The state space of A, i.e.

S = {peA*|p(l) = l b | | - 1 } ,

is convex and compact in the w*-topology. Since A separates the
points of X, we have a homeomorphic embedding Φ of X into S, de-
fined by

φ(x)(a) = a(x), a l l aeA.

Similary we have an embedding Ψ of A into the space AC(S) of
all complex valued w*-continuous aίϊine functions on S; namely

W(a)(p) = p ( a ) , a l l p e S .

By taking real parts of the functions Ψ(a) we obtain the linear
space of those real valued w*-continuous affine functions on S, which
can be extended to real valued w*-continuous linear functional on A*,
and this space AR(S, A*) is dense in the space AR(S) of all real valued
affine w*-continuous functions on S9 [1, Cor. I. 1.5].

We shall denote by M(X), resp. M(S), the Banach space of all
complex Radon measures on X, resp. S; by M+(X) resp. M+(S) the cone
of positive (real) measures, and by Mt{X) resp. Mt(S) the w*-compact
convex set of probability measures. The set of extreme points of S
will be denoted by deS, and the Choquet boundary of X with respect
to A is defined as the set

3AX= {xeX\Φ(x)edeS} .

From [13, p. 38] it follows that deS c Φ(X) so that Φ maps dAX
homeomorphically onto deS.

A measure μ e M(S) is said to be a boundary measure on S if
the total variation \μ\ is a maximal measure in Choquet's ordering of
positive measures [1, ch. I, §3], [13, p. 24]. A boundary measure
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is supported by ~dJ3 [1, Prop. I. 4.6]. For a metrizable X (and S) a
measure μ e M(S) is a boundary measure if and only if \μ\(S\deS) = 0.
We shall denote by M(dβ) the set of boundary measures on S (abuse
of language). Observe that if μ e M(dβS), then the real and imaginary
parts of μ are both boundary measures. The set of boundary measures
on X is defined by

M(dΛX) = {μe M(X) I Φμ 6 M(deS)} ,

where Φμ denotes the transport of the measure μ on X to a measure
on S. For a metrizable X a measure μ on X belongs to M(dAX) if
and only if \μ\(X\dAX) = 0.

For every μ e Mϊ(S) we shall use the symbol r(μ) to denote the
barycenter of μ, i.e., the unique point in S such that a(r(μ)) = μ(a)
for all aeAR(S). The Choquet-Bishop de Leeuw Theorem states that
each point in S is the barycenter of a maximal (boundary) probability
measure [1, Th. I. 4.8]. Accordingly we shall denote by M$(dβS) the
nonempty set of maximal (boundary) probability measures on S with
barycenter peS. For a e l w e define Mϊ(dAX) to be the set of all
μeMΐ(X) such that Φμ e Mt>{x)(dβ). Equivalently, Mt{dAX) consists
of all μ G Mt(dAX) such that

a(x) = 1 adμ a l l aeA ,

i.e., μ represents x with respect to A. Also we denote by Mi(X)
the set of probability measures on all of X which represents x in
this way. Similary we denote by M£(S) the set of probability mea-
sures on S with barycenter p. The annihίlator of A in M(X) is the
set

- 0 all aeA}.

Finally we shall use the symbol &(X) to denote the class of all
complex valued bounded Borel functions on X.

2. A dominated extension theorem* We start by proving a
general dominated extension theorem, which may be of some inde-
pendant interest. In this connection we give the following:

DEFINITION 2.1. Ssf is the class of all / e &(X) such that

(2.1) μ(f) = 0 all μeA1 .

Clearly A c

THEOREM 2.2. Let F be a closed subset of X for which A\F =
{a\F\aeA} is closed in ^C(F); let aQe A\F and let φ\ X—> JR+ U {°°} be
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a strictly positive l.s.c. function such that \aQ(x)\ <φ{x) for all xeF~
Now, if there exists a function a0 e Sf such that

(2.2) α 0\F = α0, |ao(x)\ < φ{x) all xeX

then there exists a function in A with the same properties.

Proof. Without lack of generality we can assume that φ is a
bounded function with values in R+, and we assume for contradiction
that

(2.3) aoίG\F = {a\F\aeG} ,

where

(2.4) G = {aeA\\φ)\ < φ(x)} .

Since φ is l.s.c, G is an open subset of A. Since A\F is closed'
in ^C(F), we may apply the Open Mapping Theorem to the restriction
map RF:A—* A\F. Hence G\F is an open subset of A\F. Furthermore
G\F is convex and circled. By the Hahn-Banach Theorem we can find
a measure v e M(X) with supp v c F such that

(2.5) v(a0) ^ 1 ^ | v ( b 0 ) I a l l boeG\F .

Now we consider C^C{X) equipped with the norm

(2.6)
φ(x)

xeX },
J

and observe that this norm is topologically equivalent with the cus-
tomary, uniform norm. The dual of (C^C(X), \\ — \\φ) is seen to be M{X)
equipped with the norm \\μ\\φ — \\φ μ||, where (φ μ)(f) — μ{φf) for
all fe^c(X).

It follows from (2.5) that the linear functional f on (A, || — \\φ}
defined by

(2.7) ξ(a) - v { R F a ) a l l a e A ,

is bounded with norm \\ζ \\φ ^ 1. Now we extend £ with preservation
of £>-norm to a bounded linear functional on (^C(X)9 || — ||o). This^
gives a measure μeM(X), such that

(2.8) ξ(a) = μ ( a ) a l l a e A , \\φ . μ\\ = \\ζ\\φ ^ 1 .

It follows from (2.2) and (2.8) that

(2.9) \μ(ao)\ - | (φ μ){φ~ιaQ) \ < 1 .

From (2.7) and (2.8) it follows that μ - v e A1, and since α0 e
we shall have
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<2.10) I [ aodμ = ί aQdv = ί aQdv ^ 1 .

This contradicts (2.9) and the proof is complete.

3* Applications of the geometry of the state space* We shall
consider compact subsets F of dAX satisfying one or the other of the
following two requirements:

(A.I) μ e M(dAX) [\A1=>μ\FeAL

.(A.2) μ G M{dAX) Γ) A1 => μ(F) = 0 .

We assume first (A.I). We also agree to write SF = co(Φ(F)),
and we observe that there is a canonical embedding ΨF of A\F into
AC(SF), defined by

(3.1) ΦF(OO)(P) = P(a), all peSF

where a e A; a \F = α0. In fact, it follows by the integral form of the
Krein-Milman Theorem that p can be expressed as the barycenter of
a probability measure on Φ(F), and hence that the particular choice
of a is immaterial.

For every aoeA\F we define

<3.2) ao(x) = ί aodμx1 xeX,μxe Mt{dAX) ,

and

(3.3) %{V) - f ΨF(a0)dμpy peS,μpe M+(d.S) ,
JSF

and we note that these definitions are legitimate by virtue of (A.I).
We also note that μp(SF) = μp(Φ(F)) for all peS and μp e M;(deS) [3,
Lem. 1],

Clearly α0 is an extension of α0 to a function defined on all of X;
and if we think of Φ as an imbedding of X into S, then α0 will in
turn be an extension of α0 to a function defined on all S. More
specifically, for every μx e Mi(dAX) the transported measure Φμx is in
M+{x)(deS) and so

8 = ί ΨF{a0)d{Φμx) - ( ΨF(a0) o Φ φ , - ί α ^ β ,

which entails

<3.4) α0 o φ = α0 .

LEMMA 3.1. 7f ί7 satisfies (A.I) α^d αoe Al^, ί^e^ α o e j / .
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Proof. Let λ = \\aQ\\F and define

a1 = Re WF(a0) + λ, α2 = Im ΨF(a0) + λ .

Then a19 a2 e AR(SF)
+ and for any peS and μp e M+(deS)

%{v) = \ ΨF(a0)dμp = \ a,dμP + i 1 α ^ p - XμP(SF) —
JSF JSF JSF

At this point we shall appeal to the geometric theory of compact
convex sets. We recall that a face Q of S is said to be split if the
complementary face Q' ( = the union of all faces disjoint from Q) is
convex (hence a face) and every element of S can be expressed by a
unique convex combination of an element of Q and an element of Q'.
It is known ([1, Th. II. 6.12], [1, Th. II. 6.18], see also [2, Th. 3.5])
that for a closed face Q of S the following statements are equivalent:

( i ) If a real measure μ e M(deS) annihilates all continuous affine
functions, then μ\Q has the same property.

(ii) Q is a split face.

(iii) The u.s.c. concave upper envelope bXQ of the function bXQ

which is equal to b on Q and 0 on S\Q, is affine for every b e AR(Q)+.
It follows from the requirement (A.I) that SF is a split face of S,

and hence that

%{p) = aXSF(p) + ia2XSF(p) - XχSF(p) - i^XsF(p) ,

where all the functions on the right hand side are u.s.c. and affine.
In particular α0 is a Borel function, and it follows from (3.4) that a0.
is a Borel function as well. Since the barycentric calculus applies to
real valued u.s.c. affine functions on S [1, Cor. I 1.4], we shall have:

(3.5) %{p) = ^ aodμpy peS, μpe AfJ(S) .

Let μe A1 be arbitrary and decompose

(3.6) μ = Σ a&t ,
ΐ = l

where aΣ e R+, a2 e —R+, α3 e iR+, α4 6 ( — i)R+ and μ{ e Mt{X) for i =
1, 2, 3, 4. Let p{ e S be the barycenter Φ^ f and let σ{ e M+.(dβS) for
i = l , 2 , 3 , 4 ^

Since 3eS S Φ(X) we can transport cr€ back to X by the map Φ~\
and it follows that the measures μζ — Φ~γσi are (real) orthogonal
measures for i = 1,2, 3, 4.

Writing
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we obtain τeM(dAX) and μ — τeAL. In fact for every aeA,

\ ad(μ - r) = ί Ψ{a)d(Φ(μ -τ)) = ±aλ Ψ(a)d(Φμi - σt) = 0 .
J JS i=ί JS

Since μ e AL, we shall also have τ eA1 and then τ \F e A1 by virtue

of (A.I). Hence by (3.3), (3.4), (3.5):

aodμ = I α o Φdμ = aod(Φμ) = Σ «• \ ΰΰd(Φμi)

X JX JS i = i JS

= Σ a^,(Pi) = Σ ^ 1 ΨrWσt = \ ΨF(a0)d(Φτ)

= \ αodr = 0 .
JF

Hence α0 e J ^ and the proof is complete.
We next turn to the less restrictive requirement (A.2). It follows

by a slight modification of the proof of [1, Th. II. 6.12], that the
requirement (A.2) implies that SF is a parallel face of S and hence
that the function χSF is affine [15, Th. 12].

For every xe X we define

(3.7) XF(X)=\ ldμa, μxeMt{dAX)
JF

and we note that this definition is legitimate by virtue of (A.2). For
xeX and μx eMi(dAX) we shall have:

%8F(Φ(x)) = ( ld(Φμx) - \ ldμx - χF{x)
JSF JF

which entails

(3.8) %SF O φ = χ F .

Applying (3.8) and proceeding as in the proof of Lemma 3.1, we
can prove

LEMMA 3.2. If F satisfies (A.2), then χF e sxf

4. Extensions dominated by A-superharmonic functions* We
now proceed to the main theorem, but first we give some definitions.

DEFINITION 4.1. A function Ψ: X—>R u {°°} is said to be A-super-
harmonic if it satisfies

( i ) Ψ l.s.c.

( i i ) W(x) ^ ί Ψdμz1 a l l xeX a n d μxeMt{X).
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DEFINITION 4.2. Let F be a compact subset of X. F has the
almost norm preserving extension property, if for each ε > 0 and
aoe A\F there exists a function ae A such that

(4.1) a\F = α0, | | α | | x ^ \\ao\\F + ε .

If ε can be taken to be zero in (4.1), then F has the norm pre-
serving extension property.

We shall need a criterion for the almost norm preserving exten-
sion property, which is due to Gamelin [9, p. 281] and Glicksberg
[10, p. 420] (cf. also Curtis [8]). For the sake of completeness we
present a short proof.

LEMMA 4.3. A closed subset F of X has the almost norm pre-
serving extension property if for each σeA1:

(4 .2) in f | |σLp + j ; | | ^ | | < r | Z V F | | .
1

Proof. The almost norm preserving extension property is tanta-
maunt to the equality of the uniform norm on A \F and the extension
norm:

||αo|[eχt. = inf { | | α | | x | α e A, a\F = α0} .

In this norm A \F is isometrically isomorphic to the quotient space
A/F1 where F1 = {ae A\a = Q on F}; and we are to prove that the
canonical imbedding p: A/F1 —• A \F is an isometry from the quotient
norm to the uniform norm. By duality (i.e., by Hahn-Banach) we
may as well prove that the transposed map p* is an isometry. Rep-
resenting the occur ing functionals by measures, we can translate this
statement into

(4.3) inf \\μ + σ\\= inf ||/* + i;||, all μeM(F)
σeA1 v e ( A I ^ ) 1

To prove that (4.2) implies (4.5), we consider measures μ e M(F),
σeA1 and an arbitrary ε > 0. Also we can choose voe(A\F)

L such
that

-v0\\^ inf \\σ\F- v\\ + ε ^ \\σ\X\F\\ + e .
1

T h e n

\\μ - σ\\ = | | jw - * U | | + \\σ\τκF\\ ^ H i " - ^ 1 1 ~ l l^o - σ\F\

+ \\σ\τv\\ ^ fJA* ~ y o l l - s ^ i n f \\μ
( 4 | ) 1

which completes the proof.
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We remark for later purposes that for μ e M(F):

(4.4) s u p { I ί aodμ \\<h\\F ^ 1, aoeA\F\ = inf \\μ - v\\ .
U JF ) veU\F)λ

575

PROPOSITION 4.4. If F is a compact subset of dAX satisfying (A.I),
then F has the almost norm preserving extension property.

Proof. By Lemma 4.3 and the above remark (4.4), it suffices to
prove that for every σeA1:

sup ^ 1, ^ I I " \Z\F\

Let σeA1, and aQeA\F kwith | | α o | U ^ l . Applying Lemma 3.1
we obtain

F\X
0 = σ(a0) = I a$σ + I

JF J F\

such that

I aQdσ — I aQdσ
I JF JX\F

which completes the proof.

If F is a compact subset of dAX satisfying (A.I), then A\F is a
closed subspace of ^C{F). In fact, A\F is isometrically isomorphic to
A/F1.

We are now able to state and prove the main theorem. The proof
of this theorem is essentially based upon Theorem 2.1 and the technique
developed by Bai Andersen [3].

THEOREM 4.5. Let F be a compact subset of dAX satisfying (A.I),

i.e.

Let α0 e A \F and let ψ be a strictly positive A-superharmonic func-
tion on X such that \ ao(x) \ ^ ψ(x) for all xeF. Then there exists a
function aeA such that

( i) αl^αo,
(ii) \a(x)\ ̂  f(x) all xeX.

Proof. Without loss of generality we may assume ψ to be bounded.
Since F satisfies the requirement (A.I), A\F is closed and α o e j ^

Thus by Theorem 2.2 we can extend aQ to a function a[eA such
that |α{(a?)| <ψ{x) for all xeX, whenever ψ is a bounded l.s.c. func-
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tion on X such that | ao(x) | < φ(x) for all x e X.
Applying this to the function φι = 2f, we can extend α0 to a

function αx e A such that | ax(x) | < 2ψ(x) for all xeX.
Now define

The function φ2 is strictly positive on all of X. For xe F we
have <p2(x) = 2ψ(x), and hence for an arbitrary xeX:

I ά o ( a ? ) \ = \ \ F <*<odμ

Hence |ao(x)| < φ2(x) all xeX.
By Theorem 2.2 we can choose α2 e A such that

I α 2 1 = a0 .

Assume for induction that extensions au •• , α , e i have been
constructed such that

\ap\ <2f - φp, p = 2, . , n

and define

- 2ψ Λ

The function 9>n+1 is strictly positive by induction hypothesis. For
xeF we shall have

such t h a t ^Λ+iίa?) =

\aQ(x)\ =

Hence for an arbitrary xeX:

Hence |ao(x)\ < 9>»+i(a?) for all xeX.
Again by Theorem 2.1 we can choose an+1 e A such that

n+ly an+ί\F — α 0
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Continuing in this way we obtain a sequence {αj~=1 £ A suck
that for n = 1, 2,

( i ) αn \F = α0,
(ii) <̂ (aθ - Σ?=i 2" r | αr(a?) I > 0, all x e X,
(iii) | | α w | | <: 2sup xex ψ(x).
By (iii) the sequence Σ?=i 2~rαr is uniformly convergent and α =

ΣΓ=i 2~rαr e A. Clearly α |^ = α0 and it follows from (ii) that | a(x) \ <£.
ψ(x) for all xeX. This completes the proof.

Taking ψ = 1 in Theorem 4.5 we obtain the following:

COROLLARY 4.6. Let F be a compact subset of dAX satisfying1

(A.I), i.e.

μ e M(dAX) f]A1=>μ\FeA± ,

then F has the norm preserving extension property.

REMARK. In the proof of Theorem 4.5 we have actually proved
slightly more than was stated. The A-superharmonicity of the func-
tion ψ was used just once, namely in the verification that |αo(#)| <
φn+1(x) for n = 1, 2, and all xeX. However if x is a point of X
such that

then by definition ao(x) — 0, and there is nothing to verify.
Hence, Theorem 4.5 subsists if ψ: X—*R+ U {°°} is allowed to be

a l.s.c. function such that

ψ{x) ^ I fdμx ,

for all points xeX for which μx(F) Φ 0 for some μx e Mϊ{dAX)m

5. A peak set theorem* In this section we shall deal with
compact subsets F of dAX satisfying the requirement (A.2). For such
an F we define the function χF as in (3.7).

PROPOSITION 5.1. If F is a compact subset of dAX satisfying (A.2),
then the A-convex hull of F is equal to the set of all xe X such that

Xr(x) = 1.

Proof. By definition, the A-convex hull of F is the set

(5.1) FA = {xeX\\a(x)\^\\a\\F, all aeA}.

We first assume that χF(x) - 1 i.e., μx(F) = 1 for μxeMi(dΛX)+
Then we obtain for every aeA,
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| o ( . τ ) | = \ adμ, ^ ί | α | d μ . ^ ! j α | L

such that xeFA.
Next assume that 7̂ (0?) < 1. This implies that Φ(x) £ SP. Hence

we can separate Φ(x) and SF by a w*-continuous linear functional on
A* i.e., there exists a function α e i and an α e ί such that

Re Ψ(a)(Φ(x)) > a > Re ?Γ(α)(S^) ^ 0 ,

and hence again

Re a(x) > α > Re α(F) ^ 0 .

Now, for sufficiently large 3eR+, the function a + δ e A satisfies

\a(x) + δ\>δ + a>\a(y) + δ\ all ι /e f ,

In fact, it suffices to take

where

β = max {Re α(τ/) | | / G ί 7 } < α , 7 = max {| Im a(y) \\yeF}.

Hence

IIα + δ l ^ < \a(x) + δ

i.e., x&FA, which completes the proof.

LEMMA 5.2. Let F be a compact subset of dΛX satisfying (A.2),
for which A\F is closed in ^C(F). Let ψ be a strictly positive A-
super'harmonic function on X such that 1 ^ ψ(x) for all x e F.

Then there exists a function ae A such that

(5.2) a \ F = l, I a ( x ) \ ^ ψ(x) a l l x e X

Proof. Since χF is an element of Sxf and A\F is assumed to be
closed in ^C{F) we can use Theorem 2.2 with α oe A\F, a0 = 1. Now
using the same technique as in the proof of Theorem 4.5 we obtain
a function aeA satisfying (5.2).

LEMMA 5.3. Let F be a compact subset of dAX satisfying (A.2),
and let G be a compact subset of X\FA. Then there exists an A-
superharmonic function ψ on X such that:

(i) ψ(x) = 1 for all x e FA

(ii) \ψ(x)\ < 1 for all xeG
(iii) 0 < <γ{x) ̂  1 for all x e X.
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Proof. We write SG = cδ(Φ(G)) and claim that SFΠSG= 0 .
To prove this, we assume for contradiction that there exists a

poeSF Π SG, and we recall that χSp is u.s.c. and affine (since SF is a
parallel face) and that χSp is related to χF by formula (3.8). Now
we obtain

1 = XsF(Po) = max χSF(p) = max χSF(p) = max χF(p) .
peSβ peΦ(G) peG

By Proposition 5.1, this contradicts the hypothesis G f] FA = 0 ,
and the claim is proved.

Now there exists a number δ such that

max XsF(p) < δ < 1 ,

and hence we can define two disjoint convex subsets of A* x R by
the formulas:

(5.3) FQ - {(p, a)\peS,aeR,O^a<^ χSp(p)}

(5.4) Fλ - {(p, α ) | p e 5 β , aeR, 3 ̂  a} .

The set Fo is compact and the set Fx is closed. Hence we can
use Hahn-Banach separation to obtain a function be A such that

XsF(p) <ReψΦ)(p), a l l peG ,

a n d

Re ψ(b)(p) <δ <1, all p e SG .

The function f = Ee( ί ι )Λl is A-superharmonic and satisfies (i)f

(ii) and (iii).

THEOREM 5.4. Let X be a metrίzable compact Hausdorff space
and let F be a compact subset of dAX which satisfies (A.2) i.e.

and for which A \ F is closed. Then there exists a function aeA such
that

(5.5) a | F Λ - 1, I a(x) | < 1 all xe X\FA ,

i.e. the A-convex hull of F is a peak set.

Proof. By metrizability FA is a Gs-set, and we can write X\FA =
U«=i Km where Kn is closed.

Now we use Lemma 5.3 to obtain strictly positive A-superharmonie
functions ψn on X such that

ψn(x) = 1 for all x e FA, ψn(x) < 1 for all xeKu, n = 1, 2, *
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and ψn(x) fg 1 for all xeX. It follows from Lemma 5.2 that there
exist functions ane A such that an \F — 1 and | an(x) | ^ ψn{x) for all
x e X. Now the function

α = Σ 2-α Λ

satisfies (5.5) and the proof is complete.

REMARK. Actually the conclusion of Theorem 5.4 subsists under
more general assumptions. The metrizability of X was only invoked
to make FA a Gδ-set. In particular we shall have the following:

COROLLARY 5.5. Let xedAX be a Gb-point satisfying (A.2), i.e.

μ e M(dΛX) Π A1 => μ({x}) = 0 ,

then x is a peak point for A.

Finally we remark that if X is a metrizable compact Hausdorff
space and F is a compact subset of 3AX satisfying the stronger con-
dition (A.I) then the A-convex hull of F is a peak set.

6* Relations to the Bishop-Rudin-Carleson Theorem, In the
present chapter we shall consider a compact subset F of X satisfying
the requirement

(B) μeA"=>μ\F = Q .

Clearly (B) is more restrictive than (A.I), and a fortiori than
(A.2). Note also that (B) implies Fa dAX since Mi{X) = {ε,} for all
xeF.

If x g F and μx e Mϊ(X), then εx — μx e AL. Now the requirement
(B) implies (ex — μx) \F = 0, such that μx(F) = 0. By the definition
(3.2) we shall have dQ(x) = 0. Hence

(6.1) α 0 = a0 χ F .

Transferring to the state space and making use of (3.8), we observe
that the function χSF takes the value zero on Φ(X\F). Geometrically,
this means that the canonical embedding Φ:X—>S maps F into the
(compact) split face SF — cb(Φ(F)), and X\F into the complementary
(Gδ-) face S'F (cf. [2, Cor. 1.2]).

It follows from (6.1) that χF = χF and by Proposition 5.1 we obtain
F — F. Moreover, it follows from Proposition 4.4 that A\F is a closed
subspace of ^C(F), and it follows from (B) that (Al^)1 = (0). Hence
A\F — C^C(F). Also it follows from the results of chapter 5 that if
F is a Gδ, then it is a peak set.
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In other words: If F satisfies (B) then it is an interpolation set)
and if in addition it is a Gδ, then it is a peak-interpolation set.

Finally we note that we may apply Theorem 4.5 in the form
stated in the Remark at the end of § 4, to obtain:

THEOREM 6.1. (Bishop-Rudin-Carleson) Let F be a compact sub-
set of X satisfying (B), i.e.

μ e AL => μ\F ^ Q

let / o e ^ c ( j P ) , and let ψ: X—> R+ U {°°} be a strictly positive l.s.c.
function such that \ fo(x) | ̂  ψ(x) for all xe F. Then there exists an
ae A such that a\F = f0 and \a(x)\ rg ψ(x) for all xeX.

REMARK. Theorem 6.1 is the most general form of the Bishop-
Rudin-Carleson Theorem. Originally Bishop stated and proved this
theorem for a continuous function ψ and strict inequality sign [4].
Appealing to the inductive construction of Peίczynski [12], Semadeni
improved it to the form stated above [16]. (Cf. also Michael-Peiczynski
[11, p. 569]).

7* The sup-norm algebra case* In this section we shall assume
that A is a sup-norm algebra, and we shall consider two new require-
ments on a compact subset F of dAX:

(G.I) μeA^μ^eA1

(G.2) μeA'^μl^eA1 .

Clearly (B) implies (G.I) and (G.2), and each one of these implies
(A.I). In fact, (G.2) implies (A.I) since μ \FA = μ \F for every μ e M(dAX).
This result in turn is elementary, but not entirely obvious, so we
shall sketch a short proof: Note first that FA = φ - 1 ^ ) , so that F
can be thought of as the intersection of X with the ordinary closed
convex hull of F in S. (This is standard for real function spaces,
and the complex case is taken care of by the same argument as in
the proof of Proposition 5.1.). Hence the problem is reduced to show
the general implication:

Supp (v) c cό(Q) => Supp (v) c Q ,

where v is a boundary measure and Q is a closed subset of S. By an
elementary theorem v is also a boundary measure on cδ(Q). (An explicite
proof is given in [3, Lem. 1].) Hence v is supported by the closure
of the extreme points of Έo(Q). By Milman's Theorem Supp(v) c Q,
and the implication is proved.

In [9] and [10] Gamelin and Glicksberg have dealt with the re-
quirement (G.I), and from their works we shall adopt the following:
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DEFINITION 7.1. Let F be a compact subset of X and let t > 0.
A \F is said to have the property Et if the following conditions holds:

Given f e A\F with | | / | | F < 1 and a compact subset G of X\F,
there exists an extension g e A of / such that

| | 0 | | x < m a x { l , t } , \g(x)\<t all xeG .

The extension constant e(A, F) of F associated with A\Γ is defined
by the formula:

(7.1) e(A,F) = int{t\ A\F has property Et} .

If A\F has property Et for no £, then we define e(A, F) = oo.
The connection between the extension constant and the require-

ment (G.I) is expressed in the following:

THEOREM 7.2. (Gamelin-Glicksberg). Let F he a compact subset
of X. Then the following conditions are equivalent:

( i ) μeAL=>μ\FeAL

(ii) e(A,F) = 0
(iii) F is an intersection of peak sets for A.

Proof. See [9] and [10].

PROPOSITION 7.3. Let A be a sup-norm algebra over X and let F
be a compact subset of 3AX satisfying the requirement (A.I). Also let
G be a compact subset of X\FA and let ε > 0. Then there exists a
function ae A such that

( i ) a(x) = 1 for all XGFA

( i i ) \a(x)\ < e f o r a l l x e G
(iii) | | α | | x - l .

Proof. Choose >v as in Lemma 5.3 and let α 0 eA\ F , a0 = 1. Using
Theorem 4.5 we obtain a function b e A such that

b\F = l, \b(x)\^ψ(x) for all xeX.

Cleary b(x) - 1 for all x e FA and ] b(x) | < 1 for all xeG. Now
choose a natural number n such that (||b \\G)

n < ε and define a = bn. The
proof is complete.

We are now able to clarify the connection between (A.I) and the
extension constant of FA.

THEOREM 7.4. Let A be a sup-norm algebra over X and let F be
a compact subset of dAX. Then e(A, FA) — 0 if and only if F satisfies
(A.I) i.e.
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μeM(dAX)f]A1=>μ\FeAL .

Proof. By virtue of Theorem 7.2 and the fact that μ \FA = μ \F

for every μeM(dAX), if follows that e(A, FA) = 0 implies (A.I).
Now assume (A.I) and let aoe A\FΛ with ||αo||irΛ = ||αo||jp < 1. Let

G be a compact subset of X\FA and let ε > 0. We choose be A such
that \\b\\x = | | α o | | F and b\F = ao\F according to Corollary (4.6), and we
choose he A according to Proposition (7.3) i.e.

h\FΛ = 1, \h(x)\ < ε f o r a l l xeG

and ||fe||x = l . Then we define a = h beA. Now, a is a norm
preserving extension of α0 and |a(x) | < ε for all xeG. Hence A\FA
has property Eε for all ε > 0, and so we have proved that e(A, FA) = 0.

Thus we see how the requirements (A.I), (G.I) and (G.2) are re-
lated for sup norm algebras. (A.I) and (G.2) are always equivalent
for every compact subset F of dAX, and if in addition F is A-convex,
then they are equivalent to (G.I). This is not always the case even
if A is an algebra and F satisfies (A.I), as can be seen from the
following example

EXAMPLE 7.5. (The "Tomato Can Algebra").

Let X c R x C be defined as {(ί, z)\te [0,1], \z\ ^ 1}; let A be the
sup-norm algebra consisting all functions f e ^dX) such that /(0, z)
is analytic for \z\ < 1; and let F = {(0, z)\\z\ — 1}. Then F satisfies
(A.I) and FA = {(0,z)\\z\ ^ 1}.

Proof. We first note that

dAX={(t,z)\te]O,l],\z\£l o r ί = 0 , | s | = l } .

Hence the Shilov boundary dsA = dAX is all of X, and it also
follows that X is the maximal ideal space MA of A.

If G is a compact subset of X\{(0, z)\\z\ ^ 1}, then G is a peak
interpolation set for A and A\G = ^C(G). Hence if μ e AL then μ\G — 0.
In other words supp(μ) c {0, z)\ \z\ ^ 1} for all μeA1.

Now assume μeM(dAX) Π A1. Then μ\F = μeA1. Hence F
satisfies (A.I) but trivially FA = {(0, z)\\z\ ^ 1}; and the proof is
complete.

This example shows also that (A.I) and (G.I) need not be equivalent
even if we consider A as a sup-norm algebra over the maximal ideal
space or the Shilov boundary.

Finally we remark that if X is a compact subset of C and
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A — R{X) lax, i.e., if A is the uniform closure of the rational functions
on X considered as a function algebra over the topological boundary
dX, then the two conditions (A.I) and (G.I) are equivalent since F — FA

for every compact subset F of dAX. In fact for a point z0 e 3X\F we
choose / = (1/z — Zi) e A, where z^X and

= i inf I z - zQ

and obtain \f(zo)\ = 2 sup \f(z)\.
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TOPOLOGIES FOR QUOTIENT FIELDS OF
COMMUTATIVE INTEGRAL DOMAINS

JOBY MILO ANTHONY

In this paper topologies for the quotient field K of a
commutative integral domain A are investigated. The topo-
logies for K are defined so that convergence in K is stronger
than convergence in A whenever A is a topological ring.

In particular, the Mikusinski field of operators is the
quotient field of many commutative integral domains which
are also topological rings. Each of these rings leads to a
topological convergence notion in the Mikusinski field, which
is stronger than the convergence notion introduced originally
by Mikusinski. (The latter has recently been shown to be
nontopological.)

In general, the algebraic and topological structures con-
sidered are not necessarily compatible; however, the question
of compatibility is investigated. Necessary and sufficient
conditions are given for the topology on A to be the restric-
tion to A of the topology defined on K. In a theorem of S.
Warner, necessary and sufficient conditions have been given
for the neighborhood filter of zero in A to be a fundamental
system of neighborhoods of zero for a topology on K. More-
over K, with this topology, is a topological field with A topo-
logically embedded in K as an open set. For rings satisfying
the conditions of this theorem, the topology for K which is
defined in this paper is shown to reduce to that specified by
Warner.

Let CR denote the set of all infinitely differentiate, complex
valued functions of a real variable with the support of each function
contained in some right half-line. Endowed with the operations of
addition and convolution, CR becomes a commutative ring which has
no divisors of zero. The quotient field of the ring CR will be denoted
by the symbol M. It is isomorphic to the field of Mikusinski opera-
tors [8]. If CR is assigned the topology _^~*, in which a sequence
(an\ne Z+) converges if the supports of the elements an are uniformly
bounded on the left and the derivative sequences (a^ | n e Z+) converge
uniformly on compact sets for all keZ+U{0}, then {CR, ̂ f~*) is a
topological ring.

Mikusinski has introduced a convergence concept for M which is
equivalent to the following definition. If (an\neZ+) is a sequence in
M, then (an\ne Z+) converges if there exists a nonzero pe CR such
that (pan I n e Z+) is a sequence in CR which converges in the space

[6, pg. 144]. T. K. Boehme has shown that this convergence

585
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is nontopological in the sense that there is no topology for M in which
sequential convergence is given by Mikusiήski's definition [2]. E. F.
Wagner has defined an analogous convergence concept for nets and
filters and has shown that this leads to a limit space structure on M
which is also nontopological [9].

It seems natural to ask how Mikusiήski convergence can be modified
so that it becomes topological. R. A. Struble has introduced such a
modification [7], which has the property that the restriction of the
resulting topology to the right-sided Schwartz distributions, which are
embedded algebraically in M, is the topology which is ordinarily as-
sociated with them. The topology introduced by Struble is also defined
by a convergence concept for sequences and appears to be unwieldy.

S. Warner has given necessary and sufficient conditions for a
topological ring which has no zero divisors to be openly embeddable
in a topological division ring [10, Theorem 5]. It is easy to see that
the ring (C£, ̂ ~*) does not satisfy these conditions. Consequently,
there is no topology on M which makes M a topological field with C#
topologically embedded as an open set. Using some recent results of
Boehme, we will prove an even stronger result concerning M; namely,
there is no topology on M such that CR is topologically embedded in
M and multiplication in M is continuous. Essentially this means that
M cannot be topologized in a "nice" way and efforts to "extend" the
topology of CR to M must be channelled in other directions.

In this paper we present a method for topologizing the quotient
field of any commutative ring which has no zero divisors, using any
topology which may be assigned to the ring. If the ring satisfies the
conditions given by Warner in [10], then the topology which we will
define has the property that the quotient field with this topology is
a topological field with the ring topologically embedded as an open
set. In general, however, the field topology will reflect only part of
the algebraic and the topological structure of the ring and will not
necessarily be compatible with the field structure. Although the
ensuing development is applicable to very general algebraic and topo-
logical settings, it is strongly motivated by the unsatisfactory situa-
tion afforded by the Mikusiήski operators. The field M will frequently
be used as an example.

Throughout this paper, the symbol A will denote a commutative
ring which has no zero divisors and K will denote the quotient field
of A. We will use the symbol A* to represent the set of nonzero
elements of A. A topology on a set will be a collection of open sets
and a neighborhood will be a set containing an open set. We will
always assume that there is a topology associated with the set of
elements of A and this topology will be denoted by ^ 7 The topology

is not necessarily compatible with the algebraic structure of A.
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Whenever we consider a ring of functions in which ring multiplication
is the convolution of functions, multiplication will be represented by
the symbol, *. For terminology concerning nets and filters, the reader
should refer to [5] and [3].

The following development will be divided into two sections. In
the first section we will deal with the definition and characterizations
of a topology for the set of elements of the quotient field K. The
second section will examine some specific properties of this topology
relative to the algebraic and topological structures of A.

1* The definition and characterizations of the topology • Be-
fore defining a topology for the quotient field of an arbitrary commu-
tative integral domain, let us examine the specific problem of extending
the topology ^ * of C% to M.

LEMMA 1. Let J7~f be any topology on M with the following
properties.

( i ) ^~'\C£ > <-̂ ~* (The restriction of J^~' to C% is finer than

(ii) For each nonzero peC^, the mapping ξp: x^->px of M into
M is continuous.
Then sequential convergence in (M, J7~') is stronger than Mikusίnski
convergence.

Proof. Let (an\neZ+) be a sequence in M and let aeM such

that (α%in e Z+) -^-> a. (The net (an\ne Z+) converges to a in the
topology ^~f.) A theorem of T. K. Boehme implies that any countable
collection of elements in CR has a common multiple in C% [1]. This
implies that there exists a nonzero element p in C£ such that pae
CR and, for every n e Z+, pan e C£. Since multiplication by an element

of C% is continuous in (M, ̂ rt), (pan\ne Z+) -^-*pa. But ^~'\C£ >

^~* and therefore (pan\n eZ+)-^->pa. This implies that (an\neZ+)
Mikusiήski-converges to a.

LEMMA 2. Let J7~f be any topology on M with the following
properties.

( i ) ^*>^-'\C%
(ii) For each aeM, the mapping ξa:x^ax of M into M is

continuous.
Then Mikusinski convergence of sequences is stronger than sequential
convergence in (M, ^Γ').

Proof. Let (an\n eZ+) be a sequence in M and let aeM such
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that (an\ne Z+) Mikusiήski-converges to a. Then there exists a non-
zero element p in C^ such that (pan\ne Z+) is a sequence in C£, pae

C~ and (pan | n e Z+) -^U pa. Since ^ * > ^ ' \ C£, (pan \ n e Z+) —'-* pa.

But ξ1/p is continuous in (M, t^
Γf) and therefore (an \ n e Z+) —^-» a.

In [2] Boehme has shown that there is no topology on M which
has the collection of Mikusiήski-convergent sequences for its sequential
convergence class. Combining this result with Lemma 1 and Lemma
2, we obtain the following theorem.

THEOREM 1. There is no topology on M in ivhίch multiplication

is continuous and for which (C~, j^~*) is topologically embedded in M.

We will now examine the more general situation of an arbitrary
commutative ring A with no zero divisors, and its associated quotient
field K. For each pe A*, define a mapping φp from A into K by
φp(cή = a/p, ae A. Denote the image of A under the mapping φp by
the symbol Ap. Let j^~p be the finest topology on Ap which renders
the mapping φp continuous. That is, J7~v — {0pczAp\0p = 0/p, O e ^ } .
Since A has no zero divisors, ajp — ocjp, a19 a2 e A, if and only if
aL = a2. Consequently, φp is a bijection. Therefore (Ap, J7~p) is homeo-
morphic to (A, ^). For each aeA, let ^yKy(a) be the j^neighbor-
hood filter of a and if ae Ap, let ^/Kp(a) be the j^-neighborhood filter
of a. We note that K= \JpeA*Ap. If (aμ\μeM) is a net in K, let
Mp = {μ e M | aμ e Ap}. Clearly if the net (aμ \ μ e M) is eventually in Ap,
then (aμ \ μ G Mp) is a subnet which is in Ap.

DEFINITION 1. Let (aμ\μ e M) be a net in K and let ae K. Then
Tζ

(aμ | ] « G M ) is iΓ-convergent to α, written (aμ \ μ e M) > a, if the follow-
ing condition is satisfied. Whenever aeAp, the net (aμ\μeM) is

eventually in the space Ap and (aμ \ μ e Mp) -^-^ a.

The obvious generalization of Mikusiήski convergence is the fol-

lowing. Let (aμIμ e M) be a net in K and let ae K. Then (a,t\μ e M)

Mikusiήski-converges to a if and only if for some p e A:\ a e Ap, (aμ \μeM)

is eventually in Ap and (ar \ μ e Mp) —^ a. Clearly JSΓ-convergence is

stronger than Mikusiήski convergence, We will now show that K-

convergence is topological. This could be done directly by proving

that the collection of if-convergent nets is the convergence class of

a topology on K; however, it is slightly more interesting to give an

analogous definition of ϋΓ-convergence of filters, show that it is topo-

logical and then prove that it is equivalent to Jf-convergence of nets.
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DEFINITION 2. If ^ is a filter on K and aeK, then &~ is K-
convergent to α, written ^τκa, if and only if whenever a e Ap, ̂ ~ is
finer than the ^-neighborhood filter of a.

Clearly if ^τκa and 5^ > ^ then &τκa. Moreover, if ^V{a) =
f\jrτKa ^ι then ^V{a)τκa. Now for each α e if, the collection of filters
which iΓ-converge to a is the collection of filters which are finer than
<yf^{a). Obviously *sK{a) is a candidate for the neighborhood filter of
a in some topology. In [3, pg. 19, Proposition 2], sufficient conditions
are given for a collection of filters on a set to uniquely determine a
topology <in which the specified filters are the neighborhood filters.
The fact that these conditions are satisfied by the collection {tyK{a) \ a e
K) constitutes the proof of Theorem 2; however, first we will prove
the following lemma.

LEMMA 3. For each aeK, &{a) = {NP(a)\ae Ap and Np(a) e
for some p e A*} is a subbase for the filter

Proof. Since every element of ^?{a) contains the point α, &(a)
is a subbase for a filter on K. Let ^ ' ( α ) be the collection of all
finite intersections of elements of &(a) and let έ@"(a) be the filter
generated by &'{a). Then &"{a) is the coarsest filter containing
^ ( α ) . Now if J ^ α , then ^ contains ^ ( α ) and so &"(a) < ̂ Γ
Therefore &f\ά) < ^ ( α ) . On the other hand, if aeApJ then clearly
^ " ( α ) > ^fς(α) which implies that &"{a)τκa. Consequently &"(a) >

THEOREM 2. There is a unique topology on K with the property
that a filter converges to a point if and only if it K-converges to that
same point.

Proof. Let a be a given element of K. Since ^V(a) is a filter,
every subset of K which contains a set of ^(a) is an element of
^4^(a) and, moreover, ^4^{a) has the finite intersection property. By
Lemma 3 if N(a) e ^"(a), then aeN(a) since every element of &(a)
contains α. Also as a result of Lemma 3, there exists a finite
intersection, Π; Np.(a)9 of elements of ^ ( α ) , which is contained in
N(a). Hence there exist open sets Op. e ̂ ~Pi such that Op.(a) e ^Ar

v.{a)
and Op.(a) c Np.(a). Therefore ΠiOPi(a) c ΠiNp.(a) c iSΓ(α). Moreover,
Πi Op.(a) e ̂ 4^{a). Let # be an arbitrary element of Π; Op.(a). Since
the sets Op.{a) are open, they are elements of &{y). Consequently,
Π^ Opi(a) e iv{y) and because f]i Op.(a) c N(a), N(a) e ^V{y).

It remains to be shown that iίΓ-convergence of nets and iΓ-con-
vergence of filters are equivalent. For a given net, its associated net
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filter is the collection of all sets which the net is "eventually in". In
[5, pg. 83], it is shown that every filter is the net filter of some net.
Therefore it is sufficient to prove the following theorem.

THEOREM 3. Let (aμ\μeM) be a net in K and let aeK. Then

(aμ \μeM) > a if and only if its associated net filter, J^(aμ \μeM),
K-converges to a.

Proof. Suppose (aμ\μe M) > a. Then if a e Ap, {aμ\ μ e M) is
eventually in every .^-neighborhood of a which implies that

Therefore ^{aμ \ μ e M)τκa. Conversely, suppose ̂ {aμ \ μ e M)τκa. Then
if a e Ap, ̂ {aμ | / «eM)> ^ίr

P{a) which implies that (aμ\μe M) is even-
tually in every ^^-neighborhood of a. Therefore (aμ\μe M) is even-

K

tually in Ap, (aμ\μe Mp) —-^α, and hence (aμ \μeM) > a.

Since iΓ-convergence is topological, the topology determined by K-
convergence will be denoted by ^7~κ. Moreover, since iί-convergence of
nets and K-con verge nee of filters are equivalent, we will use whichever
notion of iΓ-convergence is most appropriate to a particular situation.

The following theorem gives a simple characterization of the topo-
logy J ^ .

THEOREM 4. ^ κ is the coarsest topology on K for which the
collection 6^ — {Op | Op e j^7~p for some p e A*} is a collection of open sets.

Proof. Let Op e 6^ and suppose (aμ\μe M) is a net in K which
p

if-converges to aeθp. Then (aμ \μ e M) p> a which implies that
(aμ\μeM) is eventually in Op. Therefore Ope^~κ. Let J7~' be any
topology on K with the property that £f c ^7~f. If (aμ \μeM) is a
net in K which ^"'-converges to α, then (aμ |/ίeM) is eventually in
every ^^-open-neighborhood of a. This implies that (aμ\μeM) is

eventually in Ap, (aμ\μ e Mp) -^-> a, and hence (aμ\μe M) > a. There-
fore ^7~κ is coarser than

Now we can make the following two observations. First, in view
of Theorem 4, the topology ^~κ could have been defined as that
topology on K which has the collection y as a subbase. From this
point of view, Definition 1 and Definition 2 characterize convergence
in this topology. Second, the algebraic characteristics of the ring A
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and the field K are not essential in defining j?~κ. In general, if
{(&/, ^~s) I / e ^f} is an arbitrary, indexed collection of topological
spaces, then we may define a topology on \J/&, B/ by taking the
collection <9^ = {0/ \ 0/ e ^ > for some / e Sf\ as a subbase. This
topology is the coarsest one in which all the injection maps i/\ B/ —•
\J/es?B/ are open mappings. Convergence in this topology is chara-
cterized by definitions which are analogous to Definition 1 and Defini-
tion 2.

2* Properties of the topology• A few facts concerning the
relationship between (A, J7~) and (K, j^~κ) are immediate consequences
of the characterizations of jfκ which have already been given. For
instance, it follows from Lemma 3 that if (A, ^7~) is a Hausdorff space,
then (K, J7~κ) is a Hausdorff space, since distinct points of K are always
elements of a common A^-space and have disjoint neighborhoods in that
space. There are several observations that can be made as a result
of Theorem 4. Clearly if (A, ^~) is a discrete space, then (K,
is a discrete space. Also, it is obvious that for each pe A*, J7
is finer than ^~p. Another result of Theorem 4 is that if ^~ ( 1 ) and
^~ ( 2 ) are comparable topologies on A with ^ " ( 1 ) finer than J^~{2\ then
the corresponding topologies of Z-convergence, ^~K

{1) and ^Ίt\ have
the same relationship. It is easy to construct examples to show that
if ^~ ( 1 ) is strictly finer than ,^~(2), then ^K

{1) may be strictly finer
than ^ 1 ( 2 ) . Two major questions which remain to be answered are;
"Under what conditions is (A, ^~) topologically embedded in (K, ^K)T\
and "What is the relationship between the topology ^ κ and the al-
gebraic structure of KV It is" the purpose of this section to examine
these two questions.

For each peA*, let ζp be the mapping of A into A defined by
ξp(x) = px, x e A.

LEMMA 4. If for each p e A * the mapping ζp is continuous, then
is finer than J7~κ \ A.

Proof. Since the mappings ξp,peA*, are continuous, if

(aμ\μe M) ~2_> a ,

then for every p e A*, (aμp \μeM) > ap. From the way in which A
is algebraically embedded in K, it follows that the elements of A
are in every A^-space. Specifically, if peA*, then for each μeM,aμ

is identified with aμpjp and a is identified with ap/p. Therefore

(aμp I μ e M) > ap implies that (aμ \ μ e M) — ^ a. But this is true for
Ύζ

every pe A* and so we have (aμ\μe M) > a.
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In view of Lemma 4, we can make the following observation. If
(A, ^~) is a topological r ing (recall t h a t A is always a commutative
ring which has no zero divisors), then ίΓ-convergence is a generaliza-
tion of r ing convergence in the sense t h a t every ^ c o n v e r g e n t net is
Z-convergent. There may, however, be nets in A which do not con-
verge in (A, άΓ) b u t which are Z-convergent. In fact, the following
example shows t h a t this is the case when (A, ̂ ) = (Cg,

EXAMPLE 1. J7~ may be strictly finer t h a n

If (A, j^~) = (C£, ̂ -*) and K = M, we will denote the topology
of JΓ-convergence on M by J ^ * . Then ^~* is finer than ^Ί?\C%
because (C%, ^~*) is a topological ring. Let (an \ n e Z+) be a sequence
in CR with the following properties.

( i ) For each neZ+, the support of an is contained in [0,1/n].
(ii) For each n e Z+, maxf \an{t) \ = 1.

Now if p is a nonzero element of CR, then (an*p\n eZ+)-^->0 which

implies that (an\neZ+)-^0. Therefore (an\neZ+) ^>0, but

(an\neZ+) does not converge in

THEOREM 5. J7~ = ^7~K\A if and only if ^~ has the following

property: If (aμ \ μ e M) is a net in A and a e A, then (aμp \μeM) -^—*

ap for every peA* if and only if (aμ\μeM) -^-»a.

Proof. Suppose ^~ = ^~K | A. Let (aμ \ μ e M) be a net in A with

ae A such that for each peA*, (aμp \μeM) -^—* ap. Now for each
jr

p e A*, aμ~(aμpjp), μeM, and a=(ap/p). Therefore (aμp\μ e M) >ap

implies that (aμ \μeM) -^-> a. Consequently (aμ \μ^M) > a, and since

J7~ = J7~κ \A, {aμ\μe M) - ^ a. On the other hand, if (aμ \μeM) -^-> a

and ^ " = j?~κ I A, then for every peA*9 {{aμpjp) \ μ e M) ^> {apjp)

which implies that

Conversely, suppose ^~ has the specified property. Then for each
peA*, the mapping ξp is continuous. By Lemma 4, ^ > ^K\A.

Let (α ; i I /̂  G M) be a net in A and let α e A such t h a t (α:^ | μ e M) > α:.

Then for every p e A*, (α Λ p | ]«eM) -^^> ap and consequently

( ^ 1/ieM) -^-> α. Therefore ^ | A > J^~ .
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COROLLARY a,. If A has an identity e and if for every pe A*
the mapping ξp is continuous, then

Proof, Clearly the existence of an identity implies that the con-
dition given in Theorem 5 is satisfied.

COROLLARY b. Suppose that (A, ̂ ~) is a topological ring. If
there exists p'eA* such that p'^f^(O) < f̂S-(O), then ^7~

Proof. Since multiplication is continuous in A, we have ΛZ>- (0) <
p'^O(O). Therefore the given condition is equivalent to the require-
ment that p'^>(0) be a base for ^ > ( 0 ) . Because (A, J7~) is a topo-
logical ring, if (aμ\μ e M) -^-> a, then for every peA*, {aμp\(μ e M) -̂ —>
ap. Let (aμ\μeM) be a net in A and let aeA such that for every

pe A*, (aμp\μeM) — > a p . Since p ' ^ X O X ^ X O ) , if ΛΓ̂ (O) e ~ ^ ( 0 ) ,
it follows that p'iW(O) e ~^>(0). Therefore (α^p' - ^ Ί ^ e M ) is even-
tually in p'iVV(O) which implies that (α^ — α | μ e M) is eventually in

iVV(O). Consequently (aμ\μe M) ——> α.

COROLLARY C. /f (A, ̂ ~) is α compact, Hausdorff, topological
ring, then

Proof. Since (A, ̂ ~) is a topological ring, if (aμ\μeM) ' > a,

then for every p e A*, (α^pI^ e M) ——* α:p. Let (aμ\μe M) be a net in

A and let α: e A such that for every peA*, (α^p | // e M) ——> α p. Let
(/3;Jλ G /ί) be an arbitrary subnet of (aμ\μe M). Since (A, ̂ Γ) is com-
pact, there exists a subnet (δr \ 7 e Z7) of (/3Λ | λ e /I) and δ e A such that

(δ r | 7eΓ)-ί->δ. If peA*, then (δ rp|7e Z7) ——> δp. But (δrp|7 e Γ)
is a subnet of (aμp\μeM) which, by assumption, converges to ap.

Therefore (δrp\y e Γ)-?—>ap and since (A,^~) is Hausdorff, δp — ap

which implies that δ — a. Now every subnet of (aμ\μe M) has a sub-

net which converges to a. Consequently (aμ\μ e M) > #.

There are several important subsets of K which warrant special
consideration, among which are A itself and the A^-spaces. Another
important subset of K is the intersection of all of the Ap-spaces. It
is well known that the elements of K may be identified algebraically
as either quotients (equivalence classes of ordered pairs of elements of
A), or as partial homomorphisms of ideals of A into A whose domains
are maximal in the sense that the partial homomorphisms cannot be
extended to properly larger ideals [4]. In the latter situation, Γ\peA* Ap
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is identifiable as the set of those partial homomorphisms defined on
all of A. This collection of mappings is denoted Hom^ (A, A). If
ae A, then a may be identified with the homomorphism ξa: A—> A
where ζa(x) — ax, x e A. Hence A c Hom^ (A, A). Now Hom^ (A, A)
may be considered as a collection of functions which map a common
domain into a topological space. One way of topologizing such a
function space is to use the so-called "weak" topology, the topology
of pointwise convergence. Let & denote this topology. It is not
difficult to see that ^"κ | Hom^ (A, A) — &*. An immediate corollary
to Theorem 5 is that {A, ^~) is topologically embedded in (K, ^~κ)
if and only if it is topologically embedded in (Hom^(A, A), &).

If A = CR and K — ikf, Struble has shown that Hom^ (A, A) is
isomorphic to the collection of all right-sided Schwartz distributions
[7]. The usual topology assigned to distribution is a "weak" topology.
In this case it can be shown that these right-sided distributions are
embedded both algebraically and topologically in the Mikusiήski operator
field.

In general, A and Hom^ (A, A) do not need to be either open or
closed subsets of (K, J?^). In his paper on compact rings [10], Warner
considers the problem of openly embedding a topological ring, which
has no divisors of zero, in a division ring. The following theorem
shows that if (A, j?~) is a topological ring, then a weakened version
of a condition used by Warner in [10, Theorem 5] is sufficient to
guarantee that both (A, J7~) and (Hom^ (A, A), &) are openly embedded
in (i

THEOREM 6. Suppose that (A, J7~) is a topological ring with the
additional property that for each iV̂ -(O) e ^ > ( 0 ) , there exists p e A*
such that pN<r(0) e ^ > ( 0 ) . Then

( i )
(ii)
(iii) Hom^ (A, A) e

Proof.
( i ) Let (aμ\μeM) be a net in A with ae A such that

{aμp I μ e M) -^-» ap

for every p e A*. Then (aμp — ap\μeM) -̂ —• 0 for every p e A*. Let
iV>(0) G *ΛO(0) and choose p ' e A * such that p'NAV e^S-(O). Then
(α^p' — tfp' I μ e M) is eventually in prN^{0) which implies that ( ^ —

α I μ e M) is eventually in iV>(0). Therefore ( ^ | μ e M) — -̂> a. Since

(A, ^ ) is a topological ring, if (α^|μ e M) —̂ -» #, then for every p e i * ,

(α^p |j«6M) - ^ αp. By Theorem 5, ^ " = ^ . | A.
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(ii) Choose pf e A* such that p'A e Λ^(O). If x e p'A, then there
exists y e A such that x = p'y and hence x + p'A — p'y + p'A = p'A.
Therefore p ' A e ^ ( a ; ) , Now since p'A is in the neighborhood filter
of each of its points, it is an open subset of (A, ^). Consequently
if α e A, then p'A e ^f^(p'a). But a has the representation p'a/p' in
K, and since p'Ae^i^-(p'a), by Lemma 3, p'A/p' — Ae^V{a). Thus
A is in the ^^-neighborhood filter of each of its points and hence is
an open subset of (K, ^κ).

(iii) We have shown in (ii) that it is possible to choose p'eA*
such that p'A is an open subset of (A, JίΓ). If α€Hom4(A, A), then
there exists aeA such that a = a/p'. Now α: + p ' A e ^ X α ) and by
Lemma 3, (a+p'A)/p' e ^V(a). However, (a+p'A)/p' = α/p' + p'A/p' =
α + A which is a subset of Hom^ (A, A). Consequently Hom^ (A, A.) 6
^4^(a). Now Hom^(A, A) is in the ^^-neighborhood filter of each of
its points and hence is an open subset of (K, J7~κ).

The remainder of this paper will be devoted to an examination
of the compatibility of the topology J7"κ with the algebraic structure
of K.

DEFINITION 3. For each aeK, let D(a) = {pe A*|αe Ap}.

Note that D(a) (J {0} is an ideal in A. It is, in fact, the domain
of a when a is identified as a partial homomorphism.

THEOREM 7. Let a and b be elements of K such that D(a + b) =
D(a) Π D(b). Then, if addition is continuous in (A, ^ " ) , the mapping
f: K x K—+ K defined by f(x, y) — x + y, (a?, y) e K x K, is continuous
at the point (α, δ).

Proof. Let Λ^(a + b) be the ^^-neighborhood filter of a + 6 and
let ΛΓ(α + ί>) be an arbitrary element of <yi^{a + b). By Lemma 3,
there exists a finite intersection, Π; -Wp/α + 6), of ^.^-neighborhoods
of a + & contained in JV(α + 6). Since D(a + 6) = jD(α) Π D(b), both α
and δ are elements of each A^^-space. Moreover, addition is continuous
in each A^-space and hence, for each i, there exists Np.(a) e ^^.(a) and
Np.(b) e ^i.(b) such that f(Np.(a) x Np.(b)) c JVPi(α + 6)! Therefore we
have f(fu Np.(a) x Π. NP.(b))<z Hi Np](a + 6) c N(a + 6). If Λ\a, b)
is the neighborhood filter of (α, 6) in iΓ x jfί, then a base for ^/K{a, b)
is the collection of all sets of the form N(a) x N(b) where N(a) e
and JSΓ(&) e ^f^{b). Now by Lemma 3 we have Πi Np.(a) x Πi

(a, b). Therefore / is continuous at (α, 6).

COROLLARY. If addition is continuous in (A, j^~), ίfcβ^ addition
is continuous in (Hom^(A, A),
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Proof. If a and b are elements of Hom^ (A, A), then D(a) = D(b) -
D(a + b) = A*.

THEOREM 8. Let a and b be elements of K such that D(ab) a D(a)
D(b). (D(a) D(b) = {p e A\p = qr, q e D{a) and r e D(b)}). Then, if
multiplication is continuous in (A, J?~), the mapping f: K x K—>K
defined by f(x, y) = xy, (x, y) eK x K, is continuous at the point (a, b).

Proof. Let <yί^{ab) be the ^^-neighborhood filter of ab and let
N(ab) be an arbitrary element of ^V(ab). By Lemma 3, there exists
a finite intersection, Π* Nv.{ab)1 of ^.-neighborhoods of ab contained
in N(ab). Now, for each i, we have the following. Since D(ab) c
D(a) D(b), there exist q{ e A* and r{ e A* such that a e Aq., b e Ar%,
and Pi — qtfi. Therefore there exist ring elements a{ and /5 such
that a = ai/qif b = βjriy and ab = aφijq^i = aφ^p^ Moreover, there
exists Njr(oCiβi) e ^K^{(^iβi) such that Np.(ab) = N^aφ^lPi. But mul-
tiplication is continuous in (A, ̂ ~), and therefore there exist N,y{a^) e
ΛZ/ioLi) and N^(βύ e ^O-(βi) such that iV>(<> Ny\βi) c N^ia^,).
Let Nq.(a) = NA^lQi and Nr.φ) = NAβi)/^. Then Nq.(a) e ^Γq.(a)
and iVr.(δ) G ̂ i^r.(b). Now we have

c

That is, for each i,f(NQz(a) x iVrJ5)) c Np.(ab). Therefore we have
f(Πi Nq.(a) x Πi Nr%(b)) c Πi ̂ ( α δ ) c iV(αδ) and since f|. ^ t ( α ) x
Πi Nrβ>) e ^^{a, 6),/ is continuous at the point (α, 6).

COROLLARY, /f multiplication is continuous in (A, J7~) and A —
A2, then multiplication is continuous in (Hom^ (A, A), &).

Proof. If a and b are elements of Hom^ (A, A), then D(a) = D(b) =
D(ab) = A*. Since A = A2 and A has no divisors of zero, A* = (A*)2.
Therefore D(a) - D(b) = (A*)2 = A* = D(αδ).

Theorems 7 and 8 give algebraic conditions which are sufficient for
addition and multiplication to be locally continuous operations in
(K, J7~κ). Since for every aeK, D( — a) = D{a), it is clear that if
additive inversion is continuous in (A, jf), then it is also continuous
in {K, J?~κ). Combining this fact with the corollaries to Theorems 7
and 8 yields the interesting result that if (A, J7~) is a topological
ring and A = A2, then (Hom4 (A, A), &) is a topological ring.
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The following examples demonstrate that multiplication and multi-
plicative inversion are not necessarily continuous operations in (K,

Example 2. Multiplication is not necessarily continuous in (K,

Let (A, ^) = (C£, ̂ ~*) and K = M. Choose a nonzero element
φ of CR such that φ has compact support. For each neZ+, let mn =
supί \Φ{n){t)\. Consider the sequence (fn = sn/nmn\n eZ+), where sn is
the operator (homomorphism mapping CR into itself) which maps a
function in CR to its nth derivative. If a is a nonzero element of
CR, then for each neZ+, fn has the representation (a{n)/nmn)/a. Choose
a real number λ > 1 and let ξ(t) = φ(Xt). Then

(ϊl neZ'
Λ = / Xnφw(\t)/nmn

ζ

inceί Xnφ{n)(Xt)

nmn

neZ"

neZ+j

0 .

0

Hence (fn\neZ+) -+> 0. If, however,
CR, then

V tim. / V nm

is any nonzero element of

neZ<
nmn

and since (CR, is a topological ring, by Lemma 4, it follows that

(Φ * ΨT
nmn

neZ" 0 .

For each n e Z + , let αΛ = (^ * ψ){n)/nmn and let 6W = (φ

a = 0 and 6 = (φ Now (αn a and (6n |

Let

-> 6;

however, (anbn\neZ+) = (fn\neZ+) -+> 0 = ab. Therefore multiplica-
tion is not continuous on M.

Example 3. Multiplicative inversion is not necessarily continuous
in (K,

Let (A, j ^ ) = (C£, ̂ ~*) and K = M. Consider the sequence
(1 — s/n\neZ+). This is a sequence in M which clearly iΓ-converges
to the multiplicative identity; however, Mikusiήski has shown that
((1 — s/n^lneZ*) does not converge according to his definition [6,
pg. 147]. Therefore ((1 - sjn)~ι \ n e Z+) does not if-converge. Con-
sequently, multiplicative inversion is not continuous on M.

If addition is to be continuous in (iΓ, ^~κ), then for each aeK,
the .^-neighborhood filter of a must be the translate to a of the



598 JOBY MILO ANTHONY

.^-neighborhood filter of zero. We will now discuss sufficient con-
ditions on (A, ^) for {K, ̂ κ) to have this property.

Suppose that (A, ^) is a topological ring. Then for each p e A*,
the mapping x h-• px is a continuous mapping of A into itself. Con-
sequently, p^K^(0) is a filter base for a filter which is finer than

In general, if p and g are distinct elements of A*, then
and g^f>(0) are not equivalent filter bases; however, if for

every pair (p, q) of elements of A*, p^Kr{Q) and q^K^(0) are equivalent
filter bases, then for each p e A*, p^f>(0) and p\^>(0) are equivalent
filter bases. In this case, given N^(0) e ̂ f>(0), there exists N^(0)e
f̂S-(O) such that piV (̂O) c p2N^φ) which implies that J\^(0)cpJVM0).

Therefore pN^(0) e ̂ /<M0) and consequently, p^O(O) is a base for
^ ^ ( 0 ) . Conversely, if for each pe A*, p^/O(0) is a base for ιΛS(O),
then for every pair (p, g) of elements of A*, p^S-(O) and g^O(0) are
equivalent filter bases.

LEMMA 5. Let {R, T) be any topological ring. The following
conditions on (i?, T) are equivalent.

(1) Given an open neighborhood 0 of zero and a nonzero element
p of R, then pO is an open set.

(2) Given a nonzero element p of R, then p^iφ) is a base for
is the T-neighborhood filter of zero.)

Proof.
(1) implies (2): Let p be a nonzero element of R and let Nτ(0) e

Since (R, T) is a topological ring, the mapping x i-> px is a
continuous mapping of R into itself. Consequently, there exists an
open neighborhood O of zero such that]pθ c Nτ(0). By hypothesis,
pO is an open neighborhood of zero. Therefore p^4r

τ^) is a base for

(2) implies (1): Let 0 be an open neighborhood of zero and let p
be a nonzero element of R. Let pα: be an arbitrary element of pO.
Then 0 is a neighborhood of a. Consequently, there exists 0' 6 ^4^(0)
such that 0 = a + 0'. By hypothesis, jλΛ'ί(O) is a base for ^ί(O).
Therefore pO' is a neighborhood of zero. Now pO = pa + pO' and
hence pO is an element of ^4^τ{pa). Therefore pO is in the neigh-
borhood filter of each of its points which implies that pO is an open
set.

THEOREM 9. Suppose that (A, ̂ ) is a topological ring. If for
every pe A*, p^O(O) is a base for ^S-(O), then jr~(0) = ̂ > ( 0 ) is a
base for ^V{ϋ) and Λ^{a) = a + ^/Γ(0) for every aeK.

Proof. By Lemma 3, for every aeK, &(a) — {Np(a)\aeAp and
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Np(a) e ^/^(α) for some p e A*} is a subbase for Λ^(a). If Np(0) e
&(0), then there exists JV>(O)e^(O) such that Np(0) = NAWP*

Since p^//>(0) is a base for ^O(O), there exists ΛΓ̂ (O) e ^^-(O) such
that pN'ΛO) c iV (̂O). Therefore ΛΓP(O) = NAty/P z> pN'AWP =
ΛΓ; (0). This implies that ^ ( 0 ) < J^T(O). On the other hand, if
N^(0)eST(0) and peA*, then pNAO) e - ^ (0). Now JSΓ̂ -(O) =
pN,y-(0)/p which is an element of ^ ( 0 ) . This implies that J3T(0) <
&(0). Therefore j^"(0) and ^ ( 0 ) are equivalent subbases. However,
since Sf~φ) is a filter on A, it is a filter base on K. Consequently,

and ^ ( 0 ) are bases for the filter ^/^(0). For each αelf, let
= a + J2Γ(0). Clearly J^r(α) is a base for the filter a + ^T(O).

If a e Av and iVp(α) e ^J(α), then there exists α e i and N^-(a) £ Λr^{ά)
such that α = α/p and Np(a) = Nr(a)jp. Since (A, ^~) is a topological
ring, there exists N^(0) such that N\^(a) — a + iV^(0). Moreover,
ί>c^jr(0) is a base for ^f>(0). Therefore there exists iV^(0) e -^r(O)
such that pN^(0) c Ns(0). Now we have

a + P ^ O ) = α

This implies that &{a) < ^Γ{a). Conversely, if a + iSΓ̂ -(O) 6
choose p e A* such that α e i r Now let a e A such that a —
Since ^ ^ ^ ( 0 ) is a base for ^ > ( 0 ) , we have pN^φ) e ^S-(O). This
implies that α + pN^(0) e Λ^λa). Consider

α + NA0) - — + p J V ^ ^ O ) = a

3> p p

This is an element of &(a) and consequently J3Γ(ά) < &(a). There-
fore &(a) is a filter base which is equivalent to 3ίΓ(a). Since ^ ( α )
is a base for *Λ"(a) and ,Ĵ Γ(α) is a base for α + ^/^(0), we have

What we have now demonstrated is that if (A, ^~) is a topological
ring which satisfies either of the conditions of Lemma 5, then (K, ^~κ)
is homogeneous in the sense that the ^^neighborhood filter of any
point is the translate to that point of the ^^-neighborhood filter of
zero. Moreover, the neighborhood filter of zero in (A, J7~) is a base
for the neighborhood filter of zero in (K, ^~κ). Also, since (A, j?~)
satisfies one of the conditions of Lemma 5, by Theorem 6 it follows
that A is topologically embedded in (if, J7~κ) as an open set.

In [10, Theorem 5], Warner places the following conditions on a
topological ring which has no divisors of zero.

(1) Given an open neighborhood O of zero and a nonzero ring
element p, then pO and Op are open sets.

( 2 ) The collection of ring elements which have an inverse relative
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to the circle composition {x°y = x + y — xy) is an open set, and the
mapping which sends an element of this open set to this inverse is
continuous.

He concludes that these conditions are both necessary and sufficient
for the ring to be algebraically embeddable in a division ring, where
the neighborhood filter of zero in the original ring is a fundamental
system of neighborhoods of zero for a topology on the division ring.
Moreover, the specified topology on the division ring is compatible
with the division ring structure and the original ring is topologically
embedded as an open set. Therefore, by Lemma 5 and Theorem 9,
we conclude that these conditions on (A, ^7~) are necessary and suffi-
cient for (iΓ, ^ i ) to be a topological field with A topologically em-
bedded as an open set. In the process of proving this theorem of
Warner's, condition (2) is used only to establish the continuity of
multiplicative inversion in the division ring. Hence we conclude that
(K, ^~κ) is a topological ring with A topologically embedded as an
open set if and only if (A, J7~) satisfies one of the conditions of
Lemma 5.

Several questions concerning the topology J7~κ are suggested by
this paper. For instance, what hypotheses are required for (K, ^~κ)
to be a topological field without A necessarily being an open set? By
Theorem 5, Corollary c, if (A, ^~) is compact and Hausdorff, then it
is topologically embedded in (K, Jf^). What further hypotheses, if
any, are needed to insure that (K, J7~κ) is at least a topological ring?
There is also, of course, the observation that the concept of ϋΓ-con-
vergence provides a method for topologizing the Mikusiήski field. In
fact, the various algebraic models which generate the Mikusiήski field
lead to several topologies of if-convergence on it. What properties
do they possess and how are they related?
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ORDERED CYCLE LENGTHS IN A RANDOM
PERMUTATION

V. BALAKRISHNAN, G. SANKARANARAYANAN AND C. SUYAMBULINGOM

Let x(t) denote the number of jumps occurring in the time
interval [0, t) and vk(t) = P{x(f) = k}. The generating function
of Vk(t) is given by

exp {λt[φ(x) - 1]}, φ(x) = Σ P*&f Σ P* = 1
fc = l fc = l

Lay off to the right of the origin successive intervals of length
&Ha$ 3 = 1» 2, ••• . Explicitly the end points are

1 = 0

• = Σ «*/*", 3 = 2, 3, , a > 0 ,

and

a
Following Shepp and Lloyd Lr, the length of the rth longest
cycle and Sr, the length of the rth shortest cycle have been
defined for our choice of x(t) and tj, j = 1,2, . This paper
obtains the asymptotics for the mth moments of Lr and Sr

suitably normalized by a new technique of generating func-
tions. It is further shown that the results of Shepp and Lloyd
are particular cases of these more general results.

Here we consider a problem involving a random permutation which
isjclosely linked with the cycle structure of the permutation. Let Sn

be the n\ permutation operators on n numbered places. Let a(π) =
{at{π), a2(π), •• ,αn(π)} be the cycle class of πeSn. In this permuta-
tion 7Γ, there are 0Lx{π) cycles of length one, a2(π) cycles of length two,
etc. Usually the elements of Sn are assigned a probability 1/nl each.
John Riordan has considered a model where he has assigned the pro-
bability

P{a, = alf a2 = α2, , an = α j = Π (l/i)^'/α, ! if
1.1 J=ί i=i

— 0 otherwise ,

for the cycle class a(π), the α's being nonnegative integers. Here a'&
would be independent if it were not for the condition Σ JaJ = w Shepp
and Lloyd has considered a sequence a = {a19 a2, •••} of mutually in-
dependent nonnegative integral valued random variables where for
j = 1, 2, the random variable aά follows the Poisson distribution

603
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with mean z'/j, 0 < z < 1, z being same for all values of j . Accordingly

Pz{a, = α l f α2 = α ϊ f •} = (1 - φ Σ Γ = i ^ f[ (l/i)β'/αΛ
1.2 i = 1

αy > 0 , i = 1,2, . . . .

From this it can be seen that the probability distribution of the ran-
dom variable v(a) = ΣΓ=ii α i is

1.3 P{v{a) = n} = (1 - z)z?, n = 0,1, 2, . .

Also

cλ = a19 a2 = α2, \v(a) = w} - Π (Vi) iMΛ ΣPz{ocλ = a19 a2 = α2, \v(a) = w} - Π ( V i ) i M Λ Σ i ^ =
1.4

= 0 otherwise .

Thus Shepp and Lloyd were able to recover 1.1 assumed in the model-
In this paper, for the cycle class a(π) we have assigned the probability

1.5 Pz(a, = a19 a2 = α2, , an = an) = I/II, 0 < z < 1, Σ Oao = n

— 0 otherwise .

Here

1.6 I = Π vaj(zj/ja), Σ i α y = w, αn+1 = α%+2 = = 0, ( Σ i % = w)
3=1 3=1 ί = l

where vaj(zj/ja) is the coefficient of xa* in

1.7 ^(») - Σ Pk%k and Σ Pt = 1 •
* = 1 A = l

On detailed computation

1.8 M*Vi*> = β-2''/'' ΣΣ
+

In the special case when λ = 1, p1 = 1, p 2 = Ps = * = 0 and α = l r

exp {λ{z'lQa)[φ(x) — 1]} reduces to the generating function of the Poisson
process with the time parameter equals to z'/j, which has been considered
by Shepp and Lloyd. Also the generating function of II which represents
the distribution of P{v{a) = n}, where for our choice of the sequence
a/s defined by 1.14

1.9 vipt) =Σ,
3 = 1

is given by
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1.10 Σ P{v(a) = n}xn = Π exp {Mzj/j")[φ(xj) - 1]} .

On detailed computation we note that

P{v(a) = n} = exp{-λ °°
3=1

Σ
1.11

\ 2a

nx\ n2\

III: / (/% l

2a

\ . . .

In particular when λ = 1, a = 1 and p1 = 1, p2 = p3 =
generating function of the distribution of 1.9 reduces to

= 0, the

1.12

Hence

exp [-

= n} = (1 -

which is in agreement with that considered by Shepp and Lloyd. In
the special case mentioned above

1.13
I/II = Π (VJP'/aA if

= 0 otherwise .

3 = n,

This is also in agreement with the model discussed by Shepp and Lloyd.
If we take a = (a19 a2, - •) to be a sequence of mutually independent

nonnegative integral valued random variables where for j = 1, 2,

1.14 - a5} = vaj{zηja), α, = 0, 1, 2,

by using the Borel-Cantelli lemma, we can easily show that v{a) =
ΣΓ=ii^i i s finite with probability one. Hence the joint distribution
(a19 a2, a3, , v(α)) can be written as

1.15 2 = α2,
= Π vaj(zj/ja) if = n,

= 0 otherwise .
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From this we can see that

1.16 Px{ax = a19 a2 = α2, , | v(a) = n) = I/II ,

which we have assumed for the model.
Shepp and Lloyd have considered a Poisson process which takes

place on T = { - c o < £ < + o o } a t unit rate. That is, for any interval
of length I c ϊ 7 , the probability that p jumps occur in I is

independently of any conditions on the process on T — I. They have
taken the following end points for the time intervals

Uz) = 0,

1.17 t,-(z) = 2*7fcii = 2, 3, . . . ,

so that the jth interval is

tj{z) <t<ti+ι(z),j = 1,2, . . . .

They define Xz(t); — oo < £ < oo, to be a function whose value is 'j' on
the jth interval, j = 1, 2, and is zero if ί < 0 or t > t^z). Then
for each j = 1, 2, the interval {£; λβ(ί) = j} has length zj/j, the
probability that a3- jumps of the Poisson process occur in this interval is

1.18 exp (~zj/j) (zίlj)aί/asl, a, = 0,1, 2, .

and that these various events for j = 1, 2, are mutually independent.
They have taken a sample function of the Poisson process, with jumps
in the interval [0, tc{z)), which are finite in number with probability
one, occurring at times τx <̂  τ2 <; ^ τσ (σ, random). They take the
positive integers \t(τJ ^ Xz(τ2) ^ ^ λz(rσ) as the lengths of the σ
cycles of a permutation o n v = Σί=i λ*(τ

s) places, and in this class Su,
they choose a permutation at random with uniform distribution. For
any given r = 1, 2, let Sr = Sr{a) be the length of the rth shortest
cycle in a permutation of the cycle class a Sr(ά) = 0 if Σ ^ < r

If the rth jump of the Poisson process occur at *ί\ then Sr = Xe(t)
according to their model. Hence they have obtained the distribution
of Sr. Similarly they have obtained the distribution of Lr = Lr(a),
the length of the rth longest cycle. They have given asymptotics for
the distribution and to all moments of the length of the rth longest
and rth shortest cycles.

In this paper, instead of the Poisson process considered by Shepp
and Lloyd, we consider a more general process which can have k(k > 1)
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jumps at any moment. Let x(t) denote the number of jumps in the
interval [0, t) and let

1.19 vk(t) = P{x(t) = k} .

Let pk be the probability of having k jumps at a chosen moment, if
it is certain that jumps do occur generally at that moment. It has
been shown in Khintchine that

1.20 F(t, x) = Σ Vk(t)x* = exp {M[φ(x) - 1]} ,
k=Q

where φ(x) is given by (1.7) and λ > 0. In our model, we take the
end points of the time intervals to be

φ) = 0

^•^" / M — *S? 9klk" n — 9 ^ . . . nr "> 0
Oj\</J / j <v / ίh j J έJ, O, ' ' *) U ,s* \J ,

and

Uz) = Σ zh/kf .
* = 1

Here the probability that Lr, the length of the rth longest cycle is
'j9 is given by

PZ{LT = j} = — ^ — ̂ J+1 J Σ 2>*Vr-*(*- - ί)}dί,

1.22 έ ί P *

where

Pr = Σ P*

Also the probability that Sr, the length of the rth shortest cycle is
'j9 is given by

Here we use the technique of generating functions to estimate the
asymptotics of E{Lr}

m and E{Sr}
m suitably normalized in a way different

from that used by Shepp and Lloyd. While they have considered the
case where the jumps occur according to Poisson law, we have considered
a more general system of which Poisson process is a special case. By as-
suming the Poisson law for jumps they were able to recover the model
based on the uniform distribution. By assuming a more general law for
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jumps we obtain a generalised probability model for the cycle class of
which that derived on the basis of the uniform distribution is a special
case. Thus we have in this paper discussed a generalization of the
one given by Shepp and Lloyd with the help of the new technique.

2* A lemma* We now prove a lemma which we use extensively.

LEMMA. Let

2.1 A(z, x) = Σ <*>r(z)%r ,
r = l

and

2.2 A(x) = Σ &rXr ,
r = l

with ar(z) > 0, satisfying

2.3 Σ *r(z) = c, 0 < z < 1 ,
r = l

c, α constant. Then for

2.4 αr(«) • α r , z > 1" ,

it is necessary and sufficient that for 0 < x < 1

2.5 A(z, x) • A(x), z > 1- .

Proof of the lemma. First let us suppose that (2.4) holds. Then
for fixed x, (0 < x < 1) and ε, we can choose a number n0 such that
{x*°/(l - x)} < ε. Then,

2.6 I A(s, a?) - A(x) | < Σ I αr(») - αr | α;r + 2eε .

Now each term in the right hand side tends to zero. Hence the
necessary part. Now suppose that (2.5) holds. Since {ar(z)} is bounded
it is always possible to find a converging subsequence. If (2.4) is not
true then we can extract two subsequences converging to two different
sequences {α?} and {α?*} and the corresponding subsequences of {A(z, x)}
would converge to A*(x) = Σα?αΓ and A**(#) = ^a^xr which con-
tradicts the assumption that (2.5) holds. Hence {α*} = {α**} = {αr}.
This proves the sufficiency part.

3* The r th longest cycle* The mth raw moment of the rth
longest cycle is

3.1 Ez{LrΓ = ^tζ- [j+1 Σ Pkvr-k(t~ ~ t) dt .
i=i Pr Jtj k=i
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Hence

Σ Prx
r-ιEz{Lr}

m = λ Σ a'-1 Σ i m Σ 3>*Vr-»(ί- - ί)dί,
r = l r = l j = l J ί j & = 1

•3.2 = λ Σ i" 1 Σ * H Σ vr-*(ί- - t)pk \dt,
3 = 1 Jtj r = l U = l J

oo f*i + l

= λ Σ i r o elc*"t)-13(t--t>{^(a;)/a!}(iί .
3 = 1 Jίj

Let F = F(X) denotes the left hand side of (3.2) and F' =

F' = s^xitj™ \tJ+1elsl~aiφix)-iW--t){φ(x)/%}dt ,
3.3 3 " J t i

where L' is the same as Lr with λ replaced by λs1~α.
Let us now consider some analytical preliminaries regarding t3-(z). With
z = er\ 0 < s < oo. We have

3.4 ^(e-) - tό{e-s) - Σ {e"k'/ka} .
k = j

In the interval {y: ks < y < (k + l)s}, we have

e-ks e - y e-(k + ί),

Aαsα τ/α (k + l ) α s α '

and

5 ώy > J L f3.5
y (k +1

Summing with respect to k, we have,

3.6 s1-" Σ (e~ks/ka) > \~ (e-ηya)dy .
k = j Jjs

Let

3.7 E(Θ) = \ (e~y/ya)dy .
Jo

Then from (3.6) E(js) < s1-* ΣΓ=3 e~ks/ka. Also

Γ (e~y/ya)dy > s1^ Σ. {β~fes/̂ α} •

Combining the two

3.8 EΌ's) < sι~a Σ {e-*β/*β} <



f , + 1 ) d?λίφ{x)~l]E{θ)~θ

3.11 F ' = λ Σ i w {̂ (̂ M-̂  dθ .
jΛΓyt 9
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Now consider the equation

3.9 sι-« Σ {e~ks/ka} - E(X) .

If Xj(s) is the root of the equation (3.9), we have

Ί ( i ) (j — 1)8 < Xj(s) < js
3.10 and

(ii) Xj(s) is unique .

In (3.3) put E{θ) = 81~«{U - t) so that

s 1 - dt = {e-
θ/θa}dθ .

Hence

Let

where

3.12 d^(^) =

But

3.13 (j - 1)8 < X,{s) < js and i s < Xj+1(s) < (j + l)s .

This implies that

Thus

Now

Consider

3.15 Γ θmdμ(θ) - Σ

We have
j oo

3.16 Σ X?($)μj ^ \ θmdμ{θ) ̂  Σ

i.e.,

Ii^I-^I* (say) ,
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where

ii = Σ x?(s)μh J2 = Σ xτ+i(8)μj

and

J = [° θmdμ(θ) .

/i and L are the Darboux sums for the Stieltjes integral based on the
above meshes. Also X^s) —»0 as s —» 0+. Hence

i, S
3.17 J°

Jo r =

Now

^ "V Ό TP (T f\™ Λ o^+i—a V ήm \
2^frϊi,z\Ljr) — AiS 2 J ^ \
r=l i=l Jί

f ί 7+ 1

\

3.18 " = ι ' ^ y

Hence using the lemma

3.19 smPrEz(L'r)
m ~ λ ( Γ Σ Vr-iΓ^ί^lPtle- ^ * - " ^ , s -+ 0+ .

Since s ~ (1 — 2),

( Σ
Jo Lfc=i

Taking λ = 1, α = 1, p1 = 1, p2 = p3 = 0 , we now have

3.20 :

Jo

This is in agreement with Shepp and Lloyd.

4. The rth shortest cycle* Let Sr be the length of the rth

shortest cycle. Then

Σ Pkvr-

t k

Let

F, = F^X) = Σ Pχ-ιE
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Then
co co ΓtjΛ_ι r

F1 = x Σ x*-1 Σ 3m\ Σ PkVr-k{t)dt,
r = l j = ι Jtj k=l

CO Γt

= ^ Σ i m

3=1 J<

4.2 T~L J~L 3

Also

where S; is the same as S r with λ replaced by λs1™*. Put (ί«β - ί)^1-" =
E(θ) in ί7/ .

4.3 Fl

Let

Xj(s)

where

4.4

Hence
4.5 8-F/ = λ Σ (Js)m {φ{)l}

3 = 1 JXjM

Since 0" - l)β < XM < js < Xί+ι(s) < (j + l)s,

4.6 λ Σ X7(8)μj < F!sm < λ Σ X?»(*)t*j

Also
co oo f l » ιi(8) co

Σ X?(8)μ, < Σ Omdμ(θ) < Σ XMs
j = l J = l JXj(8) j = l

That is

4.7 Σ ̂ f ( s ) ^ < (" <? dM<?) < Σ
J = l JXiis) 3=1

Hence

4.8 β"jP/ -

Here also swΣ?=i PrEz(Sχ = sm+1-αΣΓ=iimfe-fi - *i) < °° {by (3.18)}.
Thus as in 3.17 by equating the coefficient of xr~ι on both sides we can
obtain lims_0 smPrEz{S'r)

m.

Now let us consider the particular case of the above when pι = 1,
Ί>2 = Pa = = 0 λ = 1 and a — 1. Here

7 , 2 -

4.9
0 + .
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Hence

So

4.10
(TO - 1)! S X ~ (m - 1)!

ί=ί (r - 1)! J U=l (r - 1)!

Equating coefficient of xr^ on both sides of 4.10

(m — 1) (m — 1)! J>=

(r - 1

1 g Γ { [ l o g ( 1 _ 2 ) - i ] 7 p I }

— 1 ) ! J>=»L

X \\ [ ^{On ± 1 dθ\ ,
U ( 1 ))! J-Γ

4.11 ~ Σ (1/Pθflog (1 - zj-' l^ίr - 1 - p, m), s — 0+ ,
p=Q

where

4.12 X(?f m) = g Γ (?J, , dθ

Jo (m — 1)! ql
which is in agreement with Shepp and Lloyd.
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NONTANGENTIAL HOMOTOPY EQUIVALENCES

VICTOR A. BELFI

The purpose of this paper is to apply surgery techniques
in a simple, geometric way to construct manifolds which are
nontangentially homotopy equivalent to certain π-manifolds.
Applying this construction to an iJ-manif old of the appropriate
type yields an infinite collection of mutually nonhomeomor-
phic iί-manifolds, all nontangentially homotopy equivalent
to the given one.

The theorem proved is the following: If N4k is a smooth,
closed, orientable ττ-manifold and Lm is a smooth, closed,
simply connected τr-manifold, there is a countable collection
of smooth, closed manifolds {Mi} satisfying (1) no Mi is a π
manifold, (2) each Mi is homotopy equivalent but not homeo-
morphic to N X L, (3) M% is not homeomorphic to M3- if i Φ j .

1* C o n s t r u c t i o n of t h e surgery problem* In [2] Milnor describes
a (2k — l)-connected, bounded π-manifold of dimension 4fc and Hirze-
bruch index 8 (k Ξ> 2). This manifold, which we denote by Y4k, is
obtained by plumbing together 8 copies of the tangent disk bundle of
S2k according to a certain scheme. This implies that Y has the
homotopy type of a bouquent of eight 2/c-spheres. The only other
property of Y which we shall need is that 5 7 i s a homotopy sphere.
Let r be the order of dY4k in the group of homotopy spheres bP4k

[3] and take W4k to be the r-fold connected sum along the boundary
of Y4k. By the choice of r, d W is diffeomorphic to S47'"1. Attaching
a 4/c-disk to W by a diffeomorphism along the boundary, we obtain a
closed, smooth manifold W, which is (2k — l)-connected and has index
ST. By the Hirzebruch index theorem W is not a ττ-manifold, but is
almost parallelizable.

Define /: Wik —+ D4k by the identity on the boundary, stretching
a collar of dW over D4/c, and sending the remainder of W to a point.
This gives a degree 1 map /: (W, dW) -»(D4k, dD4k) which is tangential
since both W and D4k are ττ-manifolds. / is already a homotopy
equivalence on the boundary, so we have a surgery problem in the
bounded case. The connectedness of W implies that / is already an
isomorphism in homology below the middle dimension. However the

ZΘ ΘZ

kernel of /* in dimension 2k is ~̂g and the index of the kernel is

the index of W which is 8r. Thus it is not possible to complete the
surgery.

But if Lm is a closed, smooth, simply connected π-manifold, the
surgery problem / x 1L: W x L —> D4k x L does have a solution. To
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see this note first that if m is odd, the problem is odd dimensional
so there are no obstructions to modifying W x L and / x 1L by sur-
gery to obtain a homotopy equivalence. If m = 0 (mod 4), the problem
has an index obstruction given by the product of the index obstruc-
tion of the map / and the index of the manifold L, i.e., /(/ x 1L) —
I(f)Ί(L). This product vanishes since L is a 7r-manifold. The
formula follows from the multiplicativity of the index of a manifold.
If m = 2 (mod 4) the problem has a Kervaire invariant obstruction
given by the mod 2 product of the Kervaire invariant obstruction of
/and the Euler characteristic of L, the formula arising from Sullivan's
characterization of the Kervaire invariant obstruction [8]. Since L
is a r-manifold, χ(L) = 0; so K(f x 1L) vanishes as well.

Now we change the surgery problem discussed above into a pro-
blem for closed manifolds. Let N be a smooth, closed, ττ-manifold of
dimension 4k. Take a small disk Dik in N and form the connected
sum N$W using this disk and the disk attached to W to make W.
Define lN#f: N#W-* N by the identity on JV-int Dik and / on W.
Although (lN$f) x 1L is not tangential, it can be surgered to a homo-
topy equivalence. This is because it is already a homotopy equiva-
lence except on W x L, where it is tangential; so it suffices to do
surgery on W x L leaving the boundary fixed to make ΛΓ# W x L
homotopy equivalent to N x L. We have already seen that this can
be done. Summing up the discussion we have

PROPOSITION 1. Suppose N*k is a closed, smooth, orientable π-
manifold and Lm is a closed, smooth, simply connected π-manifold.
Then there is a manifold MAk+m, homotopy equivalent to N x L obtained
by surgery on (lN$f) x 1/..

Notice t h a t if W? = WA§ ••• #TF 4 \ and we define U W7, — Z ) 4 *

i
the same way as we defined /, the above considerations also apply to
Wi. The only difference is that Wi has index Sri. We shall denote
the solution to the surgery problem using Wi by Mtk+m.

We also remark here that M, as a solution to a given surgery
problem, is unique up to PL homeomorphism, but not not always up
to diffeomorphism. This follows from Novikov's results [5]. Since
we shall be primarily concerned with the topological type of such
solutions, we shall ignore this ambiguity.

2* Properties of the surgery solution*

PROPOSITION 2. The manifold M4k+m obtained by surgery on
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x lL:N#Wx L-*NxL

is not a π-manifold.

Proof. After surgery we have a homotopy equivalence g:M—>
N x L and a cobordism Z between M and iV# W x L together with a
map F: Z—> N x L whose restriction is g on M and (lN$f) x 1L on
-ΛΓ#Tί̂  x L. If * is a point of L, (:U#/) x 1Λ is transverse regular
with respect to N x *. Change 0 by a small homotopy to make it
transverse regular with respect to N x *. Finally leaving (lN$f) x
1L and g fixed, make JP transverse regular with respect to N x * to
obtain the oriented cobordism F~\N x *) between iVftΐί̂  and

S = g~\N x *) .

Because N$W and S are oriented cobordant, I(S) = I{N$W) Φ 0. We
have the usual equivalence of tangent and normal bundles

τ(M)\S=τ(S)®v(Sc:M) .

Since / is transverse regular with respect to N x * and

v(N x * c N x L)

is trivial, v(ScΛf) is trivial. Thus if v{M)\S were stably trivial,
τ(S) would be stably trivial, contradicting I(S)Φθ. Therefore τ(M) \ S
is not stably trivial and consequently τ(M) is not stably trivial.

PROPOSITION 3. M is not homeomorphic to N x L.

Proof. Suppose h:M—>NxL is a homeomorphism. Denote by
Pj(M) the j t h Pontrjagin class of M (i.e., of τ(M)) and by p3{M; Q)
the i α rational Pontrjagin class of Af. In the proof of Proposition 2 it
was shown that M4k+m contains a closed submanifold S of dimension 4k
and index 8r. If i: S—> M is inclusion, the Hirzebruch index theorem
implies

Br = <Lk(Pl(S), ••

Now we may replace pό{M) by ^(M; Q) since any torsion evaluated
on the orientation class is zero. By the topological in variance of ra-
tional Pontrjagin classes, p3{M; Q) = h*(Pj(N x L); Q); but

Pj(N X L;Q) = 0

for every j because N x L is a 7Γ-manifold. Therefore p3{M; Q) = 0
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for every j , a contradiction.

Observe that Propositions 2 and 3 are likewise valid for the mani-
folds M%, each M% containing a closed submanifold S{ of dimension 4k
and index 8ri.

Now we are in a position to prove the central theorem of this
paper.

THEOREM 1. Suppose N is a smooth, closed, orientable π-manifold
of dimension 4k(k ̂ > 2) and L is a smooth, closed simply connected π-
manifolά. Then there is a countable sequence of smooth, closed mani-
folds {M,t} having the following properties: (I) no M{ is a π-manifold,
(2) each Mi is homotopy equivalent but not homeomorphic to N x L,
(3) Mi is not homeomorphic to M3 if i φ j'.

Proof. The M/s are the surgery solutions already described.
Propositions 2 and 3 establish (1) and (2). It remains to prove (3).
We do this by expanding the idea of the proof of Proposition 3.

Suppose there exists a homeomorphism h: Mo —-> M% and i Φ j , say
ί > jo (For the rest of this paragraph t = i, j.) Let gt: Mt —> N x L
be a homotopy equivalence which is transverse regular with respect
to N x * so that gτ\N x *) = St where I(St) = &rt. (We may assume
that gt is still the identity on (N — int Dik) x L since no surgery is
done there.) Then by the index theorem,

<Lk{Vi{Mt\ Q), •, pk(Mt; Q)), [SJ> - I(St) .

To simplify notation we omit explicit reference to the inclusion maps
StaMt and abbreviate L^p^X; Q), . . , pk(X; Q)) by Lk(X). Let gt

be a homotopy inverse for gt. The idea is then to show that gjigj
does not behave properly on rational homology. We shall be refer-
ring to the following diagram for the rest of the proof:

N-xL

By the transverse regularity of gt, it follows that

9t.[St] = [N x *] = [N] (g) 1 e Hik{N x i Q ) ,

so g,MSt] = [SA- Thus
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<Lt(Jlfί), g^dStfr = <Lk(Mt), ̂ σ ^ , .[Si]>

by the topological invariance of rational Pontrjagin classes.
Define a bundle ζ over JVx L by gf(τ(Mi)). This means that
i) = gϊ(ξ) Since ^ is the identity on N — int Dik x L and

\N-int D4jc x Z,

is t r i v i a l , i t fol lows t h a t ξ\N — i n t D i k x L is t r i v i a l . N o w if

i: N - int D'k x L — N x L

is inclusion, then if x 0 1/ e /^(iV x L; Q) and dim a; < 4&, x§§y e
image i*, say a; (g) y = i^z. Thus <Lft(£), a; (g) τ/> = <L/c(i>;ίf), z} = 0 since
i*ί is trivial. This shows that if γ4/c e H4k(N x L; Q), then <I/A(ί), 74A>

is given by the product of the coefficient of [N] (g) 1 in Ύ4k and

Using the preceding observation, we can compute the coefficient
of [N] (g) 1 in (gthg,)*[N] (g) 1 as follows.

<L t(ς), (flr^,

But

= <Lt(ί), [N]

Hence this coefficient is j/i which is not an integer since i > j . This
contradicts the fact that any induced map on rational homology must
send integral classes to integral classes.

3. An extension of the results. It has been pointed out to me
that the results of this paper can be extended in the following way:

If Mn is a simply connected smooth manifold where n is odd and
H4k(M; Q) Φ 0 or some 4k < n, the Pontrjagin character shows that

K0(M) is infinite. (See, for example, Hsίang [2].) Thus the kernel

of K0{M) —> J(M) is infinite. It can be shown that the result of
doing surgery on the elements of the kernel is a collection of smooth
manifolds homotopy equivalent to M containing an infinite subset {MJ
of mutually non-homeomorphic manifolds. The condition on the ra-
tional cohomology of M is also necessary for the manifolds {M%} exist.

Although the theorem described above considerably extends the
class of manifolds to which the principal result applies, its proof requires
methods of a deeper sort and the geometric simplicity is lost.
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4* Applications* By an H-manifold we mean a closed, orienta-
ble topological manifold having the structure of an iϊ-space.

THEOREM 2. Suppose N4k and Lm are smooth H-manifolds, N and
L are π-manifolds, and L is simply connected. Then there exists a
sequence of mutually nonhomeomorphic smooth H-manifolds {ΛfJ satisfy-
ing (1) no M{ is a π-maίfold, (2) each Mi is homotopy equivalent, but
not homeomorphic to N x L.

Proof. This is immediate from Theorem 1 since the product of
2 iί-manifolds is an iϊ-manifold and any manifold homotopy equiva-
lent to an ϋ-manifold is itself an iΐ-manifold.

Examples of manifolds nontangentially homotopy equivalent to
Lie groups were known before surgery techniques were introduced;
however all these were nonsimply connected. An example due to
Milnor of a manifold homotopy equivalent to S1 x S3 x S7 with a
nonzero Pontrjagin class is quoted by Browder and Spanier [1].

The recent results of a A. Zabrodsky [9] and J. Stasheff [7] have
produced new homotopy types of iί-manifolds (other than compact Lie
groups) to which Theorem 2 applies. However if we restrict ourselves
to simply connected, compact Lie groups, we can obtain a stronger
conclusion.

THEOREM 3. Suppose Nik and Lm are simply connected compact
Lie groups (k ̂  2). Then there is a countable sequence of mutually
nonhomeomorphic H-manifolds {Mi} satisfying (1) no Mi is a π-mani-
fold, (2) each Mi is homotopy equivalent to N x L but not homeomorphic
to any Lie group.

Proof. Since Lie groups are ττ-manifolds, Theorem 1 applies. H.
Scheerer has proved [6] that homotopy equivalent, compact, simply
connected Lie groups are isomorphic; so if Mi were homeomorphic to
any Lie group, it would be homeomorphic to N x L, contradicting
Theorem 1.

The author is indebted to John W. Morgan for his invaluable
suggestions in the course of this research and to the refree for pointing
out related results.
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COMPACT SEMIGROUPS WITH SQUARE ROOTS

JANE M. DAY

Suppose that S is a finite dimensional cancellative com-
mutative clan with E = {0,1} and that H is the group of
units of S. We show that if square roots exist in S/H, not
necessarily uniquely, then there is a closed positive cone T
in En for some n and a homomorphism /: (T u oo) x if-> £
which is onto and one-to-one on some neighborhood of the
identity. Tu oo denotes the one point compactification of T.

K. Keimel proved in (6), and Brown and Friedberg independently
in (1), that if S/H is uniquely divisible, then it is isomorphic to Γ u °°
for some closed positive cone T. Brown and Friedberg went on to
show that if S is uniquely divisible, then S is isomorphic to the Rees
quotient ((ΓU °°) x -ff)/(°° x H). What we do here is to weaken
their hypothesis to assume just square roots in S/H and conclude that
S is isomorphic to some quotient of such (T U c o ) x H, which will be
a Rees quotient if square roots are unique in (S/H)\0, but in general
need not be Rees.1 / ( ( T u ° ° ) x 1) is a subclan of S and a local cross
section at 1 for the orbits of the group action H x S—+S (which equal
3ϊ? classes here), but an example shows that it need not be a full
cross section. Also, square roots exist (uniquely) in S if and only if
they exist (uniquely) in S/H and H.

The proof consists essentially of showing that the ingenious con-
structions of (1) can still be done under the weaker hypothesis, in a
sufficiently small neighborhood of H.

For basic information about semigroups, see (5), (8) or (9). The
real intervals (0, 1] and [0, 1] are semigroups under usual real multi-
plication; as in (5), a one parameter semigroup is a homomorph of
(0, 1], and we also define here a closed one parameter semigroup to
be a nonconstant homomorph of [0, 1].

The Lemmas (I)-(III) are variations on standard themes so we omit
proofs. (See (1), (3), (4), B-3 of (5), (6) and (7).) Throughout this paper
let S be a clan with exactly two idempotents, a zero and an identity
denoted by 0 and 1 respectively.

( I ) If R is a one parameter semigroup in S which is not con-
tained in H and is not equal to 0, then R U 0 is a closed one parameter
semigroup and an arc with endpoints 0 and 1. Let φ: (0, 1]—+R be
the homomorphism that defines R; if x = φ(t) e R and k ^ 0, we write

1 Keimel has concurrently proved a further generalization, by a different method,
assuming instead of cancellation that x X H -» xH is one-to-one for all x near H.
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xk for φ(tk), and if x Φ 0, 1, each y e R\0 equals xk for unique k.
(II) If H is normal and every element of S/H has a square root

in S/H, then for each xeS there exists a closed one parameter semi-
group in S intersecting Hx.

(III) Let T be a commutative uniquely divisible clan with group
of units H(T) and E = {0,1}, and let V be a set containing a neigh-
borhood of 1 in T such that T\V is an ideal. If S is commutative
and ψr: V-+S is a continuous function such that ψ\V\H{T)) Π H= •
and ψ'{xy) = ψ'(%)ψ'(y) whenever x, y, xy e V, then ψ' can be extended
to a homomorphism ψ on all of T by defining ψ(0) = 0 and ψ(xn) =
ψ'(x)n for each x e V and positive integer n.

The definition of independent family which follows agrees with
the algebraic independence used in [1] when H is trivial and W = S\Q,
and that notion is due to Clark [2]. We include H in our definition
so that we do not have to handle the case of S with trivial H sepa-
rately first, and we define independence in neighborhoods of H rather
than in S in order to apply the concept effectively to a clan with
nonunique roots.

An independent family in S is a finite family {Ru , Rn) of
closed one parameter semigroups in S such that there exists a neigh-
borhood If of if with the property that for every partition of the
set {1, •••, n] into two nonnull disjoint sets A and B, this is true:

WczH.

We will also describe this situation by saying that {Ru , Rn) is
independent in W. We adopt the convention that if X = •> then
Piezi®*} = 1> for Xi's which are elements or subsets of S. S will be
called cancellative if x, y, z e S and xy = xz Φ 0 implies y —z.

We will make frequent use of the following facts. F( V) denotes
boundary of V. Any neighborhood of H in compact S contains a
neighborhood V of H such that S\V is an ideal (A-3.1, (5)), and if V
is a set such that S\V is an ideal, then

0eV,V=VH, F(V) - F(V)H,

JS\F* is an ideal if nonempty, and xy e V implies x,yeV. If J is a
closed ideal in compact S, shrinking J to a point gives a new compact
semi-group denoted S/J and called the Rees quotient of S by J, and
the natural map S—+S/J is a homomorphism.

Part (i) of the lemma below is analogous to 1.4 of (1); part (ii)
shows that the homomorphisms φ: S\0 —> En and β: S\0 —* H constructed
in (1) can still be constructed here on a sufficiently small neighborhood
of H. DimS means inductive dimension of S.
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LEMMA. Let S be a cancellatίve commutative clan with E={0, 1}
and let W be a closed neighborhood of 1 such that S\W is an ideal.

( i ) // {Rly •• , i ? J is an independent family in W, and if
xλx2 xji = x[x2> xr

nh
r e W, where xif x\ e R{ for each i and h, hr e H,

then Xi = x\ for each i and h — hr; consequently dim S ^ n.
(ii) Suppose dim S tS- N or dim S/H ^ N and that S/H has square

roots. Then there exists a maximal independent family {Ru •••, Rn}
of closed one parameter semigroups in S, and a closed neighborhood
U of H may be chosen so that S\ U is an ideal and if x e Uy x satisfies
this condition.

( I ) There exists a unique partit ion (A, B) of {1, •••,%} and

unique elements xt e Ri and he H such t h a t ie B whenever xt = 1

and x(PieA{Xi}) = (PieB{Xi})he W.

Proof. ( i ) Since Ri is a closed one parameter semigroup and
Xi Φ 0, we may factor x{ or x\ for each i and then commute and
cancel in the equality given to get 0 Φ PieA{r^ = {Pi^B^iYjh'h'1 for
some partition {A, B) of {1, •••, n). These points lie in W so by in-
dependence, Ti = 1, hence x{ = x , for each i, and thus h — K also.
There is a closed neighborhood V of 1 such that Vn c TF, and then
the multiplication function ( ^ Π V) x ••• x (i?% Π F)—>S is a homeo-
morphism so S contains an ^-cell.

(ii) If d i m S ^ N, then a maximal independent family exists by
(i). If dim S/H <S N instead, S/H is cancellative since S is, so (i) can
be applied to S/H to get a maximal independent family in S/H; a
closed one parameter semigroup in S projects to a closed one parameter
semigroup in S/H by (I), and it is easy to see that an independent
family in S projects to one in S/H, so S can have no larger independ-
ent family than S/H does.

Now choose a maximal independent family {Rlf •••, Rn} in S, and
choose W smaller if necessary so that the iϋ/s are actually independent
in a neighborhood of H containing W2.

To prove the uniqueness assertion of ( | ) , suppose that

x( p {Xi}) = ( p {Xi})h e W and x( P {&{}) = ( P {x[})hf e W ,
ieA i&B ieA' ieB'

as described in ( | ) . Then

( P {Xi})( P {x[})hf = ( P {a?3)( P {&,})& G W2

for each i, collect into one term the xk's with k = ΐ, on each side,
and suppose there exists i e A Π Br; j e A implies that the factor on
the left which is an element of Ro is not 1, and it has to equal one
of the factors on the right by (i); therefore j has to be in A' or in
B, because by independence an element of (Rj Π W2)\l cannot arise
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from multiples of elements of i?/s for i Φ j . But j e B implies j $ A
and j e A! implies j g. B', both contradictions. So A Π Br must be emp-
ty, similarly Af Π B is empty, hence (A, B) — (A\ Bf). Now apply (i).

Now let R be any closed one parameter semigroup in S.

{R,R19 -- ,Rn}

is not independent in any neighborhood of H (where R and R{ are
each counted if R — R{ for some i), so there is a particular partition
(AR, BR) of {1, , n} such that T = J2P Π Qiϊ contains points arbitra-
rily near H in S\jff, where P= PieΛ{Ri} and Q - PieBR{Ri}- T is
also a compact semigroup, so it contains a connected subsemigroup
from 1 to 0 (B-4.9, (5)). F(W) separates 0 and 1 in S, hence we
may select xReR such that xRPd QHΠ F(W) Φ •• Every x ;> xR

in R satisfies ( \ ) since the complement of an ideal in R is connected
and {x e R \ xP Π QH a S\ W} is an ideal of R. I t follows that every
x ^ xR in i2ίί satisfies ( | ) also.

If we can find a closed neighborhood U of H such that xR£ U
for each closed one parameter semigroup R in S, then every y e U
lies in some RH by (II), U may be chosen smaller so that S\U is an
ideal, and then every yeU satisfies ( | ) by the preceding remark.
Suppose no such U exists, so there is a net (xR) of the xR's clustering
at some element of H; since there exist only a finite number of par-
titions of {1, •••, n}, we may suppose that for one particular partition
(A, B) and for each xR in the net, (AB, BR) = {A, B). Then, since
F(W) = F{W)H, any cluster point of (aB) is an element of

but this set is empty (by definition if A = • , and if A Φ [J, by in-
dependence in W).

Euclidean w-space, denoted En, is a semigroup under vector ad-
dition with the origin as identity. If P* is the set of nonnegative
real numbers, N the set of negative real numbers, and juxtaposition
denotes scalar multiplication, a closed positive cone in En is defined
to be a closed subsemigroup T of En such that P * T c T and ΛΓΓΠ
T = (0, , 0). The one point compactification T U °° of a nontrivial
closed positive cone Γ is a continuum and becomes a clan with exactly
two idempotents, a zero and an identity, when addition is extended
by defining ^ + 0 0 = 0 0 + ^ = 0 0 for each z e T U °°, and such clans
are uniquely divisible (where the "wth root" of z would be (l/n)z since
the operation is addition).

THEOREM. Suppose that S is a commutative cancellative clan with
E = {0, 1}, such that every element of S/H has a square root in S/H.
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If dim S ^ N or dim S/H tί N, then there is a closed positive cone T
in En and an onto homomorphism f:(T[j °o) x H—+S which is a
homeomorphism of some neighborhood of the identity onto a neighbor-
hood of the identity in S. f maps (T \J °°) x I to a subclan Tr which
is a local cross section at 1 for the natural projection homomorphism
S^S/H.

Proof. Let W, U and {Rl9 , Rn] be as in (ii) of the Lemma
and let xt e R{ Π F(U) for each i. These x/s will remain fixed through-
out the proof, and since x{ φ 0, 1, by (I) each element of i?,\0 equals
x\ for a unique nonnegative real number t. This together with (ii)
of the Lemma implies that for each x e £7, there are a unique parti-
tion (A, B) of {1, •••,%}, unique real numbers tu « ,ί n, and unique
h e H s u c h t h a t x(PieA{x\i}) = (PieB{x\*})he W a n d ieB i f U = 0 ; fo l -
lowing the notation of (1), let εt = 1 if ieB and s* = — 1 if ieA,
let (̂cc) = (ε^, * ,εΛίw), and let /3($) = /&. Arguments just like those
in (1) show that φ x β is a homeomorphism, if one uses at judicious
spots the facts that W is compact and that S\W is an ideal. Since
S is commutative, φ and /3 are homomorphisms as far as they go.

Let T = P* Φ(U). We show next that Φ(U) contains a neigh-
borhood of the origin in T and that T is a closed positive cone in
En. First, T = P* φ(F(U)) because each closed one parameter semi-
group in S intersects F(U), so T is closed in En because in general
if A is closed in P* and S is compact in En and does not contain the
origin, then AB is closed. For this same reason, [1, oo)φ(F(U)) is
closed, hence its complement in T is a neighborhood of the origin in
T and also is a subset of φ{ U) because kφ(x) = Φ(xk) and x e U implies
xk e U, for k e [0, 1). Since Φ{U) contains a neighborhood of the origin
in T and φ preserves multiplication on U, T is a subsemigroup of En.
To see that NT Π ϊ7 is the origin it suffices to prove that (— l)φ( U) Π
Φ(U) is, so suppose x, xf e U and φ(x) = ( — l)^(a?f) = (ίi, , ίn) Then
for some h,h'eH,x(PieA{x*}) = (PiBB{x*})he W and x'(P ί e 5{^}) =
(Pie^{^})^' £ W- Substituting from the first equation into the second
and cancelling gives xfxh~ι = h\ hence a;, α' 6 H, hence (̂a?) is the
origin as required.

Now define ψ: φ(U)—>S by ψ(z) = (Φ x β)~\z, 1). ψ is a homeo-
morphism into and, if U is chosen small enough that φ is actually
defined on Z72, ψ preserves multiplication on Φ(U) also. T is uniquely
divisible so by (III), ψ may be extended to a homomorphism of T
into S. Now define /: (Γ U °°) x -ff-^S by /(«, A) = ^(«)Λ. / is a
homomorphism because α/r is and S is commutative, and it is a homeo-
morphism of φ(U) x H onto £7 because there it equals (φ x /3)"1. (We
cannot use (III) to define / directly as an extension of (φ x β)~\ be-
cause ίZ" need not be uniquely divisible.) Since the image of / is a
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subclan of S which contains a neighborhood of H and since S is
divisible, / is onto. Therefore TΉ = S so T'~+S/H is onto and the
rest is clear.

In a semigroup with zero, a nilpotent is a nonzero element some
finite power of which is zero.

COROLLARY. Let everything be as in the theorem.
( i ) If square roots are unique in (S/H)\0 (but there could be

nilpotents) then f is one-to-one on the complement of /-1(0), hence f
induces an isomorphism from the Rees quotient ((TΊJ °°) x H)/f~l(0)
onto S and also Tf is a full cross section for H x S —> So If square
roots are unique in all of S/H (so there are no nilpotents) then
/^(O) = co x H, so S is isomorphic to ((Γu <~) x H)/(o° x H) (Theo-
rem 2.2 of (1)).

(ii) Square roots exist (uniquely) in S if and only if they exist
(uniquely) in H and S/H.

Proof. Let p: S — S/H be the natural map. If f(t, h) = f(s, g)Φθ,
then fit, V)h = f(s, l)g hence pf(t, 1) = pf(s, 1). Uniqueness of roots in
(S/H)\0 implies pf{kt, 1) = pf(ks, 1) for all k ^ 1 at least, and pf is
one-to-one near the identity by the theorem, hence kt = fcs must be
true for k sufficiently small. Therefore t — s and cancelling f(t, 1)
now gives h — g also. The rest is clear.

EXAMPLE 1. This was also discovered by D. Brown and M. Fried-
berg (and communicated orally to this author). It is a cancellative
commutative clan S with E = {0, 1} and trivial group of units, which
has no nilpotents and is divisible but not uniquely divisible; in fact,
any two distinct one parameter semigroups in S are independent near
1 and have no nondegenerate arc in common, but can intersect infi-
nitely. Thus S is not a Rees quotient of any compactified cone. The
author is indebted to Kermit Sigmon for the elegance of this descrip-
tion of the example.

Let T be the closed first quadrant of E2, let D be the closed
unit disc in the complex plane with usual complex multiplication, and
define g: T \J <*> -> D by g(x, y) = e-

{x+v)+[χ-y)r:i and g(oo) = 0. g is a

homomorphism by (III), so S — g(T \J c>o) is a clan, it has E = {0, 1},
is topologically a 2-cell, and is an egg-shaped subset of D with large
end at 1 and small end at —1/e. S is commutative, cancellative and
free of nilpotents since D is, has roots of all orders since T U c c does,
and square roots are not unique since 0(1, 0) = 0(0, 1) but 0(1/2, 0) Φ
0(0, 1/2).

S can also be visualized without the aid of D: there is a con-
gruence — on T U °° such that S is isomorphic to (Γu °°)/~: it is
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the smallest congruence which identifies (0, 1) and (1, 0), and dividing
by it has the effect geometrically of rolling up Γ u ° ° into a cone
with pointed end at oo.

EXAMPLE 2. This will show that the subclan T of the theorem
need not be a full cross section for H orbits, i.e., ^f classes. Let
ΓU TO be as in the previous example, let G be the circle group with
usual complex number notation, and let Q be the product semigroup
( Γ U ^ ) x G . We will twist the 3ϊf class of (0,1, 1) and then identity
it with the Sίf class of (1, 0, 1). Formally, let ~ be the smallest
closed congruence on Q which identifies (0,1,1) and (1,0, —1), let
S = Q/~, and let f:Q—>S be the natural projection. Thus if A is
the diagonal of Q x Q, p = [(0, 1, 1), (1, 0, -1)], and q = [(1, 0, -1),
(0, 1, 1)], then ~ is the smallest closed symmetric subsemigroup of
Q x Q containing p U A, and pq e A so this equals A(Γ(p) (J Γ(q) U A).
Clearly [(0, 1, 1), (1, 0, 1)] is not in the semigroup generated by p (J
q U A, and Γ(p) and Γ(q) have only one limit point, oo, so this point
is not in ~, i.e., /(0, 1, 1) Φ f(l, 0, 1). On the other hand, the £^
classes in S of these points are equal, because H = /(0 x 0 x G) is
the group of units of S and /(0, 1, 1) - /(I, 0, l)/(0, 0, -1).

/ is a homeomorphism on [0,1) x [0,1) x G, which is a neighbor-
hood of the identity, and we will show below that S is cancellative,
so this is exactly the situation of the theorem. However, if T' denotes
/((ΓUco)x 1), T-+S/H is not one-to-one.

Interestingly, there actually is a full cross section semigroup for
the H orbits of this clan S; the problem in the above lies in the de-
finition of /—that is, in the choice of the independent closed one
parameter semigroups in S:

Rt = /([0, oo] x 0 x 1) and R2 = /(0 x [0, oo] x 1)

are independent but do not themselves intersect in some of the H
orbits which they both go through. Rechoosing / so that R2 actually
does intersect Rt at the levels where Q-^S collapses two H orbits
to one yields a subclan T" of S which is isomorphic to S/H. In detail,
define g: Q->Q by g(x, y, eίθ) - (x, y, e^e+κv))t let f'=fg, and let T" -
/ '((Γu oo) x l). To see that T"->S/H is one-to-one, suppose

fg(χ, y, i) = fg{*', v\ i)Λ(θ, o, ei0) Φ O .

We will prove eiθ — 1. In g(x, y, 1) = g(xf, y\ eiθ) then we are done
because g is one-to-one, so suppose g(x, y, 1) Φ g(x', y', eiθ). f identifies
these points and not to 0 so for some n, ((g(x, y, 1), g{xf, y\ eiθ)) e Apn.
An arbitrary point of Apn is of the form ((s, n+t, eiφ), (n + s, ί, eί{φ+n7τ]))
for some s, t and φ, so we conclude x' = x + n, y = y' + n, eiry = eiφ,
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and ei{θ+7zy/) = e

i{φ+nr:). These imply eί{θ+7:r) = eiπy\ so eiθ = 1 as asserted.

From this it follows at once that T" —> S/H is one-to-one and in fact
that S is isomorphic to (T" x H)/(oo x H).

Now it is easy to show S cancellative, for it suffices to prove
that T" is, so suppose fg(x, y, l)fg(s, t, 1) = fg(x', yf, ΐ)fg(s, t, 1). It
follows that x + s + n = x' + s and y + t = y' + t + n for some n,
hence x + n = xf and y = y' + n. fg(x, y, 1) = fg{xf, yr, 1) now is clear.

It seems at least possible that the technique used here for re-
choosing / might work in general, so that there is always a full cross
section semigroup for S —> S/H when S is a homomorph of the direct
product of H and a closed positive cone.

It also seems reasonable to conjecture that the theorem is still
true with only H normal and S/H commutative, instead of S com-
mutative. Under these weaker conditions φ and β still exist, but β
need not be a homomorphism unless the jβ/s commute with one another
and with H; using Theorem VI of (5), it is possible to choose a maxi-
mal independent set in the centralizer of H, but the problem of choos-
ing the R/s to commute with one another also remains unsolved.
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QUASI REGULAR GROUPS OF FINITE
COMMUTATIVE NILPOTENT ALGEBRAS

N. H. EGGERT

Let J be a finite commutative nilpotent algebra over a
field F of characteristic p. J forms an abelian group under
the "circle" operation, defined by a o b = a + b + abβ This
group is called the quasi regular group of J.

Our main purpose is to investigate the relationship be-
tween the structure of J as an algebra, and the structure of
its quasi regular group.

In particular, the structure of the quasi regular group is described
in terms of certain subalgebras of J. These subalgebras are, for
fixed j , the pj powers of elements in J". They are denoted by JU).

It is conjectured that the dimension of J{j) is greater than or
equal to p times the dimension of J ( i + 1 ). If this is true, then
Theorems 1.1 and 2.1 completely describe the possibilities for the
quasi regular group of J. Paragraph 2 considers some special cases
of the conjecture.

1* The quasi regular group of J* Let J be a finite commutative
nilpotent algebra over a field F with pu elements. Denote by J ( i )

the set of pjth powers of elements in J, j = 0, 1, . The Jij) form
a descending chain of subalgebras of J". If t is the minimum exponent
such that x** = 0 for all xeJ then J{t~ι) Φ (0) and J{t) = (0). The
constant t will be called the height of J. Let the dimension of JU)

be Tj and set sh — τh^t + rh+1 — 2rh, h = 1, , t.

We denote by G(p, u; sl9 , st) the group which is the direct
sum of ush, h = 1, •••, t, copies of the cyclic group of order ph.

THEOREM 1.1. The quasi regular group of J is isomorphie to
G{p, u;su •••, st).

Proof. Since the pth power oί xeJ with respect to the operation
"o" is x9, the number of cyclic summands of order greater than ph

is the dimension of the quotient group J{k)/J{h+1) over the integers
modulo p, that is u(rh — rh+1) [1, page 27]. Hence the number of
cyclic summands of order ph in the quasi regular group J is
u(rh^ + rh+1 - 2rh), h = 1, , t.

2. The possibilities for the quasi regular group of J* Given
certain p-groups, finite commutative nilpotent algebras can be con-
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structed with these groups as their quasi regular groups.

THEOREM 2.1. Let ai be arbitrary nonnegative integers for
i = 1, , t, at Φ 0. Then there exists a finite commutative nilpotent
algebra J over a field F of order pw where:

( i ) rt = 0 and r^x = p^ + au i = 1, , t.
(ii) the quasi regular group of J is G(p, u; slf •• ,s ί) where

sh = rΛ_x + rh+1 - 2rh.

Proof. Let Jό be the Jacobson radical of F[X]/(Xn), where
n = p3'-1 + 1. If x = X + (Xn) then a basis for J3 over F is
{x, x2, , x"-1}. Thus the dimension of Jf is p3'~ι~ι for ΐ < j . Let
J be the direct sum of a$ copies of Jά for j» — 1, , t. Then r{ = dim
jw = ΣJ.=ί+1 ajP3'-*"1, i <tj rt = dim J(<) = 0. A simple calculation gives
r,-! — 2>rf = a{. By using Theorem 1.1, the proof is complete.

The author conjectures that the converse of the above theorem
is also true, that is:

(C) If J" is a finite commutative nilpotent algebra over F then
dim J{i~ι) - p dim J(i) = n_ t - pr{ ^ 0.

This is immediate for algebras of height one, height two and
dim J(1) = 1, and height two and p = 2. The following theorem
establishes (C) for algebras of height two and dim Ja) — 2.

THEOREM 2.2. Let J be a commutative nilpotent algebra over a
perfect field F of characteristic p. Let x, y be elements of J and
suppose xp and yp are linearly independent over F. Then the dimen-
sion of J is greater than or equal to 2p.

Proof. Suppose the theorem is false. That is, assume there is
a finite commutative nilpotent algebra J over F and:

( i ) x, y eJ and xp, yp are independent over F,
(ii) d i m J < 2 p .

We assume J is an algebra of least dimension over F which satisfies
(i) and (ii). It then follows that:

(iii) J is generated by x and y, and
(iv) If / is an ideal of J and an algebra over F then I = (0) or

for some a,beF, 0 Φ axp + byp e I.
If (iv) were false then J/I would satisfy (i) and (ii) and the dimension
of J/I would be less than the dimension of J.

We may assume xp is in the annihilator of J. This follows since,
by (iv), there are elements α, b in F where axp + byp Φ 0 is in the
annilhilator. By replacing x by xf = a'x + b'y, where a'p = a and
brp = 6, conditions (i) through (iv) hold and xfp is in the annihilator.

Let & be the cartesian product of the nonnegative integers with
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themselves less (0, 0). Let the total ordering -< be defined in <& by:
( s , t) < (i, j ) i f s + t < i + j o ΐ s + t ^ i + j a n d s < i .

LEMMA. // xψ Φ 0 then i + j ^ p.

Proof. Let (n, m(0)) be the maximum element in <£*, with
respect to •<, such that xnym{0) Φ 0. Suppose that n + m(0) > p.

Since xp is in the annihilator of J, n <L p and m(0) > 0, thus if
n > 0 then J ^ = {(ί, fte&Ί i ^ n, and j" g m(0)} has more than 2p
elements. The monomials xιy\ {%, j) e j ^ , are dependent, thus a
nontrivial relation.

Σai3xψ = z = 0, (i, j) e

exists. Let (s, t) be minimum such that ast Φ 0. Consider

For (s, t) < (ί, j) it follows that (n, m(0)) < (i + % - s, i + m(0) - ί)
Έy the definition of (n, m(0)) we obtain 0 = astx

nym{0). This is a
contradiction; thus w = 0.

Now define m(i) to be the maximum integer such that xιym{i) Φ 0,
i = 0, , p. Since x, , xp, y, , yp are dependent, let

(1) z = Σ α^* + Σ 6*2/* - 0 ,

where ah Φ 0 and 6ί ^ 0. There is at least one nonzero a3- since
y, •• ,yp are independent. Likewise at least one b{ is nonzero. Thus
considering xp~hz and ym{0)-ιz we find xp~hyι Φ 0 and χhym(Q)-1 φ 0.

We will now show that, for k = 0, , h, if i ^ A; and a?V" ^ 0
then (i, j) ^ (&, m(k)). Suppose this has been shown for 0, , k — 1.
Since (i + 1, m(ί + 1)) -< (i, m(i)) for i < k, we see that m(0) ^ m(i) + 2i.
From xhym{0)-1 Φ 0 and h < k — 1 we have

(Λ, m(0) - Z) -< (k - 1, m(A - 1)) .

Therefore h + m(0) - I < k ~ 1 + m(7b - 1) and I - h^k. Now let
(w, v) be maximum such that u ^ k and $M?/V Φ 0. Since xp~hyι Φ 0
and p — h^l — h^ k it follows that ^ + ^ ^ p — h + l^ p + k. If
v = 0 then u ~ p and & = 0. Since for k ~ 0 our result is established,
we consider v > 0. If u > k then the set S^ = {(i, i) e ^ : k ^ i ^ u,
0 ^ i ^ v) contains (u — k + ΐ) (v + 1) ^ 2(u — k + v) ^ 2p elements.
Thus there is a nontrivial relation among the xιyύ, (i, j) e sf. As
before, let (s, t) be minimum such that the coefficient, ast1 of xryt is
nonzero. On multiplying the relation by xu~syv~t we obtain 0 = astx

uyv

which is contradictory. Therefore u — k and v — m(k). By the
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definition of (u, v), i f i ^ u — k and xιy5 Φ 0 then (i, j) < (&, m(k)).
We now have the inequality, m(0) ̂  2A: + m(/c), for fc = 0, •••,/&.

Since a;V ( 0 ) -' ^ 0, m(fe) ̂  m(0) - L T h a t is £ ̂  2/ι.
Let bh + c = p where 0 ̂  c < h. Returning to equation (1) we

obtain:

0 Φ a{xp = x^ΣidiX*)* = xc{~- Σfi^f = *τVzΓ, where Γ is a poly-
nominal in y.

Hence α V ' ^ 0. This implies ra(0) - 2c ̂  m(c) ^ 6Z ̂  26ft. There-
fore m(0) ^ 2̂ 9 and ?/, **, y2p are independent. This is a contradiction
and the lemma is established.

Next we show that if m + n = p and n Φ p then xmyn — cnx
p

where cn e F. Suppose this holds for the powers of y being
0, •••,% — 1. If xmyn = 0 then the result is established. Thus
suppose $m^% ^ 0. There are (m + 1) (n + 1) ̂  2p monomials of the
form xp or xιy\ i ^ m, j ^ n. Thus there is a nontrivial relation

X 1 /γ iγΐnii _L_ /-fΛ»P f\

Let (s, ί) be minimum such that the coefficient of xsyι is nonzero.
By multiplying the relation by xm~syn~t we obtain:

Σ

Since xp is in the annihilator of J, ̂ +™-y- ί is α;p or 0. Therefore
xmyn = cnx

p.
Similarly we obtain: if m + n = p and m Φ p, then xmyn — bmyp*

Since xp and /̂p are independent, if m + n = p, m Φ 0, p then .τw?/% — 0.
From equation (1) we may obtain, as before, xv~hyι Φ 0 and

xhyp~l Φ 0 where 0 < h, I ̂  p. Assuming, without loss of generality,
h ^ I we have h + (p — I) ̂  P and by the lemma we have equality,
that is, h = I. Since χhyp-h Φ 0 we have, by the above paragraph,.
h = I = p. Equation (1) becomes 0 = apx

p + δ ^ for nonzero ap and
6P, a contradiction. This completes the proof of Theorem 2.2.
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SOME NUMBER THEORETIC RESULTS

{In memory of our good friend Leo Moser)

P. ERDOS AND E. G. STRAUS

The paper first establishes the order of magnitude of
maximal sets, S, of residues (mod p) so that the sums of
different numbers of elements are distinct.

In the second part irrationalities of Lambert Series of
the form ]£/(w)Mi •••<&» are obtained where f(n) — d(ri), σ(n)
or φ(ri) and the α* are integers, aι ^ 2, which satisfy suitable
growth conditions.

This note consists of two rather separate topics. In §1 we
generalize a topic from combinatorial number theory to get an order
of magnitude for the number of elements in a maximal set of residues
(mod p) such that sums of different numbers of elements from this
set are distinct. We show that the correct order is cp1'3 although we
are unable to establish the correct value for the constant c.

Section 2 consists of irrationality results on series of the form
Σf(n)jaιa2 a% where f(n) is one of the number theoretic functions
d(n), σ(n) or φ(n) and an are integers Ξ> 2. For f(n) — d(n) it suffices
that the an are monotonic while for σ(n) and φ(n) we needed additional
conditions on their rates of growth.

1* Maximal sets in a cyclic group of prime order for which
subsets of different orders have different sums* In an earlier paper
[4] one of us has given a partial answer to the question:

What is the maximal number n = f(x) of integers alf , an so
that 0 < ax < α2 < < an ^ x and so that

«»!+•••+ &is = α^ + + ajt for some l^it < < is ^ n

l ^ i i < ••• <jt ^n

implies s = tΊ it is conjectured that the maximal set is obtained
(loosely speaking) by taking the top 2τ/ x integers of the interval (1, x).
We were indeed able to prove that f(x) < cVx for suitable c (for
example 4/i/ 3) by using the fact that a set of n positive integers
has a minimal set of distinct sums of ί-tuples (1 <: t ^ n) if it is in
arithmetic progression.

It is natural to pose the analogous question for elements of cyclic
groups of prime order, as was done at the Number Theory Symposium
in Stony Brook [ 5 ]. Here again we may conjecture that a maximal
set of residues (mod p) is attained by taking a set of consecutive
residues, this time not at the upper end but near p21\
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Conjecture UU Let f{p) be the maximal cardinality of a set
of residues mod p so that sums of different numbers of residues in
this set are different, then f(p) = (Ap)113 + o(pU3) where the maximum
is attained, for example, by taking consecutive residues in an interval
of length (4p)1/3 + o(pφ) containing the residue [(p/2)113].

It is easy to see that we can indeed get a set of about (4p)1/a

residues by taking the residues in the interval ([(p/2)m — (4p)1/3],
[(p/2)2/3]). Here sums of distinct numbers of elements are distinct
integers, and since all sums are < p it follows that they are distinct
residues.

The observation which let to the upper bound in [ 4 ] is much les&
obvious (mod p):

Conjecture 1*2, A set A = {αL, α2, •••, ak) of residues (mod p)
has a minimal number of distinct sums of subsets of t elements if A
is in arithmetic progression.

Conjecture 1.2 would give us a simple upper bound for f(p):

COROLLARY 1.3. If Conjecture 1.2 holds then

f(p) < (6p)1/3 + o(p^) .

Proof. The sums of t elements from the set of residues

{1,2, ...,k-l,k}

fill the interval (Cί1), tk - (ί)) that is to say there are tk - f + 0(0
such sums. Since for different t we get different sums we must have

V ^ Σ(«fc - t2 + 0(t)) = ̂  + 0{¥)
t=rl 6

and hence k < (6p)1/3 + o(pφ) .

Using methods employed by Erdδs and Heilbronn [2] we can show
that f(p) = 0{pu%). We use the following lemma from [2].

LEMMA 1.4. Let 1 < m ^ I < p/2 and let B = {bl9 , 6J, A =

{di, * ,αm} δe se£s of residues (mod p). Then there exists an α ^ A
such that the number of solutions of a{ = b3 — δfc; bJf bke B is less
than I — ra/6.

We now can get a lower bound for the number of distinct sums,
of t elements from a set of residues.

LEMMA 1.5. Let A = {aL, • * , α j be a set of residues (mod p)
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and let At = {ah + + aίt 11 ̂  ix < < it^k} then for 1 ^ t ^ fc/4

(1.6)

where

Proof. We divide the set A into two disjoint sets

A = {a19 α2, , α,}, B = {6X, 62, , &w}

and prove the inequality (1.6) for the subset of At consisting of the
sums

At* = K + δ*-βl + ί>4-ε2 + + 62ί~2-εί_11 Si = 0 or 1} ,

where the hi are a suitable ordering of the elements of B.
The inequality holds for t — 1 since

A,* = {αj = A and \A\ = I .

Now assume that (1.6) holds for A* with t ^ (m/2) — 1. Then the
set Aί* + 62i c A* ί+1 and according to Lemma 1.3 there exists^[a
bj e {62ί+i, &2ί+i, , δm}, say δy = δ2ί+i so that the equation

b2t+i - ht = α? - α;, αf, α; e Af

has no more than | A? | — \(m — 2t) solutions. Hence the set

((δ«+i - δ«) + (Af + δ«)) Π (A* + &„)

contains no more than Af — J (m — 2ί) elements and

|Af+1| = | ( A f + & ί + 1 )u(Af+ 6,)|

^ I A* I + i ( m - 2 ί )

6 6 6 3

= I + t m _ (* + *)*
6 6

This completes the proof.

THEOREM 1.7. The maximal number f(p) of a set A of residues
(mod p) so that sums of different numbers of distinct elements of A
are distinct satisfies

(1.8) (4p)1/s + o(plβ) < f(p) < (288p)1/3 + o(plβ) .
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Proof. According to Lemma 1.5 there are at least

ft/2 + k(t - 1)/12 - ί2/6 + 0(ί)

distinct sums of t elements (and hence, by symmetry, sums of k — t
elements) for t < [&/4] out of a set A with k elements. Thus if A
has the desired property we must have

fc/4

j ) ^ 2 Σ (fe/2 + k(t - 1)/12 - f/6) + O(fca)

= 2k3(— — -L-) + 0(k2) = /b3/288 + 0(&2) .

V384 ;3 384/ v v '

Thus

/(p) < (288 p)1" + o(p"3) .
The lower bound for /(p) was established above.

2. On some irrational series. One of us [1] proved that the
series Σ»=id(n)t~n is irrational for every integer ί, | ί | > 1. In this
section we generalize this result to series of the form

(2.1) ς = Σ d{n)

n=ι aLa2 an

where the an are positive integers with 2 ^ aγ ^ α2 rg . It is clear
that we need some restriction, such as monotonicity, on the an since
the choice a% — d(n) + 1 would lead to ξ = 1.

We divide the proof into two cases depending on the rate of
increase of an. The first case is very similar to [1].

LEMMA 2.2. The series (2.1) is irrational if there exists a δ > 0
so that the inequality an < (log n)1^ holds for infinitely many values
of n.

Proof Let n be a large integer so that an < (log nf~\ Then
by the monotonicity of α̂  there exists an interval I of length njlog n
in (1, n) so that for all integers iel we have α< = t where ί is a
fixed integer, t ^ (log n)1"8.

Now put k = [(log w)δ/1°] and let px, p2, « be the consecutive
primes greater than (logw)2. Let

A = ( Π ft)*
l ^ i ^ Λ ( A + l)/2

then
A < (2(loo:n)Ύk{k+ι)l2 < e ^ ^ ) 1 - ^ 0 ^ ) 5 ' 4
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By the Chinese remainder theorem the congruences

x

u+k-iY"1 (mod (pupu+1-

where u = 1 + k(k — l)/2, have solutions determined (mod ^4). The
interval / contains at least [n/(A log n)] solutions of (2.4).

Now assume that £ = a/b and choose xeI to be a solution of
(2.4) so that (x, x + k)al. Then

b ar - α ^ ί - integer + b g d ( * + °

( 2 * 5 ) _̂ A ^ d(x + k + s)
~τ- o 2-ι -77

s=o t ax+k ax+k+a

But (2.4) implies that d(x + I) = 0 (mod tι+1) for Z = 0, 1, , k - 1.
Thus (2.5) implies that

(2.6) b αt α ^ f = integer + -A- Σ d(X + k + s) .
t s=o αx+k * αx+k+s

We now wish to show that for suitable choice of x the sum on
the right side of (2.6) is less than 1 and hence bξ cannot be an integer.
We first consider the sum

b v d(x + k + s)
tc B>ίίiogn a x + k ' ' ' ax+k+s

(2.7) < -A. Σ x + k + s <h(χ + K) Σ _1
t $>i01ogn tS *>i° lo& n tS

< < — for large n .

Next we wish to show that it is possible to choose x so that

(2.8) d(x + k + s) < 2kli for 0 ^ s < 10 log n .

We first observe that

(2.9) (x + k + s, A) = 1 for all 0 ^ s< 10 log n

since otherwise

(2.10) x + k + s = 0 (mod p, ) for some 1 £ j ^ k(k + l)/2

and

(2.11) a? + i = 0 (mod p^ ) for some 0 ^ i < Λ .
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But

0<k + s - i < l l logn < (log rif < p3

so that (2.10) and (2.11) are incompatible.
Let x = x0, x0 + A, * fx0 + zA be the solutions of (2.4) for which

(x, x + k) a I. From (2.9) we get

Σ d(xQ + H s + i/4)<2Σ(4Γ
2/=0 1 = 1 \Al

(2.12)

Λ n logn
< C A

Thus the number of #'s for which d(^0 + k + s + "2/A) > 2fc/4 is less
than en logn/(A.2kβ), and the number of y's so that for some
0 <J s < 10 log w we have d(x0 + k + s + yA) > 2fe/4 is less than

10c n log2 n/(A.2kli) < 1/2 w/(A log n) < z .

It is therefore possible to choose x = x0 + yA e I so that (2.8) holds-
For such a choice we get

610jgf» d(x + k + s) ^ b 9 m ^ 1
ί* =o ax+k 0,+*+, tk *=o tε

(2.13)

< 6.2-"'* < — .

Combining (2.7) and (2.13) we see that ξ is irrational.

LEMMA 2.14. If there exists a positive constant c so that \an\ >
φognf1* for all n then the series (2.1) is irrational.

Note that in this lemma we need not assume the monotonicity
of aH (or even that they are positive, however for simplicity we give
the proof for positive an only).

Proof. We use two results. The Dirichlet divisor theorem

(2.15) jtd(n)~ NlogN
n—i

and the average order of d(n)9 [3]

(2.16) d(n) < (log ^ ) l o g 2 + ε for almost all n .

From (2.15) we get the following.

LEMMA 2.17. Given constants 6, c > 0, then for almost all in-

tegers x
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(2.18) d(x + V)< b-ι{2c)~y{\og xf^; y = 3, 4,

Proof. If we choose x large enough so that log x > (2δce)4/3

then the right side of (2.18) is greater than ey which exceeds x + y9

and hence d(x + y), whenever y > 2 log x. Thus, if (2.18) fails to
hold for sufficiently large x then it must fail to hold for some y with
3 ^ y ^ 2 log x.

Now if there are cλN integers x below N so that (2.18) fails to hold
then we have more than c2N integers x with i/ΪV ^ x ^ N — 2 log AT
and

d(a? + y) > 6-1(2c)-y(log £)3 W 4 ^ 6-1(2c)-y(i log iV)3W4

( 2 Λ 9 ) ^ δ-1(4c)~3(log ΛΓ)9/4 - c3(log ΛΓ)9/4 .

Thus

Σ d(n) ^ c2N / c3 (log Nf*
«=i 2 log iV

- c4 iV(log iV)5/4

which contradicts (2.15) for large N.
Combining Lemma 2.17 with (2.16) we find that there exists an

infinite set S of integers x so that

(2.21) d(x + 1)< - ^ (log xf'\ d(x + 2 ) < - ^ - (log α;)3/4

and (2.18) both hold.
Now assume that ζ = a/b is a rational value of (2.1) and choose

neS. Then

(2.22) ax an bξ = integer + δ Σ d ( ? ? / + ^ }

y=ι an+1 an+y

where

< | χ ^

w + 1 αn+tf »=i (c(log π)3/4)y

in contradiction to the fact that the left side of (2.22) is an integer.
Summing up we have

THEOREM 2.23. The series (2.1) is irrational whenever

2 <£ αx ^ a2 <Ξ ^ αn ^ .

With considerable additional effort one can weaken the monotonicity
condition on the an to ajan >̂ c > 0 for all m>n.

We have not been able to prove the following
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Conjecture 2*24* The series (2.1) is irrational whenever αΛ

If we consider series of the form

(2.25) Σ Ψ{n) or Σ σ { n )

a a i α α

then we cannot make conjectures analogous to 2.24 since the choice
an = φ(n) + 1 or σ(n) + 1 would make these series converge to 1. It
is reasonable to conjecture that the series (2.25) must be irrational if
the an increase monotonically, however we can prove this only under
more restrictive conditions.

THEOREM 2.26. If {an} is a monotonic sequence of integers with
a% ^ nllll2for all large n then the series in (2.25) are irrational.

For the proof we need the following simple lemmas.

LEMMA 2.27. Let {an} be a sequence of positive integers with

an^2 and {bn} a sequence of positive integers so that bn+1 = o(anan+1).

If
(2.28) ξ = ±

*=i a1 an

is rational then an = 0(bn).

Proof Assume ξ = a/b and choose N so that for all n> N we
have bbn < a^aji. If there existed an n> N so that an> 2bbn then
we would have

baι an«! ί = aax an^ = integer + ^ wc;%+/b

=̂0 aw an

but

n ^ v bbn+k _ bb% , ^ &^+fe 1

a contradiction. Thus an ^ 2bbn for all large n.

LEMMA 2.29. If the series (2.28) is rational, say ξ — α/δ, and
bn+1 — o(anan+1), then there exists a sequence of positive integers {cn} so
that for all large n we have

(2.30) bbn = cnan - cn+ι , 0 < cn+ι < anf and cn+1 = o(an) .

Conversely, if these conditions hold then the series (2.28) is rational.



SOME NUMBER THEORETIC RESULTS 643

Proof. Choose N so that for all n > Aτ we have bbn < αΛαw+1/4.
Now for n ^ ΛΓ choose cH, cn + 1 so that

bbn = cnan — cn+1 , cw > 0

0 < cn+1 < an

and ct,-i, cr

ft+2

ODn + l — Cn + ιttn + ! @n+2 J ^n + 1 ^ v

0 < c'w+2 < an+1

Then

- integer + ™± + Jϋ^±^ + Σ —™s±*-

= integer - ^2±L + -£S±L - c " +

(2.31) + — Σ ^ ^
a w fc=2 a n + 1 an

n+1 an+k

= integer - ^S±L + ^S±L ίki_ + J_

Thus

cn+1 + c'Λ+1 ^ - + 0) = integer

and since 0 < cn+1 <an1 0 < c'n+1 ^ [αΛ/4] + 1 0 < c'n+2/an+1 < 1,

0 < 0 < 4, th is is possible only if cn+1 = c'n+ι.

Now choose N so large t h a t bbn+1 < εα% α n + 1 for all n > N, t h e n
from (2.31) we have

integer = —-£»±L + ^ vά± < _ ^ ± L + ε Σ

Thus cn+1 < 2εα% for all n> N.

If condition (2.30) holds for all n ^ ΛΓthen

c

a,

* u

••• α»
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is clearly rational.
Finally we need a fact from sieve theory. We are grateful to

E. Miech for supplying the correct constants.

LEMMA 2.32. Given an integer a and e > 0 then for large y the
number of integers m satisfying

m Ξ£ 0, m ^ a (mod p)

for all primes p, with 2 < p < y115 exceeds yγ~\

Proof of Theorem 2.26. Let f(n) stand for either σ(n) or φ(n)
and assume that

Σ
f(n) _ «
^ an o

Since an > n11112 for large n the hypothesis of Lemma 2.29 is satisfied
and we get

(2.33) bf(n) = cnan — cn+1 for large n .

Since f(n) = o(nι+ε) for all ε > 0 we get

(2.34) cn < nιiι2+ε for large n .

From Lemma 2.28 we get

(2.35) an - O(f(n)) = 0(nί+ε)

and hence the number of integers n ^ x for which

is O(#3/4)), since otherwise we would have

ax = Π - ^ ^ > (1 + a^2)*3 '4 > α;2

for large a?, in contradiction to (2.35). From now on we restrict our
attention to integers n for which

(2.36) 2Z±L < 1 + n~112 .

For such integers we get from (2.33) and (2.35) that
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f(n
f(n)

__ cn+1 an+1 Λ cn+2 \ / Λ cn+1 \

(2.37)

Now consider a prime q, \ xmι ^ q ^ xm, then according to Lemma
2.32 there exist more than y1"5 integers m ^ y — α;10/11 so that

(2.38) m 0, m -φ — 2q (mod p)

for all primes p with 2 < p < yllδ. We may even assume that m is
odd. The number of integers n = 2#m where m satisfies (2.38) exceeds
βio/π-e > 3̂/4 a n ( j h e n c e w e c a n p j ^ s u c ] 1 a n n jfagft satisfies (2.37)

with x/2 ^ n ^ a?
Now

/(rc)=/(2?)/(m)

where

itf=<P

in either case

(2.39) /(2g) = A/g, A an integer not divisible by q.

Since m has at most 5 prime factors all exceeding y115 we have

( ) ( )
m

<2.40) /(m) = m(l + O(y-115)) = m (1 + O(ίc~2/11)) .

By the same reasoning we get

(2.41) f(n + 1) = n(l + O(αr2/11)) .

Substituting (2.39), (2.40) and (2.41) in (2.37) we get

.(2.42) —
qf(n) q cn

But since g > x1/12 and cw < x1'12 we get

O(χ-ίl2+ε) .

(2.43) A.

q
< X -2/11+e
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Since qcn < χιιn+1'12 < χ2'n-ε this leads to a contradiction.
We could get similar irrationality results if the functions σ(n) or

φ(n) are replaced by σk{n)(k ^ 1) or products of powers of σk(n) and
φ(ri). In each case we would need the assumption that the an are
monotonic, increasing faster than a certain fractional power of the
numerators.

From Lemma 2.29 it is clear that there is a set of power 2Ko of
series (2.25) which are rational even if we restrict the integers cn to
the values 1 or 2 since for cn = 1 we can choose an = σ(n) — 1 or
σ(n) — 2 to get cn+ι — l or 2 respectively and for cn = 2 we choose
an = [(σ(n)-l)/2] to get cn+ί = 1 if σ(n) is odd and cn+1 = 2 if σ(n) is
even. For the series with numerators φ(n) we would have to use
cn = 1, 2 or 3 since all φ(n) are even for n > 2.
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MONOTONE DECOMPOSITIONS OF IRREDUCIBLE
HAUSDORFF CONTINUA

G. R. GORDH, JR.

It is shown that a number of important results concern-
ing irreducible metric continua can be generalized to (non-
metric) irreducible continua. For example, if M is a (non-
metric) continuum which is irreducible between a pair of
points and which contains no indecomposable subcontinuum
with interior, then there exists a monotone continuous map
of M onto a generalized arc, such that each point inverse has
void interior. This result is applied to a study of hereditarily
unicoherent, hereditarily decomposable continua. Certain pro-
perties of trees follow as corollaries. Also, trees are charac-
terized as inverse limits of monotone inverse systems of den-
drites.

In recent years there has been a growing interest in the study
of (nonmetric) continua. It is well known (e.g., [6]) that some of
the most useful and important properties of metric continua do not
hold for (nonmetric) continua. It is the purpose of this paper to in-
dicate that a substantial number of theorems concerning irreducible
metric continua can be generalized to irreducible continua. These
results are then applied to a study of certain hereditarily unicoherent
continua.

In particular, § 2 contains generalizations of many of the results
about irreducible metric continua appearing in Chapter 1 of [11].
These results are applied in § 3 to obtain generalizations of a number
of theorems due to Miller [8] concerning hereditarily unicoherent con-
tinua. Section 4 contains several results about trees which follow as
corollaries of theorems in § 3. Also, it is proved that every tree can
be written as a monotone inverse limit of dendrites. In Chapter 2 of
[11], Thomas discusses metric continua which are hereditarily of type A'.
His definition is extended, in § 5, to (nonmetric) continua and several
characterizations of such continua are obtained.

The reader is referred to [3], [5], and [14] for general results
concerning continua (i.e., compact, connected Hausdorff spaces). It
will be necessary to refer to results which are stated in the literature
for metric continua; however, this will be done only when the proof
for continua is essentially the same as that for metric continua.

The author is indebted to Professor F. Burton Jones for his advice
and encouragement in the preparation of this paper.
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2* Continua of type A* We observe that Theorem 1 and
Theorem 7 of [11, Chapter 1] are true, as stated, for (non-metric)
continua. To prove Theorem 1, apply [9, Theorem 47, page 16] to
the proof as given in [11],

Let M be a continuum which is irreducible between a pair of
points x and y. A decomposition £gf of M is said to be admissible in
case each element of & is a nonvoid proper subcontinuum of Λf, and
each element of 3f which does not contain x or y separates M. Notice
that an admissible decomposition is not required by definition to be
upper semi-continuous. However, we will show that an admissible
decomposition must, in fact, be upper semi-continuous. Thus, for
metric continua, our definition is equivalent to the definition in [11].

A generalized arc is a continuum A with precisely two non-
separating points. It is well known that A can be totally ordered in
such a way that the order topology and the original topology coincide.
We will frequently denote A by [α, b] where a and b are the non-
separating points of A.

THEOREM 2.1. Let M denote a continuum. Let & — {D(x)} be a
decomposition of M such that (1) for each x e M, D(x) is a proper
subcontinuum of M, and (2) there exist elements D(a) and D{b) of 2$
such that every element D(x) of £3? distinct from D(a) and D(b) sep-
arates D(a) from D(b). Then & is an upper semi-continuous de-
composition, and M\3f is a generalized arc.

Proof. For each x in M - [D(a) + D(b)], M - D{x) = Ax + Bx

where ae Ax,be Bx, and Ax and Bx are connected. If x and y are
in I - [D(a) + D(b)] and D(x) Φ D(y), then D{y) c Ax if and only if
AydAχy also D(y) c Bx if and only if ByaBx. Define D{x) < (D(y)
whenever Ax c Ay, and let D(a) < D(z) < D(b) for all z in

M - [D(a) + D(b)] .

Then < is a total order on j ^ . If f: M-+ £Bf denotes the natural
map, then it is readily seen that / is continuous with respect to the
order topology on 2&. The conclusion of the theorem now follows.

COROLLARY 2.1. Let M be a continuum which is irreducible from
x to y. If £? is an admissible decomposition for M, then 2$ is upper
semi-continuous and M\3? is a generalized arc.

A continuum M is of type A provided that it is irreducible be-
tween a pair of points and has an admissible decomposition; M is of
type A if it is of type A and has an admissible decomposition each
of whose elements has void interior.
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THEOREM 2.2. Let M be a continuum irreducible from x to y.
If M has an admissible decomposition, then it has one which is
minimal (with respect to partial order by refinement).

Proof. See the proof of [11, Theorem 3, page 8]. Notice that
we are not required to prove the upper semi-continuity of the decom-
position.

Suppose that M is a continuum irreducible between two points.
If M is of type A, let A denote the collection of all admissible de-
compositions of M. For each ^ e J , let /: JldΓ—> Mj£2r denote the
natural map. Thus / is a continuous monotone function from M onto
a generalized arc. Observe that every monotone map from M onto
a generalized arc is obtained in this manner.

THEOREM 2.3. Let M be a continuum of type A, ^eA, and
f: M—> Ml£&. Suppose that K is a subcontinuum of M such that
f(K) — [r, s] where [r, s] is a nondegenerate subinterval of Mj^f. Then
f~ι(r) Π K and f~\s) Π K are continua, and for r < t < s, f~\t) is
contained in and separates K. In particular f\κ is a monotone map
of K onto [r, s]; thus, if K is irreducible, K is of type A.

Proof. Suppose that M is irreducible from x to y and
[a,b]. If r < t < s, then f~\t) c K; for if p is in f~\t) - K then
f~\[a, r]) + K + f~\[s, b]) is a proper subcontinuum containing x and
y. Clearly f~\t) separates K, since it separates M. To see that
f-ι{r) Π K is connected, let Kr = Π {cl[f~ι{{r, u))]\ u e (r, s)}. Then K'
is a subcontinuum of f~\r) Π K which is easily seen to intersect each
component of f~ι{r) Π K. Thus f~\r) Π K, as well as /^(s) Π ίΓ, is
connected.

THEOREM 2.4. Lei M be a continuum of type A; then A contains
a unique minimal element.

Proof. The proof of [11, Theorem 6, page 10] is valid, since we
are not concerned with proving the upper semi-continuity of the de-
composition.

COROLLARY 2.2. Let M be a continuum of type A'. If & e Δ is
such that each element of & has void interior, then & is the minimal
element of A.

Proof. Suppose that &' e A such that &' ^ &. Let D{a) and
D(b) denote the nonseparating elements of &r. Then M — D(a) is
connected, and since D(a)° = 0, [M — D(a)\ + Dr(a) is connected. Thus
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D(a) = D'(a) and D(b) = D'(b). Given x in M - [D(ά) + D(b)], write
M - D(x) = Ax + Bx uniquely. Then M = Ax + Bx and

0 Φ Axf]Bx(zD(x) .

Given z in D(x), D'(z) must separate D(α) from D(b); thus A,, n δ , c
D'(z). Consequently, Df{x) = £(#) and ^ ' = ^ .

The following useful result is a generalization of [11, Theorem 8,
page 14].

THEOREM 2.5. Let M be a continuum of type A, 2$ e Δ, and
f: M-* M\3f = [α, δ ] . Then for a^r <s ^ δ, ^ [ / - ' ( ( r , s))] = iΓ i s
a subcontinuum of M which is irreducible from every point of

to every point of Kf] /"^(s) = Ks. Also Kr and Ks are subcontinua
of K with void interior relative to K.

Proof. Since Kr c K - /^((r, s)), K°r = 0 . By Theorem 2.3, ίΓr

and ifs are subcontinua of iί. That K is irreducible from ifr to K8

follows from the proof of [11, Theorem 8, page 14].

THEOREM 2.6. Let M denote a continuum which is irreducible
between two closed subsets H and K such that every subcontinuum of
M with nonvoid interior is decomposable. Then the following hold.
(a) There is a decomposition of M, M= MH + Mκ, where HaMH,
KdMκ and cl[MH — Mκ] Π Mκ is connected, (b) If U and V are
open subsets of M such that He: Ucz Ua VczM— K and both dU and
dV are connected, then there is an open set W of M such that Ucz Wa
Wcz V and dW is connected.

Proof. The proof in [11, Theorem 9, page 14] is valid. Note
that we have added the hypothesis that dU is connected in part (b).

THEOREM 2.7. Let M be a continuum irreducible between a pair
of points x and y. A necessary and sufficient condition that M be of
type A is that every subcontinuum of M with nonvoid interior be
decomposable.

Proof of sufficiency. Using the construction in [11, Theorem 10,
page 15] we define a monotone function /: M-* [0, 1]. According to
[4, Lemma 3, page 114] / is continuous. Thus {/^(tj te [0,1]} is an
admissible decomposition for M. According to Theorem 2.2 there ex-
ists a minimal admissible decomposition for M, say £&. If some ele-
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ment D e 3ί has nonvoid interior then cl(D°) is of type A. Let £&'
denote an admissible decomposition for cl(D°). By combining £gr and
£&' in the natural way, one obtains an admissible decomposition which
refines £& properly. Thus no element of £& has nonvoid interior, and
M is of type A!.

Proof of necessity. See [11, Theorem 10, page 16].
By making the obvious necessary modifications, one can also gener-

alize Theorems 17 through 22 of Chapter 1 of [11]. As in [11] we
define K(z) = {y e M; M is nonaposyndetic at z with respect to y] and
L(z) = {yeM; M is nonaposyndetic at y with respect to z}. Observe
that L(z) — T(z) where T denotes the set function in [2]. The state-
ments and proofs of Theorems 18 and 19 can be shortened by observ-
ing that K(z) = L(z) for any point z of an irreducible continuum [2,
Theorem 2, page 116]. Since Theorem 19 provides a concise topological
characterization for continua of type A'', we include its statement as
Theorem 2.8.

THEOREM 2.8. Let M denote a continuum irreducible from x to
y. Then M is of type A' if and only if K(z)° = 0 for each z in M.

3* Hereditarily unicoherent, hereditarily decomposable con*
tinua* In [8] Miller proves that every irreducible, hereditarily decom-
posable metric continuum is of type A (this is a corollary of our Theorem
2.7). By applying this result she obtains a number of conditions which
imply that a hereditarily decomposable metric continuum is heredit-
arily unicoherent, and she also shows that hereditarily unicoherent,
hereditarily decomposable metric continua have certain properties an-
alogous to properties of acyclic continuous curves (i.e., dendrites). In
this section we will apply Theorem 2.7 to show that most (but not
all) of Miller's results can be generalized to (nonmetric) continua.

It is easy to see that a continuum M is hereditarily unicoherent
if and only if for each pair of distinct points x and y of M there ex-
ists exactly one subcontinuum of M which is irreducible from x to y.

By a generalized simple closed curve we mean a continuum which
is separated by the omission of any two of its points. A point p is
said to cut the continuum M in case there exist points x and y in M
such that each subcontinuum of M containing x and y also contains
p. Such a point, p, is said to cut x from y in M, or to cut between
x and y in M.

The theorems that follow extend and generalize (to nonmetric
continua) Theorems 2.4 through 2.9 of [8].

THEOREM 3.1. Let M be a continuum of type A, and &eA. If
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each element of £& is unicoherent then M is unicoherent.

Proof. Let /: M—> M/£gr — [α, b] denote the natural map. Sup-
pose that H and K are proper subcontinua of M such that M — H +
K. If f{H) = [a, c] and f(K) = [c, b] then Hf] K(zf~\c). Now

[HΠ f~\c)\ + [KΓ\ f~\c)\ = f~\c) .

Since HΠ f-ι{c) and K Π /"'(V) are continua (Theorem 2.3), and f~ι(c)
is unicoherent, H Γ\ K = [HΠ f"\c)] Γ\[Kf) f"ι{c)\ is connected. The
other cases are handled in a similar manner, although they do not
depend on the unicoherence of the elements of &.

THEOREM 3.2. Let M be a continuum of type A, and 2$ G J . If
f: M-^Mj^ = [a9 b] is an open map, then M is unicoherent.

Proof. Let H and K be proper subcontinua of M such that M —
H + K. If f(H) - [α, c] and f(K) - [c, 5] then

since / is open. Thus H f) K = f~\c) which is connected. The other
cases are handled as in Theorem 3.1.

THEOREM 3.3. If M is a hereditarily decomposable continuum
which is not unicoherent, then M contains a continuum N which is a
generalized simple closed curve with respect to the elements of a
monotone upper semi-continuous decomposition &. Furthermore, if
D1 and D2 are in & then N — {Dι + D2) — U + V where U and V
are disjoint connected open sets such that (1) N — U + V, (2) U and V
are irreducible from D1 to D2, and (3) any subcontinuum of D1

J

ΓD2-\-
U which intersects Όx and D2 contains U.

Proof. Apply Theorem 2.7 to the proof of [8> Theorem 2.6, page
187].

THEOREM 3.4. Let M be a hereditarily decomposable continuum.
M is hereditarily unicoherent if and only if M contains no subcon-
tinuum N which is a generalized simple closed curve with respect to
the elements of a monotone upper semi-continuous decomposition.

Proof. If M is not hereditarily unicoherent, apply Theorem 3.3.
Conversely, suppose that f: N—>C, where JV is a subcontinuum of M,
f is monotone and onto, and C is a generalized simple closed curve.
Write C = A + B where A and B are generalized arcs. Then
f~ι{A) Π f~\B) is not connected.
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THEOREM 3.5. Let M be a hereditarily decomposable continuum.
Suppose that there exists a cardinal number k <^ c such that given k
points of M there exists one of them which cuts between some pair of
them. Then M is hereditarily unicoherent.

Proof. Suppose M is not hereditarily unicoherent. According to
Theorem 3.4 there exists a subcontinuum N of M, a generalized sim-
ple closed curve C, and a monotone map / from N onto C. Choosing
k distinct points of C it is clear that no one cuts between any pair
of them. The theorem follows.

THEOREM 3.6. If M is a hereditarily decomposable continuum
every subcontinuum of which is irreducible about a closed proper
subset having only countably many components, then M is hereditarily
unicoherent.

Proof. Apply [5, Theorem 6, page 173] to the proof of [8, Theorem
2.9].

Theorem 3.6 does not remain true if "countably many components"
is replaced by "c components". A simple modification of Example 2
[11, page 12] produces a metric continuum which is irreducible about
a closed set with uncountably many components and is not unicoherent.

In order to obtain generalizations of theorems in [8> Section 3,
page 190] we prove a generalization of a theorem due to R. L. Moore
[10].

THEOREM 3.7. Let M denote a hereditarily unicoherent continuum,
and suppose that each indecomposable subcontinuum of M is irreduci-
ble. If H is an irreducible subcontinuum of M then H is contained
in a maximal irreducible siobcontinuum.

Proof. Throughout this proof (x, y} denotes the unique irreduci-
ble continuum from x to y.

Suppose that H is irreducible from a to b. Let {Ha} be a maximal
monotonic collection of continua such that HaHa for each a, and
Ha ~ <α, hay for some ha in M. Let K = cl((JaHa). We will prove
that the continuum K is irreducible from a to some point k. Assume
not. Observe that if A is a proper subcontinuum of K which contains
α, then K — A is connected. There are two cases to consider.

Case 1. Suppose that cl(K — A) is indecomposable for some sub-
continuum A of K which contains a. Let T ~ cl(K — A). Then TΓ)
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A is a proper subcontinuum of T; hence T Π A is contained in a com-
posant C of T. Since T is irreducible, it contains at least two com-
posants. Choose ke T — C. Then <α, ky = K. To see this, suppose
that ζa, ky Φ K. Then <(α, ky Π Γ is a continuum which intersects two
composants of T; thus Γ c < α , &>. Choose i e i - <(α, &)>, /^ e if — A.
Then i ϊ α <£ Hβ and Hβς£ Ha, which is a contradiction.

2. cZ(if — A) is decomposable for each subcontinuum A of
if containing a. If

ci(if - A) = E + F

is any decomposition of cl(K — A), then A n i ^ ^ 0 or i ίl ί? = 0 .
Using this fact it is easy to verify that there exists an Hβ such that
A c H°β. In particular, given an Ha, there exists an Hβ such that
Ha c iίp°. Choosing k in fl« ^<X - Ha) it follows that <α, /b> = iΓ.

In either case, K is "maximally irreducible" from a to some point
k. If <sc, 2/> contains K = ζa, fc)> properly, then ζx, yy — <(xy ky or
<(xf yy — ζyy ky. For suppose not and let x ί K. Then fc g <̂ α, x}\ hence
y £ <α, %}. Since <x, fc> is properly contained in <αs, 2/>, 2/ g <«, /b>. But
K c <α, a;> + <#, &>; thus 7/ g if. Now <α;, y> c (a, xy + <(α, y> which
misses k. This is a contradiction.

Let L be a continuum containing K which is "maximally irreduci-
ble" from k to some point. Then L, is a maximal irreducible subcon-
tinuum containing H. For if L(zζz,yy then Kaζx.yy. According
to the argument above we can assume that <(x, yy = <x, fc>. It follows
immediately that <(x, yy = L.

COROLLARY 3.1. Le£ ikf denote a hereditarily unicoherent, heredi-
tarily decomposable continuum. If H is an irreducible subcontinuum
of M, then H is contained in a maximal irreducible subcontinuum.

COROLLARY 3.2 (Moore). Let M denote a hereditarily unicoherent
metric continuum. If H is an irreducible subcontinuum of M, then
H is contained in a maximal irreducible subcontinuum.

Proof. Every indecomposable metric continuum is irreducible.
As in [8], we define a point p to be a terminal point of the

continuum M in case every irreducible subcontinuum of M which
contains p is irreducible from p to some point. By making use of
Theorem 2.7 and Corollary 3.1 we obtain the following generalizations
of theorems in [8, §3, page 190].

THEOREM 3.8. Every point of a hereditarily unicoherent continuum
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M is either a terminal point or a cut point of M.

THEOREM 3.9. A continuum which is hereditarily unicoherent
and hereditarily decomposable has at least two terminal points.

THEOREM 3.10. A continuum which is hereditarily unicoherent
and hereditarily decomposable is irreducible about the set of all its
terminal points.

THEOREM 3.11. If the continuum M is hereditarily decomposable
and K is a subset of M consisting of some of the terminal points of
My then M — K is connected.

In § 4 we will see that Theorem 3.7 of [8] does not generalize to
nonmetric continua.

4* Some properties of trees* A continuum M is said to be a
tree [12] if and only if given two distinct points p and q of M, there
exists a third point which separates p from q. The point p of a tree
M is said to be an end point of M if and only if p is a nonseparat-
ing point of every generalized arc containing p. It is known [12]
that a continuum M is a tree if and only if M is locally connected
and hereditarily unicoherent. If M is a metric continuum then M is
a tree if and only if M is a dendrite [13, (1.1), page 88]. In Theorem
4.1 we show that a number of familiar properties of dendrites are
also shared by trees.

THEOREM 4.1. Let M denote a tree. Then (1) M is connected by
generalized arcs, (2) each point of M is a separating point or an end
point, (3) each generalized arc in M is contained in a maximal gener-
alized arcy (4) M has at least two end points, (5) M is irreducible
about the set of all its end points, (6) if K is a subset of the end
points of My then M — K is connected.

Proof. Let A be a subcontinuum of M irreducible from p to q.
Since M is hereditarily unicoherent, each point of A — (p + q) cuts p
from q in M; thus, since M is locally connected, each point of A —
(p + Q) actually separates p from q in M. Consequently, A is a
generalized arc. Since M is hereditarily decomposable, properties (2)
through (6) follow from Theorems 3.7 through 3.11.

For a metric continuum M the following properties are equivalent
[13, (1.1), page 88]: (a) M is a tree, (b) M is locally connected and
contains no (generalized) simple closed curve, (c) every subcontinuum
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of M contains uncountably many separating points of M.
For (nonmetric) continua we have seen that condition (a) implies

conditions (b) and (c). However, neither of these implications can be
reversed. Mardesic has shown [6] that there exists a locally connected
continuum which contains no proper locally connected subcontinuum.
This example clearly satisfies condition (b), but is not a tree. The
following example satisfies condition (c) but not (a); and also shows
that [8, Theorem 3.7, page 193] does not generalize to (nonmetric)
continua.

EXAMPLE. Let C denote a circle, and let M = C x [0, 1]. We
define a basis & for the topology on M as follows: V is in & if
and only if (1) V= p x (r, s), (2) V = p x (r, 1], or (3)

V=(Ux [0,1])- \J{Pi x [<fc,l]},

where U is open in the usual topology for C, Pi is in £7, and 0 <
?i < 1. If ^ denotes the topology generated by & then (M, ά7~)
is seen to be a (compact Hausdorff) continuum with the desired pro-
perties.

Finally, we give a characterization of trees in terms of inverse
limits. For a discussion of inverse limits systems, see [1].

THEOREM 4.2. The continuum M is a tree if and only if M is
homeomorphic to the inverse limit of a monotone inverse system (Da,
πaβi Λ) where each Όa is a (metric) dendrite.

Proof. According to [12] we must show that M is locally con-
nected and hereditarily unicoherent. M is locally connected by [1,
Theorem 4.3, page 241]. A simple application of [1, page 235, 2.9]
shows that M is hereditarily unicoherent. On the other hand, since
M is locally connected, M can be written as the inverse limit of a
monotone inverse system (Da, πaβ, Λ) where each Da is a locally con-
nected metric continuum [7] According to [1], πa: ikf—> Da is mono-
tone. It follows easily that Da is a tree, hence a dendrite.

5* Continua hereditarily of type A'. As in Chapter 2 of [11],
we define a continuum M to be hereditarily of type A' if and only if
every nondegenerate subcontinuum of M is of type A'. If M is a
hereditarily decomposable metric continuum then M is hereditarily of
type A! if and only if M is snake-like [11, Theorem 13, page 50]. In
this section we obtain several topological characterizations of (non-
metric) continua which are hereditarily of type A!.
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THEOREM 5.1. If the continuum M is hereditarily of type Ar,
then M is hereditarily unicoherent and atriodic.

Proof. The proof of [11, Theorem 6, page 41] is valid for (non-
metric) continua.

LEMMA 5.1. If the continuum M is hereditarily unicoherent and
atriodic, then given three points of M, one cuts between the other two.

THEOREM 5.2. The continuum M is hereditarily of type Af if and
only if M is hereditarily unicoherent, hereditarily decomposable, and
atriodic.

Proof. Suppose that M is hereditarily unicoherent, hereditarily
decomposable, and atriodic. According to Theorem 2.7 it suffices to
show that every subcontinuum N of M is irreducible. Let A be a
maximal irreducible subcontinuum of N (Theorem 3.7) which is ir-
reducible from p to q. If there exists a point r in N — A then, since
A is maximal irreducible, it follows that none of p, q, and r cuts
between the other two. This contradicts Lemma 5.1; hence N — A.
The converse follows from Theorem 5.1.

THEOREM 5.3. Let Mdenote a hereditarily decomposable continuum.
Then M is hereditarily of type A! if and only if given any three
points of M one cuts between the other two.

Proof. If M is hereditarity of type Af apply Theorem 5.1 and
Lemma 5.1. If given any three points one cuts between the other
two then M is hereditarily unicoherent (Theorem 3.5). Clearly M
contains no triods. Thus, by Theorem 5.2, M is hereditarily of type
A'.
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THE MATRIX EQUATION AXB = X

D. J. HARTFIEL

This paper considers the solutions of the matrix equation
AXB = X where we specify A and B to be ^-square and
doubly stochastic. Solutions are found explicitly and do not
depend on either the Jordan or Rational canonical forms. We
further find all doubly stochastic solutions of this equation, by
noting that Jn = (1/w), the n-square doubly stochastic matrix
in which each entry is 1/n, is always a solution and that the
doubly stochastic solutions form a compact convex set. We
solve the equation by characterizing the vertices of this con-
vex set.

Matrices considered in this paper are real matrice unless other-
wise stated. Most of the definitions and notation may be found in
[5], although some will be presented below.

If Al9 A2, •••, A, are square matrices, by Σ*=iΛfe we mean the
direct sum of the Aks. If s = 2 we may write Ax 0 A2 for this di-
rect sum. We say that a square matrix A is reducible if there exists

a permutation matrix P so that PAP* = (γ %) where X and Z are

square and P* denotes the transpose of P. If A is not reducible,
then it is said to be irreducible. A square matrix A = (α<y) is doubly
stochastic if ai5 ^ 0 and Σ f c aik = χ f c akj — 1 for all i, j . It readily
follows that if A is doubly stochastic, then there exists a permuta-
tion matrix P such that PAP1 = Σί=i 4b where each Ak is doubly
stochastic and irreducible.

The following two celebrated theorems in matrix theory are used
in the paper.

BIRKHOFF'S THEOREM. The set of all n-square doubly stochastic
matrices, Ωn, forms a convex polyhedron with the permutation matrices
as vertices [5, p. 97].

PERRON-FROBENIUS THEOREM. Let A be an n-square nonnegative
irreducible matrix. Then:

( i ) A has a real positive characteristic root r which is simple.
If X is any characteristic root of A, then |λ | ^ r.

(ii) If A has h characteristic roots of modulus

r : λ 0 = r , Xί9 •• , λ A _ ι

then these are h distinct roots of Xh — rh — 0, h is called the index of
imprimitivity of A. If h = 1 the matrix is called primitive.

659
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(iii) IfX0,Xlf •• ,λΛ_1 are all the characteristic roots of A, and

θ = eίi2πln) then Xoθ, •••, λw_^ are λ0, •••, λ ^ in some order.

(iv) If h > 1, £A,ew there exists a permutation matrix P such

that

ί 0 A12 0

0 0 A23

PAP' =

0 0

0 0

\

o o o ... o A-!,*
\A,i o o o o j

where the zero blocks down the main diagonal are square [5, p. 125].

If A is a nonnegative matrix and

are all positive elements in A, then A is said to have a loop of length
m. If A = (au) is such that all ai} are equal, then we say that A
is flat. If A is partitioned into block matrices Aa, i.e., A = (A^),
and each Ai} is flat, then a block loop is denned similarly.

1. Preliminary results. First we note that if P and Q are
permutation matrices then AXB = X if and only if

PAP'PXQQ'BQ = PXQ .

Since A and B can each be put into a direct sum of irreducible matrices
by simultaneous row and column permutations we may assume by
the Perron-Probenius Theorem that

A = Σ" Aa , = Σ Bβ

(0 Af 0

0 0 At

0

0

0 0 0

\AL 0 0 0 J

Bβ-

0 B{ 0 0

0 0 Bξ ••• 0

0 0 0

Km. o o o
where Aa is irreducible with index of imprimitivity sa; Bβ is irreduci-
ble with index of imprimitivity rβ. Further the 0 blocks down the
main diagonal on Aa and Bβ are all square.

Note that the dimension of each A% (k — 1, 2, , sa) is the same
for each fixed a. For fixed β the dimensions of the Bβ

k (k = 1, 2,
• , rβ) are also equal. Hence
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[C
0

0

\0

c 2

0

0

0
0

0

0

... o

... o

. . . o

... cs

\

J
r

0

0

\o

A

0

0

0
0

0

0

• 0

... o

. . . o

. >Dr

\

J
where each Ck (k = 1, 2, , sa), Dk (k — 1, 2, , rβ) is a primitive
doubly stochastic matrix. Now let p be a sufficiently large integer
so that Ap and Bp are direct sums of primitive matrices.

LEMMA 1.1. If T is a linear operator on a convex set S whose
vertices are X{ (i — 1, 2, •••, m), then T(S) is a convex set ichose ver-
tices are in {T(Xi)\i — 1, •••, m}.

THEOREM 1.2. The set of doubly stochastic solutions of the matrix
equation APXBP = X (p previously defined) is the convex hull of

\lim(Ap)kPι(Bp)k\Pι is a permutation matrix, I = 1, 2, , nl\ .

Proof. If V is an m x m primitive doubly stochastic matrix,
then Vk = Jm, the flat m x m doubly stochastic matrix,

lim (Ap)k and lim (Bp)k

k l

exist, their limits being direct sums of flat doubly stochastic matrices.
Let L(X) = lim^oo (Ap)kX(Bp)k. This is a linear operator defined on
the set of n x n matrices.

By Lemma 1.1, L(Ωn) is the convex hull of {L(Pϊ)\Pι is a permuta-
tion matrix} i.e., of {lim^*, (Ap)kPι(Bp)k \ Pi is a permutation matrix}.

Now if ApXBp = X, XeΩn, then L(X) = X and by Birkhoff's
Theorem, X is in the convex hull of the {L(Pι)\Pι is a permutation
matrix}. Furthermore, if X is in the convex hull of the {L(Pι)\Pι is
a permutation matrix} i.e., X~ Σ\XL{P^ where Xt ;> 0 and ΣXt = 1,
then

X = ΣXιL{Pι) - ΣXι lim {Ap)kPι{Bp)k

l lim

and X is a solution of the matrix equation.

THEOREM 1.3. Y e Ωn is a solution of AXB = X if and only if
Y = ΣS^AkWBk/p where WeΩn is a solution of APXBP = X.

Proof. If Y =
A YB = Y.

S A" WBk/p, W a solution of A'XB" = X, then
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Further if Y is solution of AXB = X then Y is a solution of APXBP =

X and so Γ = Σί~U*YB*/p.
Let M{Z) = ΣKo AkZBk/p. Then M is a linear operator defined

on the set of w x n matrices.

COROLLARY 1.4. The vertices of the set of doubly stochastic solu-
tions of AXB = X is a subset of {M[L(Pi)]\Pι is a permutation
matrix}.

Proof. The proof follows from Lemma 1.1, Theorem 1.2, and
Theorem 1.3.

COROLLARY 1.5. If one of A or B is primitive, then the only
doubly stochastic solution of the equation AXB = X is Jn.

Proof. Either l i m ^ (Ap)k or l i m ^ (Bp)k is Jn. Thus if X is
doubly stochastic, then L(X) = Jn.

2+ The operator !>• Our primary aim here is to investigate the
structure of the convex set L(Ωn): in particular its vertices.

From § 1 we know for Pt a permutation matrix

UP,) = \im (A-
k->oo

where Jf and Jξ are flat doubly stochastic matrices whose dimensions
correspond to the dimension of the primitive matrices in the direct
sums Ap and Bp respectively.

Suppose ar x aγ is the dimension of Jf and bσ x bσ is the dimension
of Jξ. Set ι(ΣrJt)Pι(Σ*J5)= V%. Partition Fz into blocks Vrσ of
dimension ar x bσ.

LEMMA 2.1. If XeL(Ωn) is partitioned into block matrices Xrσ of
dimension ar x 6σ, then each Xrσ is fiat.

THEOREM 2.2. If XeL(ΩJ is partitioned into block matrices Xrσ

of dimension ar x bσ, then X is a vertex of L(Ωn) if and only if X
does not have a block loop.

Proof. Suppose X has a block loop

Add ε > 0 to each element in the 71σ1 block. Subtract (bσjbσ2)e from
each element in the Ti^2 block. All the row sums of the matrix are
now one. Now add (aribσjar2bσ2)ε to each element in the y2σ2 block.
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All the column sums of the matrix are now one. Now subtract

from each element in the Ί2σz block. All the row sums of the matrix
are now one. Continuing in this manner we see that in the Ίmσm

block we add (α r m _ l J % ^ i bσjarjbam bθ2)ε = ε. This is exactly
what is in the Ύmσm or rYx(J1 block. Now all rows and columns sum
to one. Call this generated matrix Xf. Now considering the same
block loop we generate X" by replacing ε by — ε in X'. Again all
rows and columns sum to one. Now X — \{X* + X"), and since Xf

and X" eL(Ωn) for ε sufficiently small, X is an interior point.
On the other hand if XeL(Ωn) and interior to it, there are X'

and X" in L(Ωn) so that X = ^{Xr + X"). We may pick Xr and X"
in L(Ωn) so that they have zero blocks in the block position if and
only if X does. Now if X' Φ X" then there is a Ύ1σ1 block so that
X;iσi < Xl[ύχ where X}lO1 is a block in X\ X'[Oί is a block in X" and
the relation is elementwise. Hence there is a X/1<72 > X"lθ2 and so on.
This generates a block loop in X.

COROLLARY 2.3. X is a vertex of the convex set of doubly stoch-
astic matrices if and only if X does not have a loop.

Proof. Consider the matrix equation IXI — X and apply the
Theorem 2.2.

We are now in a position to find the vertices of L{Ωn). Partition
each permutation matrix Pt into blocks P}a of dimension aγ x bσ. Let
nlσ be the number of ones in the jσ block of Pt. Then

and Vγa has all its elements equal to nrσ/arbσ. We may now use
Theorem 2.2 on this finite set to establish exact vertices.

EXAMPLE.

\

i έ

lίh h
i i

\
0 vi

Partitioning the matrices Px we have
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( 1 )

( 2 ) L

01

00
\00

/oo
00

10
\oi

00\
00'

10

oiy
10\
01

00
00/

D.

—

—

J. HARTFIEL

(hh
hh

0

\

(0

11

°\
hh
hh)

hh\
hh

0

, a vertex ,

, a vertex .

All vertices are of the form L(Pt) for some permutation Pt. However,
L{Pt) is not always a vertex for every I. For example,

( 3 )

/10
00

01

\oo

00\
10

00

01

—

/ii
ii

ii
\ii

ii

ii
ii/

an interior point .

We can further note by Theorem 2.2 that 1 and 2 are the only ver-
tices of L(Ωn).

3* General solutions of APXBP = X We already know from
Theorem 1.2 that for each WeΩn, L(W) is a solution of APXBP = X.
Actually we have shown that if W is any n x n matrix then L(W)
is a solution of APXBP = X. Further if W is a solution of the equa-
tion then L{W) = TΓ. i.e., (ΣV Jf)W(ΣiΌJ?) = W. Partition W into
blocks Wΐσ as in §2. Now JfWϊσJ

B

σ = ΐF,σ implies that Wrσ is flat.
Also if each Wrσ of W is flat, then TF is a solution. Hence we know
all solutions of the matrix equation APXBP — X.

4. Orbits in matrices* Let C = (ci3) be a p x q matrix. Sup-
pose we pick some c ^ . Then by the orbit of cilJ1 we mean the set
of positions {i1 — k,j1 + k) [k = 0, 1, •••] where the row index is
modulo p and the column index is modulo q.

EXAMPLE.

The numbers in the positions of
the orbit of

( 1 ) 5 are 5, 3, 7
( 2 ) 2 are 2, 9, 4
( 3 ) 1 are 1, 8, 6
( 4 ) a are α, β, c, d,b,f.

Consider the group Z/p 0 Z/q where Z is the additive group of
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integers. Note that K — {( — k mod p, k mod q) \ k e Z] is a subgroup
of (Zjp 0 Z/q). Hence we can consider orbits as cosets in (Zfp ©
Z/q)/K by looking at indices. We now see:

1. The number of elements in each orbit is the same.
2. If two orbits intersect, they are the same.
3. If one orbit contains a row index k times then all orbits con-

tain that row index k times. The same property holds for columns.
4. Each row index and column index appear at least once in

each orbit.
5. If p and q are relatively prime, then there is only one dis-

tinct orbit.
Finally we note that since orbits are defined by indices, we may

consider block orbits in partitioned matrices.

5* The operator ikf Our aim here is to investigate the struc-
ture of the convex set M[L(Ωn)]: in particular to find its vertices.
Let XeL(Ωn). Partition X into blocks Xrσ of dimension ar xbσ1 then

M(X) = ±-
P

= —ΣΣ"
p fc0

0 0 2

0

0

0

0

0

0

•• 0\
... o

• •• 0/

k

Λ. 2-1

/O B

0 0 i

0

0

0

0

0

0

0\k

0

0/

and since the blocks Xra of X are flat we may write

M{X) =
1 P-1

JL y

/0 /? 0 0
0 J ? 0

0\k

0

o o o

(0 J[ 0 0

0 0 J? 0

\ j ; , o o o o/

where J% (k = 1, 2, , sa) and J{ (k = 1, 2, , rβ) are flat doubly-
stochastic matrices whose dimensions are the same as those of At and
B{, respectively. Suppose the irreducible blocks Aa of Σ «-4« have
dimension pa x pa and the irreducible blocks Bβ of Σβ Bβ n a v e the
dimension qβ x qβ. Partition X into blocks X'aβ of dimension pa x qβ.
We call these blocks the major blocks of X. Now since X is already
partitioned into blocks of dimension ar x £>„, we see that the major
blocks are partitioned into the Xra blocks in the first partitioning.
We call each block in the original partition a minor block. Note that
inside each major block, all minor blocks are of the same dimension.

Now suppose X'aβ is a major block of X. Then we see the sequence
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/O J? 0

0 0 j :

v ? β o o
/O Jΐ 0

0 0 J?

O\XL

0/

0 Jf 0 0\

0 0 J{ 0

Jβ

rβO

0\f-1 / O J f 0 ••• OX"

0

\J" 0 0 . . . 0 /

0 0 Jξ . . . 0

o o

is such that each minor block in X'aβ moves through its orbit in X'aβ

at least once.
By the definition of M and the remarks made above we see that

M(X), XeL(Ωn), is found as follows. Let X be partitioned into major
and minor blocks. Consider the orbit of the minor blocks in each
major block. Sum the blocks in each orbit with sufficiently many
copies in order that there are p blocks. Then divide the sum by p
and replace each block in the orbit by this block. From this we see
that XeM[L(Ωn)] if and only if

1. XeL(Ωn).
2. If Xji<7l and XΪ2<,2 are in the same major block and in the same

orbit in the major block, then they are equal.
We now find necessary and sufficient conditions for X to be a

vertex of M[L{Ωn)\.

D E F I N I T I O N . I f Xaiβlf Xaiβ2, ••*, Xamβm — - X ^ a r e m a j o r b l o c k s of
X, XeM[L(Ωn)] and each Xajtβk (Jc = 1, 2," , m), Xajch+1 (k = 1, 2, . . ,
m — 1) has exactly one positive minor block orbit, then

is an orbital block loop in X.

THEOREM 5.1. Xe M[L(Ωn)] is a vertex if and only if
1. there do not exist two different positive minor block orbits in

any major block of X, and
2. there does not exist an orbital block loop in X.

Proof. First suppose X e M[L(Ωn)\ and X has two positive block
orbits in a major block Xaβ of X. Then we add ε > 0 to each ele-
ment in each block of one of these orbits and subtract ε from each
element of each block in the other orbit. Call this matrix X\ To
generate the matrix X" replace ε by — ε in X'. Now for ε sufficiently
small, X' and X"eM[L{Ωn)\. Since X= \{X' + X"), X is interior
and therefore if X is a vertex it must satisfy 1.

Now suppose XeM[L(Ωn)] satisfies 1 but not 2. This means X
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has an orbital block loop, say Xaiβl, Xaιβft, •••, XΛmβm = X*^- Each of
these major blocks has a positive orbit by definition. Flatten each
major block; i.e., if Xaβ is a block in the orbital block loop and has
s different orbits, divide the element c in the positive orbit by s and
replace all elements in the major block by c/s. If we call this matrix
Xr then Xf eM[L(Ωn)]. We may now use the scheme of Theorem 2.2
to alternately add and subtract ε>0 from this major block loop, the-
reby generating X[ and Xζ e M[L(Ωn)] and Xf = 1{X[ + Xζ). Now
absorb the flat major blocks back into the original orbits, i.e., if Xaβ

is a major block in the orbital block loop with s different orbits then
replace each element c in each block of the original positive orbit by
sc. Put zero blocks in all other orbits in this major block. Doing
this to X\ X{, and XI we generate X, Xίf and X2, respectively. Note
X19 X2 e M[L(Ωn)]. Further X = l(Xι + X2). Hence X is interior.

Finally suppose X satisfies 1 and 2. Suppose that there exist
Xly X2eM[L(Ωn)] so that X= i(X, + X2). We may suppose X, and
X2 have the same zero pattern as X. If Xt Φ X2 and Xu X2 satisfy
1 we can see by an argument similar to Theorem 2.2, that X has an
orbital block loop. This contradicts X having property 2. Hence we
see that X is a vertex.

Using this theorem and the remarks preceeding this theorem we
see that we have characterized the vertices of M[L(Ωn)\.

EXAMPLE.

jθ 1 0\ /0 1

0 0 1 1 0 0 1

\1 0 0/ \1 0

There are three orbits for X given in the following diagram.

They are the positions occupied by 1, 2 and 3 respectively. Consider
the vertices of L(Ωn). Using 1 of Theorem 5.1 we see

( a )

has a one in each orbit; hence
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1/3 1/3 l/3\

= [ 1/3 1/3 1/3

α/3 1/3 1/3/

which is interior.

( b )

has 3 ones in the same orbit, hence

0 0

M

which is a vertex. The other vertices are

and

6* General solutions of AXB — X. Partition X into the major
and minor blocks. Since AXB = X would imply APXBP — X we see
that each minor block of X must be flat. If we add the further
condition that minor blocks on the same orbit are all equal then we
see from § 5 that X is a solution and all solutions are of this form.

7* General remarks* It is interesting to note that in order to
obtain solutions of AXB = X it is only necessary to know the block
form of A and B, i.e., if Ax is doubly stochastic and has the same
block form as A and Bx is doubly stochastic and has the same block
form as B then AXB = X if and only if A1XB1 = X.

From § 4, property 5, we see that if A and B are irreducible,
where the index of imprimitivity of A and the index of imprimitivity
of B are relatively prime, then Jn is the only doubly stochastic solu-
tion. The only general solution is flat. This follows since there is
only one orbit in X. Each block in the orbit is flat and all blocks
in the orbit are equal.

Finally we point out that our result can be extended to a more
general setting by considering the following result due to Sinkhorn
(7):

THEOREM. Let D be the set of all n x n matrices with row and
column sums equal to 1, Mn_x the set of (n — 1) x (n — 1) matrices.
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Let R — 1 © M"^. Then there is a nonsingular matrix P so that
POP-1 = R.

From this we know that if Ax and A2 are (n — 1) x (n — 1)
matrices then there are nonsingular matrices P and Q so that P~\l φ
A2)P and Q(l φ ^.JQ"1 have row and column sums equal to 1. If
P~ι(l φ A2)P and Q(l φ AJQ"1 are nonnegative and real and hence
doubly stochastic, then since

, 2 - X

if and only if

(1 φ Λ)(l Φ X)(l Φ A2) = 1 φ X

if and only if

Q(l Φ Λ)Q~Ό(1 Φ X)PP-\1 φ Aa)P - Q(l φ X)P ,

we can also find the solutions to the matrix equation

AXXA2 = X.

REFERENCES

1. R. A. Brualdi, Convex sets of nonnegative matrices, to appear.
2. H. 0. Foulkes, Rational solutions of the matrix equation XA = BX, Proceedings of
the London Mathematical Society (2), 50 (1948), 196-209.
3. F. R. Gantmacher, The Theory of Matrices, Chelsea Publishing Co., New York,
1960.
4. W. B. Jurkat and H. J. Ryser, Term ranks and permanents of nonnegative matri-
ces, J. of Algebra, 5, #3, March 1967.
5. Marvin Marcυs and Henryk Mine, A Survey of Matrix Theory and Matrix Inequ-
alities, Allyn and Bacon, Boston, 1964.
6. W. V. Parker, The Matrix Equation AX = XB, Duke Math. J. 17 (1950), 43-51.
7. Richard Sinkhorn, On the Factor Space of the Complex Doubly Stochastic Matrices.
Abstract 62T-243, Notices American Mathematical Society, 9, (1962), 334-335.

Received February 17, 1970.

TEXAS A&M UNIVERSITY





PACIFIC JOURNAL OF MATHEMATICS
Vol. 36, No. 3, 1971

EXPANSIVE AUTOMORPHISMS OF
BANACH SPACES, II

JAMES H. HEDLUND

An automorphism of a complex Banach space is shown
to be uniformly expansive if and only if its approximate
point spectrum is disjoint from the unit circle.

The problem of giving a spectral characterization of the property
that an operator be uniformly expansive was investigated in [2], but
the theorem stated above was obtained only for automorphisms of a
Hubert space. The proof given in this note is both more general and
more transparent than the special version. We also note some
topological properties of the various classes of expansive operators in
the space of all invertible operators.

I* Uniformly expansive automorphisms* If T is an auto-
morphism (a bounded, invertible, linear operator) on a complex Banach
space X denote its spectrum by Λ(T), its compression spectrum by
Γ(T), its approximate point spectrum by Π(T), and its point spectrum
by Π0(T). Denote the unit circle {λ: |λ | = 1} in the complex plane
by C. The automorphism T is said to be

( 1 ) expansive if for each x e X with \\x\\ = 1 there exists some
non-zero integer n with | | Γ ^ | | ^ 2;

( 2 ) uniformly expansive if there exists some positive integer n
such that if xeX with ||a?|| = 1 then either | |Γwίc| | ^ 2 or || T~nx\\^ 2;

(3 ) hyperbolic if there exists a splitting X = Xs 0 Xu, T ~
Ts 0 Tu, where X8 and Xu are closed Γ-invariant linear subspaces of
X, Ts = T\ Xs is a proper contraction, and Tu = T\XU is a proper
dilation.

A discussion of these classes of automorphisms may be found in [2].
It is well-known [2, Lemma 1] that an automorphism T is hyper-

bolic if and only if Λ (T) n C = 0 . The principal result weakens both
conditions.

THEOREM 1. Let T be an automorphism of a complex Banach
space X. Then T is uniformly expansive if and only if Π (T) f]
C = φ.

The proof requires the Banach space version of an interesting
numerical lemma.

671
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L E M M A 1 . Given any complex numbers cly , cs there exists λ e C

such that Σ ; = i λ ^ > 0.

Proof. [2, Lemma 2]

LEMMA 2. Given any complex numbers c_ r, * , c s with C0ΦO

there exists λ e C such that | Σ l = - r λ/c y | > | c 0 | .

Proof. We may assume t h a t c o > O : otherwise set d̂  = (co/[co |) ĉ

and proceed. Let / ( λ ) = Σ J = i χj'c3> # ( λ ) = Σ7=-r λ ^ , and

Σ ί - i ^ ' c - i Since X~j = (X)j for λ e C it follows t h a t Re g(X) = Re

and therefore Re [/(λ) + #(λ)] = Re [/(λ) + ft(λ)]. Now /(λ) + h(X) is

a polynomial in λ; by Lemma 1 there exists XeC such t h a t /(λ) +

h(X) > 0. Thus /(λ) + h(X) + co> c0, and

> Re ( Σ λ^Λ - Re [/(λ) + ft(λ) + c0]

LEMMA 3. Given any vectors x_r, •••,#, m α Banach space X

with xQ Φ 0 £Λere exists XeC such that

Proof. By the Hahn-Banach Theorem choose a;* e X * with || B* || — 1

and x*(x0) = \\xo\\. I t suffices to find XeC with

S e t ^ = α?*(a? 3 ) a n d a p p l y L e m m a 2 : t h e r e e x i s t s XeC s u c h t h a t

*̂ ( Σ ,Σ >

Proof of Theorem 1. Necessity is proved in [2, Theorem 1].

To prove sufficiency, suppose t h a t T is not uniformly expansive. Then

for each positive integer n there exists xn e X with \\xn\\ = 1 and

max {\\ Tnxn\\, \\ T~~nxn\\} <2. For infinitely many n we produce a

vector 2/w e X and a number λ a e C such t h a t || (T — X~ι) yn | |/| | 2/Λ || —> 0.

This will suffice. In fact, iί μeC is a limit point of {λ^1} choose a

subsequence {λ"1} of {λ"1} with λ"1 —> μ. Then

II ( T - μ ) y m Il/H y m \\ ^ \\ ( T ~ λ " 1 ) τ / m | |/| | y m \ \ + \ χ - i - μ \ .

The right-hand side approaches 0 as m—> oo , so that //G/7 (T).
To construct 2/n we must consider two cases. Define
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Φ(n) = max sup
k~—n,Q λeC

k + n-1

Σ
Case 1. φ(n) is unbounded. Fix n, choose k where the maximum

in the definition of φ is attained, and let λft be the λ e C where the
supremum is attained. Define

e + n—l

Σ
so that || yn || = φ(n). Now

(T - λ-1) yn - λ Γ 1 Tnxn - λ"1 a?, if k - 0 ,

and

- ^ if fc = - n .(T - λ-1) yn - K'Xn - λ-

In either event,

I! (Γ - λ;1) y» il ^ 3. Thus || (T - λ-) yn

Since ^(w) is unbounded, 3/^(%) —> 0 for some subsequence % —> oo.

2. 0(w) is bounded. Assume that φ(n) ̂  4̂ for all n and
define

»» = Σ (n + 1 + i) λ̂ + - 3) K

where we choose λMeC by Lemma 3 to insure that
norm of the term with index 0.

^ w, the

(T-K1)V»\\ = - Σ K'1 τjxn +

Σ λjr%,

3=1

τ( Σ
i=o

Hence

(Γ - λ^) yn
0

Note that the hypothesis that T is not uniformly expansive is
not used in Case 2 But it is easy to see directly (by Lemma 3) that
T is not uniformly expansive if φ{n) is bounded. Note also that it
follows immediately from Theorem 1 that a hyperbolic automorphism
is uniformly expansive.

2* Density* Denote the class of all hyperbolic automorphisms
of a fixed Banach space X by £έf, of uniformly expansive by ^ g 7 , of
expansive by £?, of all automorphisms by ^ and of all bounded linear
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operators by &. If dim X < oo then 3ί? = ^ gf = gf and is precisely
the class of all automorphisms whose spectrum is disjoint from C. In
general the situation is much different.

THEOREM 2. Let X be separable infinite dimensional Hilbert
space. Then:

(1) <§T c <^gf c if c ^ c &\
(2) ^g^ αwcϊ ^ g 7 are open (in &, in the uniform operator

topology) but g" is not;
(3) no class is dense in the next larger.

The tools necessary for the proof are two results on semicontinuity
of pieces of the spectrum due to Haknos and Lumer.

THEOREM A. [4, Theorem 2] Π(T) and Λ(T) are upper semicon-
tinuous: to every Γ e ^ and every open set G containing Π(T)
[respectively, Λ(T)\ there corresponds a positive number ε such that
IΊ(S) c G [Λ(S)<zG] whenever \\S-T\\ < ε.

THEOREM B. [4, Theorem 3] Λ(T)\Π(T) is lower semicontinuous:
to every Te& and every compact set K contained in A(T)\Π(T)
there corresponds a positive number e such that K czΛ(S)\Π(S) when-
ever \\S - T\\ <ε.

Proof of Theorem 2. (2) If Te 3Zf then Λ(T) Π C = 0 . By semi-
continuity, Λ(S)f]C = 0 for S sufficiently near T. Since ^ is open,
Se^f. The proof for ^ g 7 is identical. To see that g7 is not open
fix an orthonormal base {en}T and let T be the diagonal operator
Ten = n/(n + 1) en. T is expansive [2, Example 2]. Given ε > 0 let
Sen = Ten for |1 — n/(n + 1)| ^ ε and Sen = en otherwise. Then
|| S — T\\ < ε but S is not expansive since 1 e Π0(S).

(3) jr is not dense in &: [3, Problem 109].
g7 is not dense in ^\ let {ejϋoo be an orthonormal base and let

T be the backward bilaterial weighted shift defined by Ten — 2en_1 for
n^h Ten = 1/2 en^ for n ^ 0. Then [2, Example 4]

/70(Γ) = {1/2 < | λ | < 2 }

so that Tί ξf. Now /ί(Tr*)\/7(Γ*) = {1/2 < | λ | < 2}; by Theorem B
if || S* - T* || is small then C c A(S*)\Π(S*) c Γ(S*). Hence C c Π0(S)
and Sgg 7 .

JTi s not dense in ^/gf: in fact ^/gf \ ^ is open. If Te ^ g ί \ ^ r
then Π(T)ΠC = 0 but i ( Γ ) Π C ^ 0 . So there exists a compact set
ίΓcCΠM(!Γ)\/7(Γ)]. By Theorem B, KaΛ(S) for || S - Γ| | small, so
that S
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^ g is not dense in g7: let X be represented as H2 (of the unit
circle) and let T be the multiplication operator Tf(eu) = {eu + 3/2)
f(eu). Let Ar = {| λ — 3/2 | ^r}. Either direct calculation or appeal
to the spectral properties of Toeplitz operators ([1], for instance) shows
that Λ(T) = Alf Π0(T) = 0 , Π(T) = bdy Al9 and Γ(T) = int A,. By
Theorems A and B there exists ε > 0 such that if 11 S — T11 < ε then
A3/4 c Γ(S) and Λ(S) c Λ/2 Now the arc α(ί) = e**, 0 ^ t ^ τr/2, on
the unit circle has α(0) e A3β and a(π/2) ί Am. Thus α(ί) e bdy Λ(S)
for some ί hence Π(S) Γ\ C Φ 0 and S i ^ g 3 . To verify that Γ is
expansive let a e [0, π] with | eία + 3/2 | = 1. Fix/e Jϊ 2 with || / | | 2 = 1.
Then either

l/2πΓ I/(β") \2dt^ 1/2 or l/2ττΓ~α | f{elt)\2 dt ^ 1/2 .

If the former holds choose — a <b < c < a with

let i ί = min {| e<6 + 3/2 |, | β<β + 3/2 |} > 1, and choose an integer n with
Kn > 4. If m>n

Tmf\\l = l/2π\"|β" + 3/2 dί

^ Kiml/2π\C\f(eu)\2 dt

If the other alternative holds then || Γ~m/||2 ^ 2 for large m. Hence
T is expansive.
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THE />-PARTS OF CHARACTER DEGREES IN
^SOLVABLE GROUPS

I. M. ISAACS

Let G be a finite group and IrriG) the set of irreducible
complex characters of G. Fix a prime integer p and let e(G)
be the largest integer such that pe{G) divides %(1) for some
% G Irr(G). The purpose of this paper is to obtain informa-
tion about the structure of G, and in particular about a Sylow
p-subgroup of G, from a knowledge of e(G). If G is solvable,
we obtain the bound 2e(G) + 1 for the derived length of an
Sp subgroup of G. We also obtain some information about
the normal structure of G in terms of e(G).

When e(G) — 0, our result is equivalent to the theorem of N. Ito
which asserts that G has a normal abelian Sylow p-subgroup. Actually,
Ito's result, [7], holds for ^-solvable groups. This may readily be
proved by induction on the group order, as follows. The hypothesis
e(G) — 0 is inherited by factor groups and by normal subgroups and
it follows easily that a minimal counterexample, G, has a normal
p-complement, H. Now let χ e Irr(G). It follows from Clifford's
theorem that t\χ(l), where t is the index in G of the inertia group
of an irreducible constituent of the restriction χH. Since t is a power
of p, we have t = 1, and every irreducible constituent of χH is
invariant in G. It follows by Frobenius reciprocity that every
irreducible character of H is invariant in G. Now Lemma 2.1 of [4]
applies to yield the result.

Although it might be conjectured that our present bounds hold
for all p-solvable groups when e(G) > 0, the proofs given here fail
even when e(G) = 1. However in this case, we do obtain a result
which is valid for p-solvable G with p > 3 , and shows that έ?v{β) * s

either abelian or else is a Sylow subgroup of G.

1Φ The following lemma is well known and will be used repeatedly.
Since its proof is quite short, we present it here.

LEMMA 1.1. Let N <] G and χ e Irr(G). Suppose θ is an irreducible
constituent of χN. Let T = ^JG(Θ), the inertia group of θ. Then
there exists a unique irreducible constituent φ of χτ such that θ is a
constituent of ψN. Furthermore χ — ψG and [χN, θ] = [ψN9 θ].

Proof. Choose any irreducible constituent ^ of χτ such that θ is a

constituent of ψN. By Clifford's theorem, χN — a*Σfi=ιθi where θ1^ θ
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and χ(l) = atθ(l). We have t = \G: T\ and ψN = aQθ, a0 ^ a. Now
χ is a constituent of ψG and so

χ(l) ^ fG(l) = if (1) = too^l) ^ ία0(l) - χ(l) .

We have equality throughout, so that χ(l) = ^G(l) and α = α0. Thus
χ = ψG and [χ^, #] = a = a0 — [ψN, θ]. The uniqueness of ψ also
follows from a — α0-

If e(G) = e and N < G, let 0 G irr( JNΓ) and Γ - ^ ( 0 ) . Suppose
that |G: T\p = p r, where % denotes the p-part of the integer w. Let
α/r be any irreducible constituent of θτ, and let χ be an irreducible
constituent of ψG. Then by Frobenius reciprocity and Lemma 1.1, it
follows that χ = ψG and hence ̂ (l)j, ^ pe~r. It does not follow, however,
that e(T) ^ e — r. We wish to prove our results by induction in a
manner similar to this and hence we define a quantity which "inducts"
properly.

DEFINITION 1.2. Let N < G and # e Irr(N). Suppose 0 is invariant
in G. Then β(G, N, θ) = e is the largest integer such that ̂ e|(χ(l)/6'(l))
for some irreducible constituent χ of ΘG.

Note that β(G, 1, 1) = e(G) and that if N^ H<\G, then

e(H, N, θ) ̂  e(G, N, θ) .

The following is immediate.

COROLLARY 1.3. Suppose e(G, N, θ) = e and N s M<\G. Let ψ
be an irreducible constituent of ΘM and let pf = (ψ(l)/θ(l))p. Set
T = J*a(ψ) and pr = \G: T\p. Then e(T, M, f) ^ e - f - r.

It would suffice for our purposes to show that if N <] G, G/N is
solvable and e(G, N, θ) = e for some 0 e Irr(N), then the derived length
of an Sp subgroup of G/N is bounded by a function of e. We in fact
will prove this for certain special characters θ and also for certain
groups G/N. In order to prove results like these, it is necessary to
be able to produce irreducible characters of degrees divisible by
"large" powers of p. This is done using the following result of
Gallagher ([1], Theorem 2).

PROPOSITION 1.4. Let N <] G and suppose χ e Irr(G) and

χN = θeIrr(N).

Then the irreducible constituents of ΘG are uniquely of the form βχ
where β e Irr(G/N) is viewed as a character of G. For all such β,
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βχ is irreducible.

LEMMA 1.5. Let N<\G, N^H<\G with G/H a p-group. Let
θ G Irr(N) be invariant in G. If e(G, N, θ) = e(H, N, θ), then G/H is
abelian. If e(G, N, θ) > e(H, N, θ)> then there exists L<\G with H S L,
G/L abelian and e{L, N, θ) < e(G, N, θ).

Proof. Let K <\ G, K 2 H be minimal such that

e(K, N, θ) = e(G, N, θ) = e .

Let ψ be an irreducible constituent of θκ with pe\(ψ(l)/θ(l)). Let χ
be any irreducible constituent of ψG. Then pe+1 \ (χ(l)/θ(l)) and
therefore pJf(χ(l)/ψ(l)). Since G/K is a p-group, χ(l)lψ(l) is a power
of p and thus χ(l) = ̂ (1) and χκ = ψ e Irr(K). Let /9 be an arbitrary
irreducible character of G/iL By Proposition 1.4, βχ is an irreducible
constituent of ψG and we may apply the above reasoning to βχ in
place of χ. Hence (βχ)(l) = ψ(l) = χ(l) and /3(1) = 1. Thus G/K is
abelian. If e(G, JV, <?) - e(J3, iV, 5) then H = K and the first statement
is proved.

Otherwise K> H and we may choose L <| G with HQ L <K
and |iΓ: L| = p. By the choice of K, e(L, N, θ) < e and hence α/rL is
reducible. Therefore χL — ψL is a sum of p distinct irreducible
characters, conjugate in K. Let <£> be one of these characters and
put T = ̂ %(φ) so \G: T\ = p. Thus Γ < G and G' a T. We also
have G' Q K and Kf]T = L so that G/L is abelian and the result
follows.

LEMMA 1.6. Let N <] G αraZ suppose that G/N is p-solvable with
p'-length ^ 1. Suppose θ e Irr(N) and is invariant in G with

β(G, N,θ) = e.

Then the derived length of an Sp subgroup of G/N is ^ e + 2. If G/i\Γ
ts α p-group, dΛ.(G/N) ^ β + 1.

Proof. Let ϋΓ/ΛΓ = ^P(G/N), the minimum normal subgroup with
factor group a p-group. By hypothesis, iΓ/ΛΓ has the normal S.A

subgroup P/N. Suppose e(K, N, θ) < e. Then by Lemma 1.5, there
exists L<\G, KQL with G/L abelian and β(L, N, θ) < e. Both state-
ments now follow by induction on \G: N\. Suppose then e(K, N, θ) = e.
Then G/K is abelian by Lemma 1.5. If K = N, then d.\.(G/N) ̂ e + 1
is trivial. Suppose, then, K> N. Then P<K and e(P, iV, <9) ̂  e so
by induction, d.L(P/iV) ^ β + 1. Since G/K is abelian, the derived

P
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length of an Sp subgroup of G/N is <> e + 2. However, since K> N,
G/N is not a p-group and the proof is complete.

2. Suppose N <]G and θ e Irr(N) and is invariant in G. It will
occasionally be necessary in what follows to be able to extend 0 to
an irreducible character of G. This is, of course, not always possible.
We discuss some sufficient conditions below.

Given any character χ of a finite group G, we define the deter-
minant det χ = λ to be the linear character of G given by

X(g) = det X(g) ,

where 36 is any representation affording χ. Let o(χ) denote the order
of λ as an element of the group of linear characters of G. Clearly
o(χ) = 0(λ) = |G:kerλ|. Gallagher [1] has shown that if θeΙrr(N),
N<\ G, θ is invariant G and (0(1), \G: N\) = 1, then 0 is extendible
to G if and only if det 0 is extendible to G. Furthermore, Gallagher
proved that if λ = det 0 and μ is an extension of λ, then there is a
unique extension χ of 0 with det χ = μ. Since 0 is invariant in G,
so is λ and it follows that ker λ <] G and iV/ker λ £ Z(G/ker λ). If
(o(0),|G: iV|) = 1, then iV/ker λ is a direct factor of G/kerλ and hence
there is a unique extension μ of λ to G with o(μ) = o(λ). Summarizing
these results, we obtain the following.

PROPOSITION 2.1. Let N <\G and let θeΙrr(N) with θ invariant
in G. Suppose o(θ) and θ(l) are both relatively prime to \G: N\. Then
there exists a unique extension, 0, of θ to G with o(θ) = o(0).

DEFINITION 2.2. Let χeIrr(G). Then χ is a p-character of G if
χ(l) and o(χ) are powers of p.

LEMMA 2.3. Lei N <\G and suppose θ e Irr(N) is a p-character
which is invariant in G. Suppose G/N has a normal p-complement
K/N and that <S?P(G/N) = 1. Then άΛ.(G/K) rg e(G, N, θ) - e.

Proof. Use induction on \G: N\. Suppose e > 0. If e(K, N, θ) = β,
then by Lemma 1.5, G/K is abelian and we are done. Otherwise,
e(L, N,θ)<e for some L <I G with ϋΓ £ L and G/L abelian. By
induction, dΛ.(L/K) ^ e — 1 and the result follows. The only remain-
ing case is where e = 0. Here we must show that K = G.

Since 0 is a p-character of iV, there is an extension 0 of 0 to ϋΓ.
Let 1 be any irreducible constituent of ΘG. Then Z(l)/0(1) is a power
of p and 0 is a constituent of 1N so 1(1) — 0(1) since e(G, iV, 0) = 0.
Thus if β is any irreducible character of G/N, βXeIrr(G) and since
0 is a constituent of (βX)N, it follows that p)fβ(l). Hence e(G/N) = 0
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and therefore G/N has a normal Sp subgroup. Since έ?p(G/N) = 1,
φ)f\G: N\ and thus K = G and the proof is complete.

The following lemma will be used to prove that a given character
is a p-eharacter.

LEMMA 2.4. Let N <\G and suppose that G/N has no proper
normal subgroup of pf-index. Let XeIrr(G) and suppose θ is an
irreducible constituent of XN and o(θ) is a power of p. Then o{X) is
a power of p.

Proof. Let λ = detX, and let K = {g e G \ X(g)pe = 1 for some
e ^ 0}. It suffices to show that K — G. Clearly, K <\ G is a subgroup,
and p\\G:K\. The result will follow if we show N £ K. Now
XN = aΣθi by Clifford's theorem, where the θi are all conjugate to 0.
Let μ* = det 0< so that λiV = {Πμ^a. Each ^^ has order equal to o(0)
which is a power of p. Therefore, for suitable β, and for xeN, we
have ^(a;) is a pe~th root of 1. It follows that N £ if and the proof
is complete.

3* We define functions u, v as follows.

DEFINITION 3.1. Let u, v be functions from the set of nonnegative
integers into the same set with co adjoined, where u{e) = maximum
derived length of an Sp subgroup of G/N where G is a finite group,
N O G, G/N is solvable and there exists a p-character, θ, of N,
invariant in G and such that e{G, N, θ) <̂  e. Set u{e) = oo if there is
no maximum. Define v(e) similarly, except that only those situations
are considered where έ?p(G/N) — 1.

LEMMA 3.2. Let P be a p-group and suppose that Po £ P ivith
\P: Po| - p\ Then d.l.(P) ^ r + d.l.(P0).

Proof. Use induction on r. The result is trivial if r = 0.
Otherwise P 0 < P and hence P,P' < P since P'<^Φ{P), the Frattini
subgroup of P. By induction, d.l.(P0P

;) ^ (r - 1) + d.l.(P0). However,
PQPf < P and P/P.P' is abelian.! The result follows.

LEMMA 3.3. Let N £ if &e normal subgroups of L. Assume
(\H: N\, \L: H\) = 1. Lβί θeΙrr(N) and suppose θ is extendible to H.
If θ is invariant in L, then some extension of θ to H is also invariant
in L.

Proof. Let Sf be the set of extensions of θ to H, and let U be
the group of linear characters of H/N. Then U acts on the set Sf
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by multiplication and by Proposition 1.4, this action is transitive-
Set A = L/H. We have U s H/H'N and thus (|A|, | U\) = 1. Clearly,
A acts on £f and on the group U and if X e 6^, λ e U, then (Zλ)α = Zαλα

for all α 6 A. Therefore Glauberman's Lemma (Theorem 4 of [2])
applies and hence A fixes some X e S^. Thus % is invariant in L.

Before going on to our main result, we digress briefly to give an
application of some of the lemmas we have already accumulated.

COROLLARY 3.4. Let N <j G with G/N p-solvable. Suppose θ is a
p-character of N which is invariant in G and that e(G, N, θ) = 0.
Then θ is extendible to G and G/N has a normal abelian Sp subgroup.

Proof. If θ is extendible to G, then it follows from Proposition
1.4 that e(G/N) = 0 and hence G/N has a normal abelian Sp subgroup.
We prove extendibility by induction on \G: N\. Let M/N = ^P(G/N).
If M<G, then θ is extendible to ψ e Irr(M). Let X be any irreducible
constituent of ψG. Since G/M is a p-group, it follows that X(l)/ψ(l)
is a power of p. Since e(G, N, θ) = 0, X(ϊ) = ψr(l) and the result follows.

Suppose then M = G and let V/N = έ?p'(G/N). Then V<G and
θ is extendible to V. Let W/N = (F/ΛΓ)'. Then V/TΓ is a p-group.
Now if x 6 G, then α/r̂  is an extension of θ so ψx = λτ/r for some
linear character λ of G/JV (Proposition 1.4). Then λ,Γ = 1 and ψx

w = π/rw,.
Hence π/rίF is invariant in G and by Lemma 3.3 we may assume that
ψ is invariant in G. By Lemma 2.4, ψ» is a p-character of V and thus
is extendible to G. The proof is complete.

THEOREM 3.5. The functions u and v are finite valued, v(0) — 0,.
u(0) = 1 and

v(e) ^ max (/ + u(e — /)) for e > 0 and
0<fύe

u(e) ^ 1 + max (/ + w(e - /)) for e > 0 .

Proof. If % ever takes on the value oo, choose β ̂  0 minimal
with u{e) = oo. Otherwise pick β arbitrarily. Choose a group G, N<\G,
θ a p-character of JV, invariant in G with β(G, iV, 61) <̂  e. Let P/ΛΓ
be an Sp subgroup of G/N. If e > 0, write 6 = max {/ + u(e — /) |
0 < / ^ β}. If e = 0, set b = 0. We claim that (a) if έ?P(G/N) = 1,
then d.l.(P/iSΓ) ^ b and in any case (b) d.\.(P/N) ^ 6 + 1. The proof
will be complete when these claims are established. In particular,
the inequality involving v(e) will follow when (a) is proved. Note
that when e = 0, the result follows from Corollary 3.4, however this
case also follows from the general argument and we do not appeal to-
the previous result. We shall prove (a) and (b) by induction on \G: N\r

for the fixed value of e chosen above.
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Case 1. έ7v,{G/N) > 1. Let K/N be a minimal normal pf-
subgroup of G/N so that K/N is an elementary abelian g-group
for some q Φ p. Let θ be the unique extension of θ to K with
00) = o(θ). Because of the uniqueness, θ is invariant in G and by
definition, θ is a ^-character. Clearly e(G, K, θ) <^ e and thus
d.l.(PK/K) ^ 6 + 1 by induction. Since PiΓ/ϋΓ = P/iSΓ, (b) follows in
this case. If έ?p(G/K) = 1, then dΛ.(PK/K) ^ 6 and (a) follows.

Assume that ^P(G/N) = 1 but that έ?p(G/K) = H/K > 1. Let t
be an irreducible constituent of θu with (ψ(l)/θ(l))p = pf as large as
possible. Let ψ be an irreducible constituent of ψκ which is a
constituent of θκ. Since K/N is abelian, it follows from Proposition
1.4 that Φ = ΘX for a linear character λ of K/N. Thus φ(l) = 0(1)
is a power of p. Since H/K is a p-group, ψ(l)/φ(l) is a power of p
and hence α (̂l) is a power of p. We claim that ψ is a ^-character
of H. This will follow from Lemma 2.4 when we establish that H/N
has no nontrivial p'-factor group.

Now H'N n K <\G and by the minimality of K, we have either
H'NΓ) K = N or ffiVΠ IT = K. In the first situation, K/N g Z(i?/iV)
and it follows that έ?p(H/N) = H/K> 1, a contradiction. Thus
H'Nf)K=K. Since any p'-factor group of iϊ/JV is abelian, this
shows that only the trivial one exists.

Let T = ̂ o(ψ) and set pr = \G: T\p. By Corollary 1.3,

e{T,H,ψ) ^ e - f - r .

Let Po/H be an Sp subgroup of T/H and assume that Po £ PK since
PK/H is an Sp subgroup of G/H. Now d.L(P0/H) ̂  u(e - f - r) and
|PiΓ: Po| = pr so that d.l.(PKJH) ^ r + u(e - f - r) by Lemma 3.2. We
have e(H, N, θ) = /and έ?p(H/N) - 1 and hence 0 < d.l.(iJ/iT) ^ / ^ β
by Lemma 2.3. It follows that d.l.(PK/K) ^r+f+u(e-f-r)^b
and the proof of Case 1 is complete. In particular, since only Case
1 can occur when έ7p(G/N) = 1, we have shown that v(e) ̂  b .

Case 2. έ?p,(G/N) = 1. Let JΪ/iV = έ?p(G/N) > 1 and let

Since ίf/iV is a p-group, we can pick ψ e Irr(H) with ψN = pfθ. Also
f i s a p-character by Lemma 2.4. Let T = ̂ ζ(^) and p r = \G: T\p.
Reasoning exactly as before, we get

άΛ.(PIN) ^ r + u(e-f- r) + dΛ.(H/N) .

By Lemma 1.6, dΛ.(HJN) ^ / + 1, and thus

dΛ.(P/N) ^1 + f + r + u{e - f - r) .
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If / + r > 0, then e > 0 and we obtain d.l.(P/iV) ^ 6 + 1 and we are
done in this case.

Assume then that / = 0 = r for all irreducible constituents ψ of
ΘH. From / = 0, it follows that θ is extendible to H and by Lemma
3.3, we may choose an extension ψ which is invariant in L where
L/H = έ?p,(G/H). Now let T = *J^(f). Since r — 0, we may assume
P g Γ . Also L g Γ . We claim that U/H = έ?P(T/H) = 1. We have
[L, U]^H and hence by Lemma 1.2.3 of [3], it follows that US H.
Therefore, d.L(P/H) ̂  v(e) since e{T, H, ψ) ̂  e. By Lemma 1.6,
ά.l.(H/N) ^ 1 and thus dΛ.(P/N) < 1 + φ ) . Since we have already
shown that v(e) ̂  6, the result follows.

COROLLARY 3.6. v(e) ^ 2β, u{e) ^ 2e + 1 /or αK e ^ 0.

Proof. Use induction on e. The Corollary is immediate if
e = 0. For e > 0 we have t (e) ^ max {/ + ̂ (e - /) | 0 < / g e} ̂
max {/ + 2(e — /) + 1}. This maximum occurs when / = 1 and yields
v(β) £ 2e. Similarly u(e) ̂  2e + 1.

4. Some improvement on the bounds of Theorem 3.5 can be
obtained, especially for e < p — 1. We shall use Theorem B of Hall
and Higman [3] and also the following result of Passman (Corollary
2.4 (i) of [8]).

PROPOSITION 4.1. Let P be a p-group which acts faithfully on a
solvable p'-group A. Suppose that every element of A lies in an orbit
of size ^ pe < pp under the action of P. Then some element of A lies
in a regular orbit and hence \P\ fg pe.

LEMMA 4.2. Let N g H be normal subgroups of L. Suppose
H/N is solvable and that (\L: H\, \H: N\) = 1. Let θeΙrr(N) and
suppose J^L{0) covers L over H. Then some irreducible constituent ψ
of 0π is invariant in L.

Proof. We use induction on \H: N\. The result is trivial if
N = H. Let M<\ L, M < H be maximal such. By the Schur-
Zassenhaus Theorem, applied to the group J^L{Θ)\N which has the
normal Hall subgroup, κJ^I(θ)/N, we can find a subgroup S £ L with
SΓ)H=N, SH = L and S g ^ ) . By induction applied to the
situation N <] M <| SM, there exists an irreducible constituent φ of
ΘM which is invariant under S. Since H/M is an elementary abelian
chief factor of L, Proposition 3, Part 2 of [5] applies and we conclude
that there are only three cases to consider. They are (a) φ11 — ψ is
irreducible, (b) φu = af where ψ is irreducible or (c) φ is extendible



THE p-PARTS OF CHARACTER DEGREES IN p-SOLVABLE GROUPS 685

to H. In either of cases (a) or (b), ψ is invariant under S and since
L = HS, we are done. In the remaining case, φ is invariant in L
and the result follows from Lemma 3.3.

We state below the special case of Theorem B of Hall and Higman
which will be needed in what follows.

PROPOSITION 4.3. Let G be a p-solvable group which acts faithfully
and irreducibly on an elementary abelian p-group U. Suppose
\U\<p*-\ Then p\\G\.

THEOREM 4.4. Let e < p — 1. Then u(e) <L e + 2 and v(e) <£ e.
If e(G, N, θ) < p — 1, where θ is p-character and G/N is solvable, then
GIN = &>PP,

Proof. The first statement follows from the second by Lemmas
1.6 and 2.3 since in calculating u(e) and v(e), it is sufficient to consider
only cases where G/N = ^P'{G/N). We proceed to prove the second
statement.

Let N <j G, θ an invariant p-character of N and

e(G, N , θ ) = e<p-1.

It suffices to show that ^P'PP'P(G/N) = 1 and this is done by induction
on \G: N\. If έ?*'(G/N) = L/N and L < G, then since

e(L, N, θ) S e(G, N, θ) ,

the result follows by induction. Thus we may assume that

έ?*'(G/N) = G/N

and similarly, έ?ppfp»'p(G/N) - 1. Let H/N - έ?pp'pp'(G/N) and
U/N = έ?ppfp{G/N) so that U/N has the normal Sp subgroup H/N.
We may assume U> N. Let V/N = έ?pp'(G/N) so that V/U is a
p-group. Suppose UQ Y< V with Y<\G and \V: Y\ <pp~ι. Let
Y be a maximal such subgroup. Then V/Y is an elementary abelian
p-group which is an irreducible G/V module. Let C/V — CGjv{V/Y)
so V/Y is a faithful irreducible G/C module. By Proposition 4.3, G/C
is a p'-group and since G/N = ^P\G/N), we have C = G. It follows
that V/Y is a direct factor of M/Y where M/N = έ?p(G/N). Since
V/Y> 1, this contradicts έ?p(M/N) = Λf/JV and therefore no such Y
exists.

Now let Uo/H= (U/HY and let Y/U = Cvlu(U/UQ). Then Γ < G .
Now U/U0^Z(Y/U0) and I7/C7Ό is a nontrivial Sp, subgroup of Γ/i70

since U > H and Z7/iJ is a solvable p'-group. It follows that
έ?p'(Y/U0) < Y/Uo. Since ar*'(V/N) - V/iSΓ, it must be that Y" < V.
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We will have the desired contradiction when we show | V: Y\^ p* < pp~ι.
By Lemma 4.2, there exists an irreducible constituent γ of Θn

such that π/r is invariant in U. Since H/N is a p-group, it follows
from Lemma 2.4 that ψ is a ^-character of H and hence there exists
a unique extension ψ of ^ to U with o(ψ) = o(ψ). It follows from
the uniqueness that ^(ψ) = J?σ{t)- Now let λ be any linear character
of U/H. Then XψeΙrr(U). Let T = <J%(Xψ) and put \G: T\ = pr.
By Corollary 1.3, e(T, U,Xψ) ^ e - r and thus r ^ e. Let x e T. We
have

Eestricting this to if, we obtain ψ = ψx since λ7/ = 1 and ^ 7 / = φ.
Thus α;6^^(τ/r) = ^(ψ). Therefore λ^ = Xxψ and it follows from
Proposition 1.4 that λ = λ\ Thus Γ g j ^ ( λ ) . Since |G: T\p = pr and
V/U is a normal p-subgroup of G/Ϊ7, it follows that \V: T Γ) V\ ^ pr.
Thus \V: <J^(X)\ ^ pr ^ pe < pp. Therefore, in the action of the
p-group V/U on the group of linear characters of U/H, all orbits
have size <£ pe. The kernel of this action is Y/U and thus by pro-
position 4.1, \V/Y\^pe which yields the desired contradiction and
the proof is complete.

COROLLARY 4.5. / / e ^ p — 1, u(e) <£ 2e — p + 4 α^d

v(e) ^ 2β — ί? + 3 .

Proo/.

^(p — 1) <Ξ max {u(p — 1 — /) + /} + 1

^ max {p— 1— / + 2 + / } + 1 = ^ + 2

and similarly i;(p — 1) ^ p + 1. Thus the desired inequalities hold
when e = p — 1. For β > p — 1, apply induction.

5* In this section we consider the case e = 1 in more detail.
From Theorem 4.4 we have ^(1) <̂  3 and v(l) <; 1 when p >̂ 3. For
p = 2, Corollary 3.6 yields u(l) ^ 3 and ^(1) !g 2. An example (see
6.1) shows that %(1) = 3 for p = 3.

THEOREM 5.1. For αZZ primes, v{l) = 1.

Proo/. That v(ΐ) ^ 1 is clear. Let e(G, N, θ) = 1 with G/ΛΓ
solvable and θ an invariant p-character. Suppose έ?p(G/N) = 1. We
must show that an Sp subgroup, P/N, of G/iV is abelian. Let K/N
be a minimal normal subgroup of G/N so that K/N is an elementary
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abelian g-group for some prime qφp. Let θ be the unique extension
of θ to K with oφ) = o(θ). Then θ is an invariant p-character of K.
If έ?p(G/K) = 1, then the result follows by induction on \G: N\.
Assume then that H/K = έ?p(G/K) > 1. Let λ be any linear character
of H/K. Then j^G{x) = .jζφx) and thus P2\\G: J^G{X)\. It follows
that λ lies in an orbit of size 1 or p under the action of H/K on the
group of linear characters of K/N. Since έ?p(G/N) = 1, CHlκ(K/N) = 1
and thus H/K acts faithfully on the linear characters of K/N. By
Proposition 4.1, \H/K\ = p.

Now choose λ as above in an orbit of size p. Then

(Xθ)π = fe Irr(H)

and ψ is a p-character of i ϊ by Lemma 2.4 (using the minimality of
K). Let Γ - J^G{f) and Γo = ^ ( λ # ) so that HTQ e Γ and Tof]H= K.
By the usual argument, p 2 | |G: Γo| and hence ί>||(x: ϋT 0 | and we may
assume that P s i2T0. Then PiΓ/iΓ - (H/K)(PQ/K) where Po = PίΓΠ To.
Now e(T, H, ψ) = 0 by Corollary 1.3 and since w(0) = 1, we have
PK/ff is abelian. But PK/H^ PJK and H/K^Z(PK/K) and thus
PK/K ~ P/N is abelian. The proof is complete.

We now prove a result which is valid for p-solvable groups with
p > 3. It will enable us to conclude for solvable groups that u(l) ^ 2
with respect to these primes.

THEOREM 5.2. Let N<]G with G/N p-solvable and p>3. Suppose
θ is a p-character of N which is invariant in G and that e(G, N, θ) = 1.
Let P/N = έ?p(G/N) and suppose that P/N is not abelian. Then P/N
is an Sp subgroup of G/N.

Proof. Use induction on \G: N\ and assume that P/N$ Sylp(G/N).
Then P/N is a Sylow subgroup of every proper normal subgroup
of G/N which contains it. It follows that &P'(G/N) = G/N. Also
M/P = έ?p(G/P) < G/P and \G: M\ = p. By Lemma 4.2, there exists
an irreducible constituent rj of θp which is invariant in M. Now rj
is a p-character of P by Lemma 2.4 and thus there exists a unique
extension rj of η to M with o(η) = o(η). We have either Ύ](l) = 0(1)
or 7](1) = pθ(l). In the latter case, it is clear that rj must be invariant
in G and hence it is extendable to X e Irr(G). Now G/P does not have
a normal Sp subgroup and thus has some irreducible character β of
degree divisible by p. Since ZP is irreducible, βl e Irr(G) and this
contradicts e(G, N, θ) = 1. Therefore we must have ^(1) = #(1).

We claim now that e(G/N) = 1. Let φeIrr(M/N) with p\φ(l).
It suffices to show that p2\φ{l) and that φ is invariant in G. Now
τ)φeΙrr(M) and p2θ(ΐ))((r)φ)(l). Thus p 2 | ^ ( l ) . Also {rjφf is not
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irreducible so that f)φ is invariant in G. Now let xeG. Then
rjφ = (γjφy = ηxφx. Since ^ and ^ are both extensions of θ to M, there
exists a linear character X of M/iSΓ with τ)x = xή. Substituting in
the above, we obtain rjφ = Xr)φx. Since r) is an extension of θ and
φ and Xφx are irreducible characters of H/N, it follows by Proposition
1.4 that φ = λ^x. Applying this to the complex conjugate character
φ9 we obtain φ = λcp% and thus 9? = Xφx. This yields λφ* = Xφx and
X2φ* =: φ\

Now o(η) = o(^). We have detOy*) = det(λ^) = Xf άet{η) where
/ = η{l) is a power of p. It follows that o(λ) is a power of p,
and since p > 2, λ is a power of λ2. Since <£>* = λ2<£>% we obtain
φ* == λ<^x = 9?. Since xeG was arbitrary, φ is invariant in G and
we have thus shown that e(G/N) = 1.

We may now assume without loss that N = 1. In the notation
of [6], P has r.cc.l and by Theorem C of that paper, either P has an
abelian subgroup of index p or else \P: Z(P)| = pR. It follows
that either P has a characteristic abelian subgroup of index p or
|P: Z(P)| ^ p3. We claim that there exists A<\G,AQP with
\P: A\ = p and A abelian. If this is not the case then |P:Z(P)| ^ p\
Let S be an £y subgroup of M. Then £7 = [P, S] <| G since for
geG, Sg = S* for some a? e P. We claim that ?7 £ Z(P). Otherwise
F = Z7Z(P) > Z(P) and we choose Y <\ G, maximal such that
Z ( P ) ^ Γ < F . Let C/Y=CGιr(V/Y). Then 7/7 is a faithful
irreducible G/C module. Now \V/Y\^p3 and p^5 and hence it
follows from Proposition 4.3 that p)f\G/C\. Since έ?p'(G) = (?, it follows
that G - C and thus [ F, G] s Γ. In particular [ C7, S] s Γ Π U < U.
Since U = [P, S] = [P, S, S], this is a contradiction and thus ?7 S Z(P).
It follows that Z(P) a P Π ̂ P (G).

Since P is not abelian, P/Z(P) is not cyclic and thus G\^V(G) is
not cyclic. It follows that there exists a subgroup Mo <j G, with
M Φ Mo and \G: Mo\ = j>. Now ^P(MO) = Λf0 Π P is not an Sp subgroup
of Af0. By induction, Λf0 Π P is abelian. Since |P: M0 Π P\ — p and
Λf0 Π P <] G, the claim is established and A exists.

Suppose X is a linear character of A which is not invariant in
P. Let Γ = ^ ξ ( λ ) . Then, P n Γ = A and hence p\\G: T\. By
Corollary 1.3, it follows that e(T, A, λ) = 0 and p2\\G: T\. Since λ
is obviously a p-character, it follows from Corollary 3.4 that T/A
has a normal Sp subgroup, of order exactly p. Let U be the group
of linear characters of A. Then G/A acts on C7 and we let Z = Cu(P/A).
The above argument shows that if ue U — Z, then CGM(%) has a
normal Sp subgroup of order p.

Let P/A = <x> and let TΓ = [U, x). Then the map f:u-+[u, x]
defines a homomorphism from U onto PΓ and ker f = Z. Set F = G/A
and Po = P/A <| Y. Now CΓ(P0) has index dividing p — 1. However
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έ?p'(Y) = Y and it follows that Po Q Z(Y). Therefore, for ye Y and
ue Z7, we have f{uv) = f(u)y and / is a homomorphism of F-modules.
Also, from PoξΞ=Z(Y), it follows that Y has a normal p-complement
and thus so does every subgroup.

Since P is not abelian, A §£ Z(P) and it follows that x acts
nontrivially on U. Therefore W > 1 and hence F = W 0 Z > 1. Now
choose w e 7 , w Φ 1. Let if be the normal ^-complement of Cγ(w).
Then iΓ fixes the inverse image of w under /, which is a coset of Z.
It follows (by Theorem 1 of [2] for instance), that K fixes some
element ue U with f(u) = w. In particular, u$ Z so CF(w) has the
normal Sp subgroup, Pl9 of order p. Now K is a full ^-complement
for Cγ(u) since CF(%) g Cγ(w). Hence Cγ(u) = K x P1 and

CΓ(w) = KxP.xP,.

Now, CF( F) g CF(w) and thus has a normal Sp subgroup. Since
<?P(Y) = Po, Po is a full Sp subgroup of Cr(V).

Now suppose v e V with Px §S C(i ). Let P2 be the subgroup of
order p in Cγ(vu). Then P2 Φ P1 and P2 ^ Po. Furthermore, since
/(w) = w9 P2 g CF(w) g Cγ(w) and thus P2 g PQPλ. We may therefore
choose y ePt with #?/ e P2. Then ut> = (WP = u*yvv — uxvy. However,
w = f(u) — u~~ιux and ux = uw. Hence uv = uwvy and [y, v] — v~~yv — w.

Since wy = yw, it follows that 1 = [yp, v] = wp and w has order p.
Since w e V was arbitrary, F is elementary abelian. Also from
[y, v] = w, it follows that [P19 v] — ζwy. Since v e V was arbitrary,
not centralized by P19 it follows that [Plt F] = <w>. Therefore
has codimension 1 in F. Now choose w* e C^PJ with
Repeating the above reasoning with w* in place of w, we conclude
that [PL*, F] = <w*)>, where Pf x Po is a normal Sp subgroup of
Cγ(w*). By the choice of w*, Px g CF(w*) and thus P1QP^xP0.
Since [Po, F] - 1, <^> - [P19 V] g [P*, F] - <^*>. It follows that
CF(Pi) = <w> and hence | V\ = p2. Given any basis {v, w} for F, the
above argument shows that there exists y e Y with [y, v] — w and
thus Y acts irreducibly on F. Since p > 3, Proposition 4.3 applies
and p | Ί Y": CF(F)|. It follows that Y centralizes F which is a contradic-
tion. The proof is complete.

COROLLARY 5.3 If p> 3, then u(l) = 2.

Proo/. It suffices to show u(l) £ 2. Let e(G, N, θ) = 1 with ^ a
^-character and G/N solvable. If έ?p(G/N) = H/N is an Sp subgroup
of G/N, then by Lemma 1.6, d.l.(H/N) ^ 2 and nothing remains to
be shown. Otherwise H/N is abelian. Choose an irreducible con-
stituent ψ of ΘH which is invariant in U, where U/H = έ?p,(G/N).
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(Lemma 4.2). Let T = ^(ψ). Then έ?p(T/H) = 1 and e{T, H, f) ^ 1.
If e(T, H,ψ) = 0 then since v(0) = 0, v\\T:H\ and p2\\G:T\ by Corollary
1.3. Thus p2J(\G: H\ and the result follows. If β(T, H, ψ) = 1 then
pJf\G: T\ and the result follows from v(l) = 1.

6* The assumption p > 3 was used twice in the proof of Theorem
5.2. In this section we give examples to show that both uses were
essential.

EXAMPLE 6.1. Let P be the group of matrices of the form

= M(x, y)
1
0

0

X

1

0

V
X3

1

where x, yeGF(2Ί). Then \P\ = 36 and

P' = Z(P) - {M(0, y)\y e GF(21)} .

Let XeGF(2Ί) have order 13. Then the map M(x, y)-+M{xX, yX") is
an automorphism of P of order 13. Denote this automorphism by oλ

and let M be the split extension P <V;>. Now GF{2Ί) has an
automorphism r of order 3 and we let τ act on M in the natural
manner, with (σλ)

τ = oy. Let G = M <Y>. We claim that e(G) = 1,
but ^3(G) = P is not abelian.

It suffices to check that every irreducible character of P is stabiliz-
ed by some element of order 3 in G/P. Now τ fixes the two linear
characters of P whose kernel is [P, r]. It is not hard to show that
P <V>/[P', τ] has center of index 33 so all of its irreducible nonlinear
characters have degree 3. It follows that τ fixes all six nonlinear
irreducible characters of P with kernel containing [P\ r] e Since σ
acts transitively on hyperplanes of P\Pf and of P', it follows that
every irreducible character of P is conjugate in M to a character
fixed by τ and this proves the claim. Note that G contains no normal
abelian subgroup A of index 3 in P. Also, d.l.(P <V>) = 3.

EXAMPLE 6.2. Let A = ζxι<f x2, yu y2y be elementary abelian of
order 34. Let Y = <V>x S where σ has order 3 and S~SL(2, 3), Let
Y act on A so that S acts in its natural manner on ζxly x2y and on
<J/i, Viϊ with xι —> yι and x2 —* y2 defining an S-isomorphism. Let
%ϊ = %iVi and 2/i = yi. Let G be the split extension AY. Now
^3(G) = A <̂σ)> is not abelian.

To show that e(G) = 1, it suffices to show that every linear
character of A is fixed by some element of Y of order 3. Let U be
the group of linear characters of A and let F g [/ be those whose
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kernels contain ζyu y2y. The unique element of order 2 of 7 fixes
no nonidentity element of U and hence for 1 Φ u e U, Cγ(u) is a
3-group. Now the 3-subgroups of Y, either contain σ or else have
order 3. Since Cσ(σ) = V, it follows that if u e U - V, then \Cγ(u)\ ^ 3.

Each subgroup of order 3 of Y must centralize a subgroup of
order at least 9 in U since U is elementary abelian of order 34.
Since CF( V) = <V>, it follows that each of the 12 subgroups of Y of
order 3, different from <V>, centralize at least six elements of U-V.
Since these sets are disjoint, this accounts for all 72 elements of
U — V and the result follows.

In example 6.2, even though the normal abelian subgroup A does
exist, the conclusion of Theorem 5.2 does not hold. Therefore, the
second assumption that p > 3 was essential. Note that Example 6.1
shows that u(S) = 3.
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RINGS OF QUOTIENTS OF Φ-ALGEBRAS

D. G. JOHNSON

Let <%f be a completely regular (Hausdorff) space. Fine,
Gill man, and Lambek have studied the (generalized) rings of
quotients of C(J^) = C{<%?\ R), with particular emphasis on
the maximal ring of quotients, QiJ^f). In this note, we start
with a characterization of Q(Jίf) that differs only slightly
from one of theirs. This characterization is easily altered
to fit more general circumstances, and so serves to obtain
some results on non-maximal rings of quotients of C ( ^ ) ,
and to generalize these results to the class of Φ-algebras.

We consider only commutative rings with unit. Let A be one
such, and recall that the (unitary) over-ring B of A is called a ra-
tional extension or ring of quotients of A if it satisfies the following
condition: given b e B, for every 0 Φ bf e B there is a e A with ba e A
and ί)'α ̂  0. A ring without proper rational extensions is said to be
rationally complete. For the rings to be considered here (all are
semi-prime), the condition above can be replaced by the simpler con-
dition: for 0 Φ be By there exists aeA such that 0 Φ bae A ([1], p.
5). Accordingly, we make the following

DEFINITION. If B is an over-ring of A and 0 Φ b e B, say that
b is rational over A if t h e r e is aeA w i t h 0 Φ bae A.

Let mβJ2f denote the minimal projective extension of β^ and
τ: mβ^* — > β ^ the minimal perfect map ([2]). In [1], it is shown
that Q(£f) is a dense, point-separating subalgebra of D{mβ£f), the
set of all continuous maps from mβ^f into the two-point compactiίi-
cation of the real line which are real-valued on a dense subset of
mβ^f (see, also, [3]). Since Q{<£?) contains every ring of quotients
of C(£f), this leads to

PROPOSITION 1. If B is any ring of quotients of C(£f), then there
exist a compact (Hausdorff) space %/ and minimal perfect maps a
and 7 such that B is a point-separating subalgebra of D{^/) and the
following diagram commutes:

693
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^/ is the obvious identification space, and the proof consists of a
routine argument to show that the quotient map a is closed, whence
& is Hausdorff. Since C(<%?) £ B, the existence of 7 follows im-
mediately. (Note that, although D(mβ<^f) is an algebra, D(f/) for
other spaces %/ is, in general, only a partial algebra.)

For our purposes, it is convenient to view C(<^f) as a subalgebra
of D(βjgf). This allows us to decree that all spaces are compact
(Hausdorff).

Let us say that any space ^ that is situated in a commutative
diagram of the form

where all maps are minimal perfect, is near to J2f. (Of course, the
existence of 7 automatically guarantees the existence of a.) Note
that we have already adopted the convention of identifying / e Ώ(<Sf)
with its image / o 7 in D(^/) whenever convenient. With this con-
vention, if A is a subalgebra of Ό(β/) and / e Ό(^/) then we may
consider / as an element of an over-ring of A—D(m^)—, even if
there is no subalgebra of Ό{W) containing both A and /.

Now let A be a Φ-algebra that is closed under bounded inversion;
i.e., an archimedean lattice ordered algebra with a multiplicative
identity that is a weak order unit, in which I/a e A whenever l ^ α e i .
Let gf — ̂ fέ(A), the space of maximal ideals of A with the hull-
kernel topology. It is shown in [4] that A is (isomorphic with) a
point-separating subalgebra of D(^f). If <?/ is any space that is
near to ^ let A?/ — {/ e D(W): for each nonempty open set ^ in
ĝ , there are a nonempty open set 3^ £ ^ and g eA such that
f\7/. = g\r). Note that Af/ is always a lattice. However, it need
not be an algebra:

EXAMPLE. Let <%f = ^/, the one-point compactification of the
countable discrete space, and let A = C(<£f). Then A?/ = D(%/), which
is not an algebra.

REMARK. One readily shows that the open sets °Γ appearing in
the definition of A., can always be shown to have the form 7*~[ 5̂ ΓL
where 5^ is open in £f. It follows that

PROPOSITION 2. ( i ) Every element of AΨ is rational over A*
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{and, hence, over A).
(ii) Ay contains every rational extension of A and A* in D(?/).

Proof. ( i ) Let 0 Φ f eA?y, and let ^ be a nonempty open set
contained in coz/. Since feA^, there exist a nonempty open set
T = rr[^]£ U, where 3^ is open in Jg^ and fcei* such that
f\r = h\r* Choose 0 Φ g e A* with cozΊ? s 3*ί. Then 0 Φ fg=hg e A*.

(ii) Let f eD(%/)\Ay. Then, there is a nonempty open set ^
such that / agrees with no member of A on any nonempty open sub-
set of <%/. Choose ge A* with φ Φ cδzg £ <^.

There is no he A with hg Φ 0 while /fee A. For, such h would
agree with a unit ht of A on some nonempty open subset y of Ήf
(since A is closed under bounded inversion), whence

while (l/hjhf e i , a contradiction. Thus, / is contained in no rational
extension of A.

Although A^ may contain many different rational extensions of
A, it is not true that it is the union of such extensions, as is seen
in the example preceding Proposition 2. However, in those spaces if
for which A^ is an algebra, A^ is a Φ-algebra and is the largest ring
of quotients of A that "lives on" g/. In particular, this happens when
Ώ(β/) is an algebra (e.g., when g/ is basically disconnected or an F-
space). Hence, Am^ is a Φ-algebra, since m<%f is extremally discon-
nected, and we obtain the following generalizations of results in [1].

THEOREM 1. Am^ is rationally complete) thus, Amfr — &(A), the
maximal ring of quotients of A.

THEOREM 2. Am^ is uniformly dense in D(

THEOREM 3 ([1]). D{m<%f) is rationally complete.

The proofs of Theorems 1 and 3 are virtually identical, and are
related to one found on p. 30 of [1]; we prove 1. To do so, we will
employ the following characterization of rational completeness (see
[1], P. 7)

The commutative ring B is rationally complete if and only if it
satisfies: for any dense ideal I of B, every element of Hom5 (I, B) is
a multiplication by an element of B. (In the present setting, an
ideal I of Amar is dense if and only if U{coz f:fel} is dense in

Proof of Theorem 1. Let I be a dense ideal in A, and let
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φeΉ.omΛm^(I, AnΛr). By Zorn's lemma, choose a family
of open sets in m^ satisfying:

( i ) ^ = U ^ is dense in m ^ ;
(ii) the ^/κ are pairwise disjoint;
(iii) for each tc, there is fκ e I such that fκ is bounded away from

zero on <%sκ and both fκ and 0(/Λ) agree with members of A on ^ .
Let feD{mJί?) satisfy

for each fc G K. This is possible, since m^f is extremally disconnected,
so m<^f — β^/.

If g el and x e %fκ, then

(x) = φ(g)(x) .

It follows that φ is multiplication by /. Clearly, /G^4 m r , and the
proof is complete.

Proof of Theorem 2. Let / e D(mJ?f), ε > 0. By Zorn's lemma,
choose a family {%SK: iceK} of open sets in m&f which satisfies:

( i ) ^/ = \J %fκ is dense in m ^ ;
(ii) the ^/κ are pairwise disjoint;
(iii) for x, y e ^κ, \f(x) — f(y)\ < ε (in particular, / is real-valued

on ^ ) .
For each tceK, choose xκ e ^κ> and define g: ^ —+ R by

Since m , f = /9^, ^ can be extended to g e D{m<3f). Clearly, g e Am^,
and

Now the analogue of Proposition 1 for Φ-algebras is routinely
obtained.

In case & — m<^ and A — C{^) one readily translates the de-
finition of A2/ (using the fact that m ^ 7 is extremally disconnected,
and hence that every dense subspace is C*-embedded) as follows:

Am^ — lim {C(£f): Sf is a dense open subset of ^f) .

Thus, the Fine-Gillman-Lambek result that this direct limit is
follows from Theorem 1.
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It is easily seen that any Φ-algebra A is a rational extension of
its bounded subring A*, and hence that (A*)^ — Ay for any space ^/
near to ^f/{A). Thus, if A is closed under uniform convergence, then
&(A) = &(A*) = Q(^//(A)), since A* = C{^f/{A)). In the general
case, this may fail to hold. (So, more generally, A?/ Φ
even when A S C

EXAMPLE. Let A = Q(R). Then (see [1], p. 34),

A = &(A*) Φ D(mR) = D(M(A*)) - Q(M(A*)) .

For any Φ-algebra A and any space & near to ^ — ̂ /?{A), every
subalgebra of A?/ that contains A is a ring of quotients of A. Of
interest are those that separate points of ^/\ prime candidates are
the maximal subalgebras of A/y containing A, which are easily seen
to exist.

The results that follow are obtained using ideas and methods
employed by Nanzetta in [6] (see his 2.1, 2.3, 4.1). Conversion of his
arguments to the present setting is largely an exercise in careful
bookkeeping, and the details are omitted.

THEOREM 4. If B is a maximal subalgebra of Af/, then B is a
lattice (hence, a Φ-algebra).

We will use the term "maximal subalgebra of A,/' to denote
only those that contain A.

DEFINITION. Let B be a subalgebra of D($s). A function / e
is said to be locally in B if each point of W has a neighbor-

hood on which / coincides with some member of B. The subalgebra
B is said to be local (in D{%/)) if each member of Ό(^/) that is locally
in B is a member of B.

THEOREM 5. Every maximal subalgebra of A^ is local.

As in [6], this fact yields the following result.

THEOREM 6. Let B be a maximal subalgebra of AV1 and let £f
be a stationary set of B. If \6^\ > 1, then

( i ) £f is closed;
(ii) £/* is nowhere dense;
(iii) ,9* is connected.

COROLLARY. If ^/ is totally disconnected, then every maximal
subalgebra of Av separates points of %/. (Note that this may occur
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even when A^ is not an algebra: see the example preceding Proposi-
tion 2.)

It is not known whether every space ^/ near to <%f supports
(i.e., is the structure space of) a ring of quotients of C{gf). Ap-
parently, an answer to this question awaits a more systematic des-
cription of the collection of spaces near to

Note that (Ay)*, the set of bounded elements of A^, is always a
Φ-algebra. Hence, it is always a ring of quotients of A*—the largest
bounded ring of quotients of A* in D(^/). As mentioned above, it is
not known whether (A&)* always separates points of J^; it clearly
does so if and only if A^ does. However, the example that follows
shows that A& may separate points in ^/ even though ^/ supports
no ring of quotients of A.

EXAMPLE. Let £f = {(x, sin (1/x)); x e (0, 1]}, let g? denote the
one-point compactiίication of Sf, and let <%/ = ^ (j ({0} x [-1, 1]). Let
A denote the Φ-algebra of all functions / e D(<^f) that satisfy the
following condition:

There is a real number xQ, 0 < xQ < 1, and a real polynomial p
such that

fix, sin —) = p(—) for 0 < x < xQ

\ x/ \χ /

(cf. [4], 3.6). Then (A*)* = C&), whereas no subalgebra of
containing A separates points in ^/ ([6], Theorem 4.6).

In passing, it should be noted that the development here has
proceeded independently of [1]. The only results from that work
that have been employed in an essential way came from Chapter 1
of [1], which consists of standard facts about rings of quotients of
commutative rings (see, e.g., [5]). Thus, one can rapidly and ef-
ficiently reach the high points of the theory developed in [1] along the
lines suggested by this note.
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TRANSLATION PLANES CONSTRUCTED
FROM SEMIFIELD PLANES

NORMAN L. JOHNSON

Let π be an affine plane of order q2 that is coordinatized
by a "derivable" semifield S? = (S^, + , •). If (&*, + ) is a
right vector space over F = GF(q) then a plane πf may be
constructed from π using Ostrom's method of "derivation."

The purpose of this article is to examine the planes π'
and their coordinate structures (<&", + , *). It is shown, in
particular, that (£f\ + , *) is a (right) quasifield which is
neither a nearfield nor a semifield. Furthermore, it is shown
that π' is always of Lenz-Barlotti class IVa. 1.

The automorphism groups of semifields of square order
are also briefly investigated.

1* The Construction of Quasiίields from Derivable Semifields*
We will assume that the reader is familiar with the concept of "deri-
vation." For background material the reader is referred to [2], [4],
[6], and [7].

DEFINITION 1.1. A semifield Sf — (£f, + , •) of order q2, q = pr, p
a prime, will be said to be derivable if and only if (S^ + ) is a vector
space over GF(q) — F where F gΞ £f and x a — xa (or a x = ax)
is scalar product.

If a semifield £f is derivable then either Sf or dual £f (i.e.,
right multiplication becomes left multiplication, and conversely) is a
right vector space over GF(q) and hence either the affine plane π co-
ordinatized by S^ or an affine restriction of the dual of the projective
extension of π is derivable (see sections 3 and 4, [7]).

A projective plane is a semifield plane if and only if it can be
coordinatized by a semifield or if and only if the plane is (P, l)-
transitive V points Pel, and (Q, Z)-transitive V lines ZeQ and Q_el.

If Q, I are chosen to be (oo) and Zoo, respectively, then the coor-
dinate structure obtained is a semifield. In dualizing the semifield
plane π we shall let (°°)*->L and then delete L to obtain an affine
plane coordinatized by a semifield dual to a semifield which coordi-
natizes π.

DEFINITION 1.2. Let &* — {Sζ + , •) be a derivable semifield.
S^ is subcommutatίve if and only if aa — aa for all a e S^ and for
all a e GF(q).

DEFINITION 1.3. A semifield Sf of order q2 containing GF(q) is

701
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a weak nucleus semifield O^-semifield) if and only if (ab)c = a(bc)
whenever any two of α, δ, c are in GF(q).

Note that a tίm-semifield of order q2 is derivable and a derivable
subcommutative semifield is a 'wm-semifield.

Let y be a derivable semifield which is a right 2-dimensional
vector space over GF(q). Let {1, t}, t e £S — GF(q) be a basis for S?
over GF(q).

Then let β{ta) = th{β, a) + &(/9, α) and (ta)(tβ) = ί/(α, /S) + #(α, /5)
for α, β e GF(q) where h, k, /, g are bilinear functions: GF(q) x G-F(g) —>
GF(q) which introduce no zero divisors into the multiplication.

Then multiplication in the semifield is given by:

(ta + δ)(tβ + Ύ) = t(f(a, β) + h(δ, β) + ay)

+ (0(α, /8) + fc(3, £) + δy) .

Thus, if S^ is any derivable semifield then either the multiplica-
tion of &* or dual S? is of the above form.

THEOREM 1.4. Let & — {&, +, •) be a derivable semifield which
is a right vector space of dimension 2 over F = GF(q), q — pr, p a
prime. Let the multiplication in S^ be given by:

{ta + δ) - (tβ + 7) - t(f(a, β) + h(δ, β) + ay)

+ (g(a, β) + k(δ, β) + δy) V a, β, δ, y e F

where /, h, g, k are bilinear functions: F x F-+ F.
Define a system ^ * = ( ^ +, *) when the * -multiplication is

given by

t * a = ta, (ta + β) * y = ί(α:γ) + /9τ and if δ ^ 0

(to + /3) * (ίδ + T) = tp + Z where
(1) h(δ,μi) = l,
(2) k(δfμ1) + δμ2 = y9

( 3 ) /(α, /iθ + h(p, μj + aμ2 = β,
( 4) g(a, μt) + Λ(̂ , ^0 + pμ2 = I
Va, β, δ Φ 0, 7 G ί 7 where μx, /̂ 2 and thus p,Xe F are determined

from the above equations.

Then ^ * = ( ^ + , *) is a (right) quasifield.

Proof. The affine plane π coordinatized by £f is derivable (see
[2]? [6], [7]). Ostrom [6] has shown that the plane πf derived from
π is a translation plane and may be coordinatized by a system

, *) 3 ta = ί * α, (to + /3) * (ίδ + 7) = ί/O + Z
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if and only if (to + p){tμt + μ2) = tβ + 1 where δ(tμ, + μ2) = t + 7
for δ Φ0, and (to + /9) * 7 = (to + /9)7 for all α, /?, δ, 7 6 G.F(g). Our
equations are obtained by merely equating vector components.

We shall now specialize (1.4) to the case where £f is a 'wm-semi-
field.

Knuth [4] has shown that if Sf is a ttm-semifield then a basis
{1, t} can be chosen so that at — taσVa e GF(q) where σ is some auto-
morphism of GF(q). In this case, h(δ, β) = δσβ and k(δ, β) = 0 for
all δ,βe GF(q).

Thus h(δ, μj = δaμ1 = 1 implies ^ = δ~σ and fc(δ, ^x) + δμ2 = 7
implies that μ2 = δ " ^ for S ̂  0. Thus /(α, ̂ ) + h(ρ, μj + aμ2 = ^
implies that /(α, δ~σ) + ρσδ~σ = aδ^y = /3. Hence

p = ((β- f(a, δ~°) - αδ-^δ ') ' - 1 = (/5 - f(a, δ~<>) - aδ^yY^δ .

Also, g(a, μt) + Λ(|O, μλ) + ^ 2 = ^ implies that g(a, δ~°) + pδ~lnr = Z.
Thus, we have the following theorem.

THEOREM 1.5. If S^ = (^i +, •) is α ^eαfc nucleus semifield of
order q2 3 multiplication in £f is given by

(to + δ)(tβ + 7) = t(f(a, β) + δσβ + en) + (g(a, β) + δy) .

Define a system ^ * = (S^, +, *) by defining a *-multiplication
as follows:

t * a = to, (to + δ) * (ί/5 + 7) - ί(δ - f(a, β~σ) -

+ g(a, β~σ) + (δ - f(a, β~σ) - α/9~17)σ"17

for δ Φ 0 and σ an automorphism of GF(q), and

(to + δ) * 7 - (to + <?)7Vtf, β, δ, 7 6

Then ^ * is a (right) quasifield.

REMARKS 1.6. Under the assumptions of (1.5)
( i ) a*a = a* cf^Va e GF(q) and Vα e ^ -
(ii) (α * b) * £ = a * (6 * c) whenever any two of α, 6, c are in

Proof. The proof of (1.6) is routine and is left to the reader.

2* Automorphisms of derivable semifields which fix GF(q)
element wise* The semifields of order 16 have been tabulated, [3],
and are all isotopic (Sec. 3, [4]) to one of two weak nucleus semi-
fields, each of which admits a group of automorphisms of order 3
which fixes GF(q) elementwise (see [4]). The multiplications for the
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two systems are given by (ta)(tδ) = taΨ + a2δ, βt = tβ2Va, δ, β e GF(4)
and (ta)(tδ) = ωa2δ, βt = tβ2 where ω is a primitive root of GF{4).

The semiίields of order 16 are exceptions among derivable semi-
fields of order q2 in that no derivable semifield of order q2, q > 4 can
admit such automorphism groups.

THEOREM 2.1 Let (£f +, •) be a derivable proper semifield of
order q2. Then 6^ is of order 16 if and only if a derivable isotopic
image of £f admits a group of automorphisms of order q — 1 which
fixes GF(q) elementwise.

Proof. Suppose the indicated automorphisms τp that the form
tτp = tpVp e GF(q) - {0}. (Note: This would be true by (2.2) if &
is a ww-semifield and σ Φ 1, but we are not necessarily assuming this
property.) If Sf is a left vector space over GF(q), consider dual £f.
Let {1, ί} be a basis for &* or dual SK

((ta)(tβ))τp — (tf(a, β) + g(a, β))Tρ where /, g are bilinear functions:
GF(q) x GF(q) — GF(q). Thus,

(t(pa))(t(pβ)) = t(pf(a, β)) + g(a, β)

which implies that pf(a, β) = f(ρa, pβ) and g(a, β) = g(ρa, pβ). Since
we have q — 1 automorphisms τp these previous equations are true for
all a,β,ρe GF{q) - {0}. If characteristic F Φ 2 then g(2ρ, 2ρ) = g(2,2).
But g is bilinear so g(2, 2) = 4#(1, 1). Also g(a, a) = g(l, 1) so that
40(1, 1) = f/(l, 1). Moreover g(l, 1) Φ 0 since ί2 - ί/(l, 1) + ^(1,1) and
multiplication of nonzero elements is a loop.

Hence 4 = 1 so that characteristic F = 3.
Since g(pa, pβ) = #(#, /S)Vα, ftpe GF(g) - {0} then

0(1, (α: + 7)-1) - 0(α + 7, 1) = 0(α, 1) + g(Ύ, 1)

for a + 7 ^ 0.
Thus, 0(1, (a + 7)"1) - (0(αr, 1) + 0(7, 1)) = 0, which implies that

0(1, (a + 7)-1) + 2(0(α, 1) + 0(7, 1)) - 0.
Clearly, 2^/9, 1) = g(2β, l)VβeGF(q), and g(2βf 1) = 0(1, 2/9"1), so

0(1, (a + 7)-1) + 0(2α, 1) + 0(27, 1)

= 0(1, (α + 7)-1) + 0(1, 2a-1) + 0(1, 27"1)

= 0(1, (a + 7)-1 + 2a-1 + 27-1)

= 0(1, (a + 7)-1 - (α-1 + 7-1)) .

If {a + 7)-1 Φ a~ι + 7"1, then

t{t((a + 7)-1 - (a-1 + 7-1)) = tf(l, (a + 7)-1 - (α^1 + 7"1))
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which cannot be the case. Hence (a + T)" 1 — a*1 + 7"1. It is easy
to see that in this situation GF(q) = GF(3).

But then S? would be a field ([4], p. 208) contrary to our as-
sumption.

Hence, characteristic F = 2. Then, using the bilinearity of g we
may argue as before (except that — 1 = +1) to obtain (a + y)~ι =
a~ι + 7-1 from which it follows that GF(q) = GF(4).

To complete the proof of (2.1) we must show that the automor-
phisms τp have the form tτp = tp.

Let 7Γ be the affine plane coordinatized by S^ and let π0 be the
subplane of π coordinatized by GF(q).

The automorphism group of S* induces a collineation group of
π which fixes π0 pointwise. In the derived plane there is a collinea-
tion group of order q — 1 fixing the line {(x, y)\χ = 0} pointwise.
(The validity of this last statement may be seen by choosing coordi-
nates for the derived plane so that π0 in π is the point set {(x, y) \ x = 0}
in the derived plane. See e.g. [6], Theorem 10.)

Thus, the derived plane πf admits a (P, x = 0)-homology group of
order q — 1 (see [2], remarks following (2.6)). Moreover, this group
must fix the set points of π'Q on the line at infinity of the derived
plane where π'o is the line x = 0 in π (see [6], Theorem 7). Hence,
P — (a) where a e GF(q). If a Φ 0 we can rechoose t in S^ so that
P is represented by (0).

Now {(tδ + aδ, tβ + aβ)} in π is the same as {(tδ + β, taδ + aβ)} in
π' ([6], Theorem 10). If we let t - t + a then {(tδ, tβ)} is {(tδ + β, 0)}
in τr\ Hence, we have relabeled {(x, y)\y — xoc) in πr by {(a?, y)\y = 0}.
Thus, P = (a) is relabeled by (0).

Now a group of ((0), x = 0)-collineations which fix πJ induce auto-
morphisms of the form τp 3 (ta + β)τp — t(pa) + β in £f (see [2],
(2.10), and the proof of (3.10)).

Hence (2.1) is proved.

PROPOSITION 2.2. Let (£f, + , )be a wn-semifield of order q2 with
multiplication defined by (ta)(tβ) = tf(a, β) + g(a, β), δt — tδ% σ an
automorphism of GF(q), Va, β, δeGF(q). If σ Φ 1, and if τ is any
automorphism of -(S^ + , •) fixing GF(q) elementwise then (ta + β)τ —
t(pa) + β for some p e GF(q).

Proof. (at)τ = aτtτ = at\ Let V = tp + θ for some ^, θ e
Then αίΓ = ta7> + α^ and (at)τ = (taσ)Γ, ί τασ = fyλxσ + ^α 0 . Hence,
α^ = θaa which implies θ — 0.

THEOREM 2.3. 1/ a derivable semifield S^ = (£f + , •) of order
q2, q > 2 admits a nontrivial automorphism group & which fixes
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GF(q) — F elementwise and \*S?\\q then 5f is an elementary abelian
2-group whose order is strictly less than q.

Proof. Without loss of generality, suppose that ( ^ + ) is a right
vector space over F. Then it follows directly from [5], Theorem 1,
that if τ e 2? and {1, t} is a basis for ( ^ +) over F then P = t + 7
for some γ e ί 7 .

Let δ(tβ) = th(δ, β) + k(δ, β),

(ta)(tβ) = tf(a, β) + g(a, β)Va, β, δ e GF(q)

where /, g, h, k are bilinear functions: GF(q) x GF(q) —» GF{q).
Then, (ta)(tβ)r = (tf(a, β) + g(a, β))τ if and only if

(ta)(tβ) + t(h(7a, β) + arγβ)

, β) + Ί2aβ = (ta)(tβ) + τ/(α, β) .

Equating vector components:
(1) h(ya, β) = -ayβVa, β and
(2) fc(τα, /3) + Ί2aβ = yf(a, β).
If a = 7"1 in (1), then λ(l, /9) = -/3. But, λ(l, /S) = /3. Λ î 7 is

of characteristic 2. Thus, ^ is an elementary abelian 2-group.
Now assume \& \ = q. Then, by (2), k(l, β) + Ύβ = Ύf(Ύ~\ β) =

yβ so that /(T" 1, β) = β for all yeF. But
1, β) = o

since / is bilinear and .F is of characteristic 2.
Hence, (2.3) is proved.

COROLLARY 2.4. If s^ = ( ^ +, •) is α wn-semifield of order q2

which admits a nontrivial automorphism group & such that \ gf | | q
then \&\ = 2.

Proof. By (2.3)(2), k(ya, β) + Ί2aβ - 7/(α, β).

We may choose te<9* — Fa k(yα, β) = 0 Vα, β,yεF so 72αβ =
'X/l̂ j /3) =* ̂ /̂5 = /(α, /3). Clearly | S? \ = 2 for otherwise it would
follow that 7α/9 = ^tf/5 for 7 =£ ̂ Y"iα, βeF.

COROLLARY 2.5. If Sf = {£ζ +, *) is α wn-semifield which admits
a group & of (2.4) then there is a teS^ — F such that

(to + δ)(tβ + 7) - t{aβf + δβ + on) + {g{a, β) + δy)

where g is a bilinear function F x F-^ F and f is a nonzero con-
stant in F.
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Proof. ^teS^ — Fs at = taσVa e F, σ an automorphism of F. By
(2.2), σ = l. By (2.4), | ^ | = 2and if res'st* = t + ff(a, β) = aβf.

COROLLARY 2.6. Le£ (S^ +, .) satisfy the hypothesis of (2.3)
, +, *) ίΛe quasifield of (1.4). Consider the following distributive

law:

/or αM c, 6G ^ αm£ /or some ae F.
Then
( i ) if char i*7 ̂  2 this distributive law cannot hold for any non-

zero ae Fy

(ii) if char i^= 2 and ( ^ +, •) is a ttm-semifield then the dis-
tributive law holds for at most a single nonzero element of F,

(in) if char F = 2 this distributive law cannot hold for all ae F.
Thus, in particular, ( ^ +, *) is not a semifield.

Proof. The given distributive law induces a ((<*>), # = 0, 7Γ0)-col-
lineation in the affine plane coordinatized by ( ^ + , *) and hence
([2], see the proof of (3.10)) an automorphism group in (S^, + , •) as
in (2.3).

We have seen that (S* +, *), if S? is a w^-semiίield, admits
some associative properties ((1.6) (ii)). In general, however, we note
that (£f, +*) cannot be associative.

THEOREM 2.7. If £f = ( ^ +, •) is a derivable semifield 3 (S* +)
is a right vector space over GF(q) then (S^ +, *) is neither associative
nor distributive.

Proof. The affine plane coordinatizing (£^ +, •) is ((oo), # = 0,
πo)-transitive ([2], [6]) and thus (£f, +, *) admits a group of auto-
morphisms of order q which fix GF(q) element wise. But regular
near fields clearly cannot admit such automorphisms. The irregular
near fields all have order p2 where p is a prime. If Sf has order p2

then S* is a field ([4]) in which case (S^, +, *) is a quasifield which
coordinatizes a Hall plane.

3. The Knuth multiplication. Let ( ^ +) = {GF(q2), +). Let
t e 6^ — GF(q) and define at = taσ where σ is an automorphism of
GF(q). The functions f(a, β) = a^β*f g(a, β) = apβδg where ^ Z, p, δ
are automorphisms of GF(q), a, βeGF{q),f, g constants in GF(q) are
bilinear functions: GF{q) x GF(q)^GF(q).

at = taσ, (ta)(tβ) =
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will define multiplication of a semifield £f — (S^, + , •) provided no
zero divisors are introduced by the choices of σ, <yV", X, p, <5, f and g.
If no zero divisors occur, we shall say that the semifield so defined
is a Knuth Semifield.

THEOREM 3.1. (Knuth [4]). Let

and
(ta + δ)(tβ + 7) = t[a^βχf + an + <5"/3]

+ [a'β'g + <5τ]Vα, β,δ,ye GF{q)

where <yy] X, σ, p, δ are automorphisms of GF(q) and f, g elements of
GF(q).

(a) Iff—Q and g is a nonsquare in GF(q) then the above mul-
tiplication defines a Knuth Semifield for an arbitrary choice of auto-
morphisms σ, p} δ.

That is, at = taa, (ta)(tβ) — apβ°g for arbitrary automorphisms
p, δ of GF(q) and g a nonsquare in GF(q) define a semifield.

(b) IffΦb and σ, /, g are chosen so that yσ+1 + fy — g = 0 has
no solutions in GF(q) and (^4^X9 p, δ) = (σ, σ~~\ σ, σ~2), (σ, 1, σ, 1),
(1, σ~\ σ~ι, σ~2) or (1, 1, σ~\ 1) then the above multiplication defines a
Knuth Semifield. That is, each of the following multiplications define
a class of semifields:

I. at = ta% (ta)(tβ) = taaβa-ιf+ aσβσ'2g
II. at = ta% (ta)(tβ) = ta°βf + aσβg

III. at = ta\ (ta)(tβ) = taβ^f + aσ^βσ~2g
IV. at = taσ, (ta)(tβ) = taβf + aa~λβg.
Furthermore, Knuth [4] has characterized types II, III and IV in

terms of the nuclei.

DEFINITION 3.2. Let (Q, +, •) be a ternary system. Let

{x e QI (ab)x = α(δaj)Vα, beQ} =

{x G QI (ax)b = α(cc6)Vα, & e Q} =

{£ G QI (xa)b = x(αδ)Vα, 6 G Q} =

will be called the right, middle, and ϊβ/ί [nucleus
of Q, respectively.

THEOREM 3.3. {Knuth [4]). Lβέ ( ^ + , •) be a Knuth Semifield
of order q2. Then GF(q) = ^V&sr = - ^ O ^ i/ α^ώ onϊτ/ i/ ^ is of
type II. GF(q) = ^ f < ^ — ̂ 4r^^ if and only if &* is of type III,
and GF(q) = <yK^#> = <sK&^ if and only if S^ of type IV.
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By applying (1.4) to (3.1), we obtain the following result:

THEOREM 3.4. Each of the following multiplications * (with field
addition) defines a (right) quasifield which is neither a semifield or
near field. If β Φ 0,

( 1 ) (ta + 8) * (tβ + 7) = t(δ - aβ-ιy)σ~ιβ + (δ - aβ-ιΊ)σ~ιΊ
+ a^rβ~σχg, g a nonsequare in F

( 2 ) (ta + δ) * (tβ + 7) = t(δ - aσβ~ιf - aβ~ιΊ)°~ιβ

+ (δ - aσβ~ιf - aβ-ιΊ)a~xΊ + ασ/3~σ~V, σ Φ 1, / Φ 0

( 3 ) (ta + δ) * (tβ + 7) - £(<5 - aσβ~σf - aβ-'ΊY^β

+ (δ - aσβ~σf - aβ-'ΎY^Ύ + a°β~σg, σ Φ 1, / Φ 0

( 4 ) (to + δ) * (ί£ + 7) - ί(δ - ^/S"1/ - aβ~ιΊY~ιβ

+ (δ - α/S"1/ - α/3-17)σ~17 + a^β^g, σ Φl,f Φθ

(β ) (ta + δ) * (ί£ + 7) - ί(δ - aβ~σf - aβ-^y-'β
+ (δ - aβ-°f - aβ-^y^Ί + aσ~ιβ~ag, σ Φ 1, / Φ 0.

, (to + <5) * 7 = t(ay) + δ7 where σ is an automorphism of F and
in cases (2) through (5) yσ+1 + fy — g Φ OVy e GF(q) and ^ ^ X auto-
morphisms of F in case (1).

Proof. See (1.4), (2.7) and (3.1).

4* The planes coordinatized by the ( ^ + , *) quasifϊelds* A
plane Σ is of Lenz-Barlotti Class IV.a.2 or IV.a.3 if Σ can be coordi-
natized by a (right) nearfield, and of Class V.I if Σ can be coordi-
natized by a semifield. Σ is of Class IV.a.l if Σ is coordinatized by
(right) quasifield but no coordinate system for Σ is a (right) nearfield
or semifield.

The planes coordinatized by the (£f, + , *) quasifields are there-
fore of L-B Classes IV.a.l, a.2, a.3, or V.

THEOREM 4.1. Let S? — (<9*, +, )be a derivable semifield3 (S^> + )
is a right vector space over GF(q). Let π be the semifield plane co-
ordinatized by S^. Ίt is derivable, so let π' be the plane derived from
π. Then π' is of Lenz-Barlotti Class IV.a.l.

Proof. We must show that π' cannot be of type IV.a.2, a.3, or
V.I.

Suppose π' is of type V.I, then πr is ((m), ̂ -transitive for all lines I
incident with (m) where m I L . By (2.7), (m) Φ (oo) since £?* = (£?, + , *)
is not a semifield. Clearly (m) is fixed by the full collineation group
of πf (otherwise πf is Desarguesian and every coordinatizing structure
is a field). Recall (see proof of (2.7)), ^ * admits an automorphism
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group of order q fixing F pointwise such that t —•» t + a for all ae F
(see (2.3) and (2.7)). Hence, m e F if π' is ((m), Z)-transitive.

We consider two cases:

( 1 ) (m) = (0), ( 2 ) m * ( 0 ) .

Case (1). If (m) = (0), consider changing coordinates as follows
in Sf (in π):

coordinate

(to,. + xz, tyι + 2/2)_^ϋ^_> (to2 + ^ ί̂ 2 + Vl)Vχl9 χ2i yu y2eF.

£fσ is a derivable semifield (see [2], the proofs of (3.6) and (3.7)).
The coordinate change appears as (xfy)~-+(y, x) in πf (see [2],

(3.7)) and thus induces a Hall coordinate system St£ B π' is ((°°), α; =
0)-transitive. Λ ^ , * is a (derivable) semifield. However, ^ > * is con-
structed from <9% = <5^σ in the same manner that ^ * is constructed
from S^ .*. we have a contradiction by (2.7).
(2) (m)Φ(0).

Choose t =t + m (recall meF) in ( ^ +, •). Then in π'

= {(a?, 2/) I x = to + /3,2/ = ί(αm) + (/3m)}

is the same as {(to + am, tβ + /9m) = (ta, tβ)} = y = 0 in π'. Hence,
by case (1) we have a contradiction.

Assume that π' is of type IV.a.2 or a.3. Then π' is ((P), (Q))-
transitive for some pair of points (P), (Q), P Φ Q.

Moreover, every collineation of π' must fix {(P), (Q)}. Therefore,
since ^ * admits an automorphism group of order q it must be that
P, Q e ί 7 or P, Q = <χ>.

Now if we can change coordinates so that S^J" is a nearfield and
&%* admits an automorphism group of order q, then we have a con-
tradiction since the order of an automorphism group of a nearfield of
order q\q = pr, r > 1) is never this large.

Let (P) = (a) and (Q) = (/9), α, β e F or α, β = oo.

Case (1). (a) = (oo). Since ^ * is not a nearfield (see (2.7)),
(β) φ (0). We can rechoose t in ^ (in π) so that ?/ = xβ is 7/ = 0
in π' (i.e., if t = t + β) and (oo) in π' is left fixed, Λ ^ * with the
basis {1, t} is a nearfield and admits q automorphisms.

Case (2). (a) Φ (oo), (β) ^ (oo), (a) = (0). We can move (0) to
(oo) by the (x,y)—+(y,x) coordinate change of ^ * of the previous
argument. Therefore, π' is ((oo), (7))-transitive for (7) Φ (0). Then,
we may rechoose t in «_9i> so that (7) is (0) in S^J" (or in π'). Since
S^& is a (derivable) semifield, S^J" admits an automorphism group of
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order q which is a contradiction.

Case (3). (a), (β) Φ (oo) or (0). First rechoose t in £s so that
(a) is (0), then repeat Case 2.

REMARKS. If (S^ +, •) is a derivable subcommutative semiίield
then a "derivable chain" (see [1]) can be constructed based on the
affine plane coordinatized by {S^, +, •)•

( ^ +, •) actually need not be finite to construct ( ^ +, *). That
is, Ostrom's "derivation process" extends for infinite translation planes.
We shall explore this in a later paper.
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QUASI-PROJECTIVE AND QUASI-INJECTIVE MODULES

ANNE KOEHLER

This paper contains results which are needed to prove a
decomposition theorem for quasi-projective modules over left
perfect rings.

An iϋ-module M is called quasi-projective if and only if for every
jβ-module A, every jβ-epimorphism q:M-~+ A, and every iϋ-homomor-
phism f:M—>A, there is an f eΈτιάR{M) such that the diagram

M

M—^A >0

commutes, that is, qof = / . An i?-module M is called quasi-injective
if and only if for every iϋ-module A, every jB-monomorphism j: A—>M,
and jβ-homomorphism / : A—+M, there is an / ' e ΈndR(M) such that
the diagram

0 >A-!-*M

>\/r
M

commutes.
The first section of this paper contains results which are needed

to prove a decomposition theorem for quasi-projective modules over
left perfect rings (Theorem 1.10). This decomposition is a characteriza-
tion for quasi-projective modules over left perfect rings. A ring is
left perfect if a projective cover (the dual concept of injective
envelope) exists for every left i2-module [4, p. 467]. It is known, for
example, that left Artinian rings are left perfect [4, p. 467]. Some
of the propositions are stated for semiperfect rings which are rings
such that every finitely generated module has a projective cover [4,
p. 471].

In the second section the decomposition for quasi-projective modules
is used to obtain a decomposition for quasi-injective modules over a
special class of rings. For these rings this decomposition characterizes
quasi-injective modules. This decomposition theorem (Theorem 2.5) is
specialized to the cases where the ring is quasi-Frobenius and where it
is a finite dimensional algebra.

It will be assumed that all rings have an identity and that the

713
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modules are unital. Modules will be left R-modules, and homomor-
phisms will be iϋ-homomorphisms unless otherwise stated. When S
is the centralizer of RM in the sense of Jacobson [8], the notation
will be abused and be written S — ΈndB(M). Actually, S operates
on the right is anti-isomorphic to EndR(M). The radical will mean
the Jacobson radical and be denoted by N. A direct sum of card (I)
copies of M will be written M1 unless card (/) = n < co, and then
Mn will be used in place of M1. Also Σ*U®Λf/(i) is a direct sum
where MξM is g(i) copies of M, and g(i) can be any cardinal number.
If g(i) = 0, then M%

β{i) = 0.

I wish to thank Professor Azumaya who suggested that I in-
vestigate quasi-projective modules.

!• Quasi-projective modules* The goal of this section is to
prove Theorem 1.10 which is a characterization of quasi-projective
modules over left perfect rings. The first proposition to be presented
was proved by Wu and Jans.

PROPOSITION 1.1. Let R be a semi-perfect ring. Then M is a
finitely generated, indecomposable, quasi-projective module if and only
if M — Re/Je where e is an indecomposable idempotent, and J is an
ideal of R [12, Thm. 3.1].

PROPOSITION 1.2. Let R be a semi-perfect ring. If Re/Je Φ 0
where e is an indecomposable idempotent and J is an ideal, then Je = Jfe
where Jf is an ideal contained in the radical N.

Proof. The module Ne is small in Re [4, p. 473]. Since Re is
indecomposable and the projective cover of Re/Ne, Re/Ne is inde-
composable. It is known that R/N is completely reducible if R is
semi-perfect [4, Thm. 2.1]. Thus Re/Ne is simple, and Ne is
maximal in Re. Now Je ϋ Ne because Ne is both maximal and small
in Re. Let Jf = J 0 N.

PROPOSITION 1.3. // M is quasi-projective and has a projective

cover P > M > 0 and if P = Σ 0 Pa (ae I, and indexing set), then

M = Σ Θ Ma and Pa — % Ma > 0 is the projective cover of Ma where

πa = π\Pa.

Proof. The proof for the finite case [12, Prop. 2.4] will work
here also.
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PROPOSITION 1.4. Let Pa—°-> Ma >0 be the projectίve cover of
Ma where a el, an indexing set. If f{Ker πa) £ Ker πb for every
a, be I and fe HomR(Pa, Pb), then Σ @ Ma is quasi-projective.

Proof. It is sufficient to show that Σ 0 Ker πa is an End* (-2 0 Pα)-
module [12, Prop. 1.1]. Let qc be the projection of Σ @ Pa onto Pc

and feEndR(ΣφPa). We will be done if we show f(Kerπb)S
Σ 0 Ker πa. Let x e Ker πb. Since gα o (f\Pb) e KomR(Pb, Pa), f(x) =
(?βl °/)0») + + (Qan of){x) G Ker τrα + + Ker τrα% s Σ 0 Ker τrα.

REMARK. If I is finite or R is left perfect, then the converse is
true, that is, if Σ 0 Ma is quasi-pro jective, then /(Ker πa) £ Ker 7Γ6

for every a, be I and /eHom^Pα, P6).

COROLLARY 1.5. If M is quasi-projective and has a protective
cover, then M1 is quasi-projective.

PROPOSITION 1.6. If M1 and M2 are quasi-projective and have
protective covers Pγ and P2 which are isomorphic and Mx 0 M2 is
quasi-projective, then Mt = M2.

Proof The proof of the dual theorem for quasi-injective modules
[7) Prop. 2.4] can be dualized.

Bass has shown [4* p. 473] that if R is a left perfect ring and P
is a pro jective module, then P — Σ 0 iϋ^ where ReJNβi is simple and
ê  is an idempotent in R. This result will be stated in a different
form in the next proposition.

PROPOSITION 1.7. Let R be left perfect. Then P is projective if
and only if P — Σ£=i 0(-ββί)g(ί) where Rβi is the projective cover of a
simple module, e{ is an indecomposable idempotent, k is the number
of non-isomorphic simple modules, and Rβi & Re0 if i Φ j.

Proof. Nβi is small in Rβi [4* p. 473]. Hence Rβi is the projec-
tive cover of Rei/Nβi and is indecomposable by Proposition 1.3. Since
R/N is left Artinian [4> p. 467], and the simple jβ-modules and the
simple JS/iV-modules are the same, there are only a finite number of
nonisomorphic simple modules. Also, simple modules are isomorphic if
and only if their projective covers are isomorphic.

PROPOSITION 1.8. Let R be semi-perfect and M be a finitely
generated, quasi-projective module. Then M is indecomposable (non-
zero) if and only if EndR{M) is a local ring.
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Proof. ( i ) If M is not indecomposable, then ΈnάR(M) has a nonzero
idempotent e which is different from the identity. Since neither e
nor 1 — e is a unit, ΈndE(M) is not a local ring.

(ii) If M is indecomposable, then M = Jίe/Jβ where J ' is an ideal
of i2 and e is an indecomposable idempotent. Thus M = i?*e* where
12* = lϋ/J. J?* is semi-perfect [4, Lemma 2.2], Since M is inde-
composable as an i2*-module, e* is an indecomposable idempotent. In
addition EndR(M) = EndΛ.(/2*β*) = e*i2*β*. Finally, e*iϊ*e* is a local
ring because i?* is semi-perfect and e* is indecomposable [10, p. 76].

LEMMA 1.9. Lei R be semi-perfect and 1 = 6 ! + ••• + en where

elf * en are orthogonal, indecomposable idempotents. If

ReJJ& 0 Re2/J2e2 © • • • - © ReJJmem

is quasi-projeetίve where Ji9 i = 1, •••, m, is an ideal, then there is

an ideal J such that Jeit = Jfii for i — 1, , m.

Proof. The protective cover of Σi=ΐ Θ Rβi/Jiβi is

Σ θ Λβi - ^ Σ θ ReilJa > 0

where Ker π = Σ Γ=i © ^e*. Since End^ίΣΓ^i©Λe*) = Σ iUθΓ=i θ β<Λβy,
it follows that J^'βiRe, g J^y for i, i = 1, , m [12. Prop. 2.2]. Let

i-Σ<
i = i

Then J is an ideal because R — Σ 5=-i © Σ £=i © βiRβj Also, Je{ = J > ;
for i = 1 , m.

REMARKS. 1. The proof for Lemma 1.9 remains valid if any sub-
collection of ely * en is used rather than the first m of them.

2. The result that for a semi-perfect ring 1 — et + + en

where ex, , en are orthogonal indecomposable idempotents can be
found in [10].

THEOREM 1.10. Let R be left perfect. Then M is a quasi-
protective module if and only if

where J is an ideal, e19 * ,ek are indecomposable idempotents, the
number of nonisomorphic simple R-modules is k, and Reγ, , Rek

are the corresponding nonisomorphic protective covers. In addition
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the decomposition is unique up to automorphism.

Proof, (i) Let M be quasi-projective. If M = 0, then we can
choose J = R and be done. If M Φ 0, let P—> M—» 0 be the projective
cover of if. By Proposition 1.7 P -= Σ t j θ (ite*)*^ where i ^ , , #e/c

are the nonisomorphic indecomposable projective covers of all the
simple modules. By Proposition 1.3 M= Σ l - i θ Σ ^ ^ θ ^ where
card (If) — g(i). Proposition 1.6 shows that Mai = Mbi for every
a9beli. From Proposition 1.1 Mai = ReJJiβi with J{ an ideal and
e< an indecompotent. As a result of Lemma 1.9 and the remark
following it, there is an ideal J such that Je{ = J&i for ί = 1, , ft.

(ii) Conversely, if Λf= Σ -L, © (i2ei/Jβi)
flr(ί) with the same notation

as in the statement of the theorem and J Φ R, then Propositions 1.2
and 1.4 show that ϋί is quasi-projective. If J = i2, then M = 0 and
is, of course, quasi-projective.

(iii) Uniqueness. Using Proposition 1.8 and a generalized Krull-
Remark-Schmidt theorem which was proved by Azumaya [1, Thm. 1],
we have the following result: if Y,aeA®Ma and Σ δ e s Θ ^ ' are two
decompositions of quasi-projective module into indecomposable, modules,
then there is a 1 to 1, onto mapping / : A —> B such that Ma ~ M}{a).

REMARKS. 1. Theorem 1.10 is true for semi-perfect rings if M
is finitely generated.

2. If M is nonzero in Theorem 1.10, then J can be chosen is the
radical of the ring.

2* Quasi-injective modules* In the first section a decomposition
theorem for quasi-projective modules was obtained. The motivation
for attempting to prove this proposition came from a paper by Harada
on quasi-injective modules [7]- Now Theorem 1.10 will be used to obtain
a characterization for quasi-injective modules over left Artinian rings
which have a finitely generated, lower distinguished (contains an
isomorphic copy of every simple module), and injective module. This
class of rings includes quasi-Frobenius rings and finitely generated
algebras over commutative Artinian rings [2].

PROPOSITION 2.1. Let R be left Artinian. Then R has a finitely
generated, lower distinguished, injective module if and only if the
injective envelope of every simple module is finitely generated.

Proof. (Given by G. Azumaya). Assume Q is finitely generated,
lower distinguished, and injective. Let Qly , Qk be the non-
isomorphic injective envelopes of all the simple modules. Then
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Q = Σ t i Θ Q " ( i ) where 0 ̂  h(i) < «> [2, Thm. 11, p. 268]. Since Q
is lower distinguished, h{i) Φ 0 for each i = 1, , k. It follows that each
Qi is finitely generated. The converse is clear.

PROPOSITION 2.2. // R is left Artίnίan and has a finitely
generated, lower distinguished, injective module, then every inde-
composable quasi-injective module is finitely generated.

Proof. Let M be indecomposable and quasi-injective, and let Q
be its injective envelope. Q is indecomposable [7, Proposition 2.3],
so it is the injective envelope of a simple module [2, Thm. 1, p. 268].
Hence, Q is finitely generated by Proposition 2.1. Since R is left
Noetherian, M is finitely generated.

REMARK. If R is perfect, then every indecomposable quasi-projee-
tive module is finitely generated by Proposition 1.7.

The following proposition was proved by Azumaya for the class of
rings in the last two propositions and will be stated without giving
his proof.

PROPOSITION 2.3. (Duality Theorem). Let R be a left Artinian
ring which has a finitely generated, injective, and lower distinguished
module Q, and let S = EndR{Q). Then for any finitely generated left
R-module X, X* = Hom^X, Q) is a finitely generated right S-module
and (X*)* = Hom5(X*, Q) = RX. The same is true for finitely
generated S-modules [2, Thm. 8, p. 262].

PROPOSITION 2.4. If R is left Noetherian and M is quasi-injective,
then M1 is quasi-injective.

Proof. Let Q be the injective, envelope of M. Since R is left
Noetherian, Q1 is the injective envelope of M1. With this result and
a theorem of Johnson and Wong [9, Thm. 1.1], a procedure which is
similar to the one found in the proof of Proposition 1.4 can be used
to see that M1 is quasi-injective

THEOREM 2.5. Let R be left Artinian and have a finitely
generated, lower distinguished, and injective module Q. Then M is
quasi-injective if and only if

M = Σ Θ (βomietS/βiJ, Q))ΰ{i)

where S = EnάR(Q), β; is an indecomposable idempotent in S for
i .= 1, , k, J is an ideal of S, the number of nonisomorphic simple



QUASI-PROJECTIVE AND QUASI-INJECTIVE MODULES 719

R-modules is k, and for i Φ j eβ & edS. This decomposition is
unique up to automorphism.

Proof. If M — 0, we can choose J' = S. Thus we will assume
that M is a nonzero quasi-injective module. It is known that if R
is left Artinian, then it is left Noetherian and has only a finite
number of simple ϋί-modules. Harada has shown that for left
Noetherian rings M = Σ 0 Ma where the ikfα's are indecomposable
quasi-injective modules and that this decomposition is unique up to
automorphism [7, Prop. 2.5]. If Qa is the injective envelope of Ma,
then it is the injective envelope of a simple module (see proof of Prop.
2.2). By the dual theorem of Proposition 1.6 and the result that
nonisomorphic simple modules have nonisomorphic injective envelopes,
M = Σ t i θ M^ and Mi £ Md for i Φ j .

As a result of Proposition 2.2, Mi is finitely generated. By the
Duality Theorem ΈίomR(Mu Q) is a finitely generated, indecomposable,
quasi-projective, right S-module. Also, S is right Artinian [2, Thm.
6, p. 259]. Hence, Hom^M^, Q) = eSle^i where e< is an indecom-
posable idempotent in S, and Ji is an ideal of S. Since Σff(;)^o 0 -M*
is a direct summand of M it is quasi-injetive. It follows that
H o m ( Σ ^ o θ ^ Q) = Σ,(«*ΘHom(Λίi, Q) = ΣβM*>@e&leiJi and is
quasi-projective. For i Φ j Mt & Mί9 so eS φ. e3S. By Lemma 1.9
and a remark following it we can choose Ji = J for g{i) Φ 0. In
addition ΛΓ4 = Horn (Horn (Mi9 Q), Q) = Hom^ {eSjβiJ, Q).

(ii) Suppose M= Σf=i Θ (Hom^ faS/e^, Q)0(ί) with the same no-
tation as in the statement of the theorem. Let Mf = Σ ^ ^ o Θ
Hom ί̂eίS/e^/, Q). Then Hom5 (M', Q) = ΣΪKI^O θ e<S/β<J which is
quasi-projective by Theorem 1.10. Thus M' is quasi-injective. Let
m = max{flr(i)}ίssl,...,4 and M" = (M')m. Proposition 2.4 gives us that
M" is quasi-injective. Therefore the direct summand M is quasi-
injective.

COROLLARY 2.6. Lβί R be quasi-Frobenius. Then M is quasi-
injective if and only if

J l f = Σ 0 (Horn* (βiR/eJ, R)Y{ί).

Proof. R being quasi-Frobenius implies R is left Artinian, self in-
jective, lower distinguished, and finitely generated [2, Thm. 6, p.
259]. Also, R = EndB(R).

COROLLARY 2.7. Let R be a finitely generated algebra over a
commutative Artinian ring K. Then M is quasi-injective if and
only if
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M = Σ θ (ΆomAeiR/e.j

where F is the K-injective envelope of K/rad K.

Proof. R has a finitely generated, lower distinguished, injective
module Q such that R = EndΛ(Q) [2, Prop. 19, p. 273]. The functors
Hom^( , F) and Horn^ , Q) are naturally equivalent for finitely
generated J?-modules [2, Thm. 20, 275].

COROLLARY 2.8. Let R be a finite dimensional algebra over a
field K. Then M is quasi-injective if and only if

I = Σ 0 (Horn* (βiR/eiJ, K))g{i).

Proof. K = F in Corollary 2.7.
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COMPLETIONS OF DEDEKIND PRIME RINGS AS
SECOND ENDOMORPHISM RINGS

JAMES KUZMANOVICH

The purpose of this paper is to show that if M is a maximal
two-sided ideal of a Dedekind prime ring R and P is any
maximal right ideal containing M, then the ϋf-adic comple-
tion R of R can be realized as the second endomorphism
ring of E=E(R/F), the iMnjective hull of R/P; that is, as
end (KE) where K=enά (ER), The ring K turns out to be a
complete, local, principal ideal domain.

This paper was motivated by a result of Matlis [6] which
says that if P is a prime ideal of a commutative Noetherian
ring R, then the P-adic completion of the localization of R
at P can be realized as the ring of endomorphisms of
E=E(RIF), the i^-injective hull of RIP.

Since R is a full matrix ring over a complete local
domain L [4], we are able to approach the problem by con-
sidering first the case that R is a complete local domain,
then by means of the Morita theorems we pass to the case
R = R, and finally pass to the general case.

1* Introduction* A prime ring R is called a Dedekind prime
ring if it is Noetherian, hereditary, and a maximal order in its
classical quotient ring Q (see [3]). A ring R is called local if the
nonunits of R form an ideal.

If R is a Dedekind prime ring with a nonzero prime ideal M,
then M is a maximal two-sided ideal and ΠMn = 0 (see Robson [7]).
Let R — RM be the completion of R at M in the sense of Goldie [3].
In this situation combining results of Goldie ([3], Theorem 4.5) and
Gwynne and Robson ([4], Theorem 2.3) yields the following theorem.

THEOREM 1.1. Let R he a Dedekind prime ring with a maximal

ideal M. Then (i) R has a unique maximal two-sided ideal M, M is

the Jacobson radical of R, and Rf]Mp = Mp.

(ii) R is a full k x k matrix ring over a domain L which has a
unique maximal ideal N, and L/N — F where F is a division ring.
Also R/Mp — R/Mp (each coset of Mp has a representative in R).

(iii) R is a prime principal ideal ring and L is a complete, local,
principal ideal domain. The only one-sided ideals of L are the powers
of N.

721



722 JAMES KUZMANOVICH

For the rest of this section let R, M, R, M, L, and N be as in
Theorem 1.1. Let x be the generator of N; then N = xL = L# and
Nk = xkL = Lα*.

2, The Ring L* This section will be concerned with the con-
struction of the L-injective hull of (L/N)L and with showing that
Theorem 4.4 holds for L.

LEMMA 2.1. L/Nk can be embedded in L/Nk+1 as a right L-module
via the map hk: L/Nk -»L/Nk+1 defined by hk ([u + Nk]) - [xu + Nk+1].

Proof. hk is clearly additive and right L-linear. Suppose
hk([u + Nk]) = [0 + Nk+1]. From the definition of hk it follows that
xu e Nk+1 so that xu = xk+1u, for some uf in L and u = xkuf e Nk.
Hence [u + Nk] = [0 + iVfe] and ^^ is a monomorphism. A similar
argument shows that hk is well-defined.

The maps {hk} and the right L-modules {(L/Nk)L) give rise to a
directed system. Let EL be the direct limit of this system. Then EL

can be considered as an ascending union of a family of submodules,
{(S3 )L}I which is totally ordered by inclusion and where each (Sj)L is
isomorphic to (LINl)L.

LEMMA 2.2. Consider (L/Np+t+ί)L. Take aeNp/Np+f+ι and
deNp\Np+ί. The equation yd — a has a solution in (L/Np+t+1)L.

Proof. aeNp/Np+t+1 so that a = [xpv + Np+t+1]. deNp\Np+ι so
that d = xpu where u is a unit in L. In L, xpvu~ι — wxp since

JV* = ^ L = Lxp. Let 2/ = [w + Np+t+ι]. yd

= [w + Np+t+ι]d = [wd + JVr*+ί+1J = [Wχpu + Np+t+1]

= [xpvu~ιu + iVΓp+t+1] = [a?^JVrp+t+1] = α.

PROPOSITION 2.3. £7̂  is isomorphic to the L-injective hull of the
simple right L-module (L/N)L.

Proof. EL contains a copy of (L/N)L, namely Sλ. Thus it is
enough to show that E is an essential injective extension of St. St

is essential in E for if ae E, ae Sk for some integer k. Let t be the
first such integer: then a e St\St-lf a is a generator for Ŝ , and aL = S t.
Thus α L π S i ^ S i and 5X is essential. Since L is a principal ideal
domain, it is a hereditary two-sided order in its quotient division ring.
In order to prove EL is injective it is sufficient by a result of Levy
([5], Theorem 3.4) to show that it is L-divisible. Take aeE and
0 Φ d e L. a e St for some t and d e NP\NP+1 for some p. yd — a has
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a solution in Sp+t+19 and hence in E, by Lemma 2.2. E is thus an
essential injective extension of Sι and hence is its injective hull.

Let K = endL(E) and let K act on E by left multiplication; E then
becomes a left iΓ-module. Let H = endκ(E); in similar manner E then
becomes a right ίZ-module. Ed — E (since E is L-divisible) for all
nonzero d in L; thus E is a faithful right L-module. Hence L may
be considered as a unital subring of H.

LEMMA 2.4. The Sk's are the only proper L-submodules of EL.

Proof. Suppose ML is a submodule of E with generating set
Since E = (j S*, each m< is in some S*. Let fe< be the first fc for
which m, e S*. Then mt e Skt\Sk.^ and m^L = S v M = I m . L = ΣSki

so that if {ki} is bounded, Λf = S*t where kt = max {&;}, and if {fcj
is not bounded, then M = EL.

LEMMA 2.5. If aeSn and if heSn-lt then there is a q e K such
that q(b) — α.

Proof. Assume that t is the first integer for which b e Sn+t.
Then annL(δ) = Nn+t which is contained in Nn which in turn is contained
in ann^α). Thus the map q:bL—>aL defined by q(bd) — ad is well
defined. EL is L-injective so that q can be extended to an endomor-
phism q of E. q e K.

PROPOSITION 2.6. Each Sn is a cyclic left K-submodule of KE, the
composition length of κ(Sn) is n, and the Sn's are the only proper
K-submodules of E.

Proof. If q e K,q(Sn) is an L-submodule of E of composition length
less than or equal to n and hence must be contained in Sn by Lemma
2.4; hence each Sn is a left iΓ-submodule. Each κ(Sn) is cyclic via
Lemma 2.5; in fact, any L generator of Sn will be a if generator of
Sn. This implies that ^SJ is simple and inductively that the com-
position length of κ(Sn) is n. The proof of Lemma 2.4 shows that
these are the only iΓ-submodules of E.

LEMMA 2.7. Let Hi be the annihilator of Si in H. Then Hi is a
two-sided ideal of H, Hi+1 is properly contained in Hi, and Γ\H{ = 0.

Proof. Hi is clearly a right ideal of H. If he H, then (SJh is a K-
submodule of E of composition length less than or equal to i. By
Proposition 2.6 it must be that (SJhaSi so that each S{ is ίZ-invariant.
As a result H{ is a left ideal and hence an ideal. The inclusions are
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proper, for HtΠ L = N* and N{ Φ Nί+1. Since E = U Si9 anything in
IΊ Hi would annihilate all of E and hence be zero.

PROPOSITION 2.8. H = L. That is, L is the second endomorphism
ring of EL.

Proof. Take feH. By Proposition 2.6 there is a nonzero y e St

such that St = Ky — yL. Hence there is α ^ e L such that yf = ypx.
Also, if z e S19 z = ky for some ke K and

/y( -f n~\ \ (If! l\ ( ~f <7Ί 1 \cΌ\ 0 ~HΌYΊΓ*C» /* W\ C Q TΊ TΊ ί ζf l̂ Ί-Γ

Inductively suppose that there is a p^ e L such that / — pte Hi.
Now take y e Si+1\Si. y(f — p^ e Si+ί so that there is a d e L such
that y(f — p^ — yd. If 2 e S i+1, z — ky for some ke K. Then
#(/ — p;) = (/c7/) (/ — Pi) = k{y{f — Pi) = k{yd) — {ky)d ~ zd and hence
f — Pi — d is in Hi+1. Let pi+1 = p{ + <2; then / — pi+1 e Hi+1.

The sequence {pi} is Cauchy in L, for pn — pm = (pw —/) + (/— ί>TO)
an element of ίΓu + ΐ ί w ; but Hn + Hm — Hniΐ n^ m. Thus ^ = Pm is in
Hnf]L = iV\ L is complete; therefore {p }̂ converges to some element
p of L. It only remains to be shown that p = /. Take ze E; zeSn

for some n. {pi} converges to p so that there is a positive integer
M such that pm — pe Nn for all m greater than M. Take m greater
than Λf + n. zf — zpm = 2^. 2 was arbitrary; therefore f = p.

3. The Ring K. In this section it will be shown that if is a
complete, local, principal ideal domain.

LEMMA 3.1. Let L, Ey and K be as in §2. Let J denote the
Jacobson radical of K and let An — a n n ^ S J . Then

( i ) K is a local domain.
(ii) J = Al9 JnczAnf]An = 0, and Π/ f t = 0.
(iii) K is complete in the topology induced by the An's.

Proof, (i) K is local since it is the endomorphism ring of an
indecomposable injective module. To prove that K is a domain it is
sufficient to show that every nonzero endomorphism of EL is an epi-
morphism. Let 0 Φ ke K. If k{E) Φ E, k{E) = Sn for some n by
Lemma 2.4. AnnL(Sn) = Nn; take 0 Φ be Nn. Since E is L-divisible,
Eb = E. As a result Sn = k{E) = k{Eb) - k(E)b = Snb = 0 contradict-
ing the fact that k Φ 0.

(ii) The radical of K, J, is the set of all endomorphisms of EL

whose kernel is essential (see [2] , page 44). Since {Sj)L is the unique
minimal submodule of E, ker(&) is essential if and only if k{Sx) — 0;
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therefore J = Ax and JSX — 0. Inductively suppose that J ^ ' S ^ = 0.
JSΛcS>Λ-i since it is contained in the radical of K(Sn), Sn^. Hence
Jnsn = Jn~ι(Jsn) which is contained in JW~1S%_1 which is zero, hence
JndAnf]An = 0 since anything infΊ An would annihilate all of the Sn's
and hence all of E. Π Jn = 0 since Jn c An.

(iii) Let {/*} be a Cauchy sequence in K with respect to the
topology induced by the decreasing family {An}. Let xeE. xeSp

for some p. Since {/J is Cauchy, there is an integer M such that
fn — fm£ Ap for n, m greater than M. Define f(x) = fM+i(x) It is
clear that feK and that /< —>/ by the nature of the construction.

Pick i e J\A2. There is such a i , for if #2 e S2\S1 and if 0 Φ y1 e Slf

then there is a i e K such that i(?/2) = yt by Lemma 2.5. i e J\A2.
In fact if s e Sn+1\Sn, then i%s is a nonzero element of Sx. The proof
is by induction. If s e SJ\Sl9 then s = y2u for u a unit in L. Hence
js = /̂y2i6 = 2/î  ^ 0. Inductively suppose that j%~ιs is nonzero for all
s in Sn\Sn-x and take s e Sn+1\Sn. js e S% by an argument in the
previous proof. The claim is that js $ Sn^. If it were, then jn~ιs = 0
which contradicts the induction hypothesis since sd e S%\^-i f° r some
d in L. Hence i s g S*^ so again by the induction hypothesis jns —
jn~\js) Φ 0.

J?, αticί L be as above.LEMMA 3.2.

( i ) J = j*

(ϋ) J=Kι
(iii) Jn = j'

Let K, J,
/-
j .

K = Kj\

Proof, (i) Let xeJ. Let yEeS2\SX. x(y2) = yeS1 since xeJ. Let
= 2/x; yx is a nonzero element of S1 since i G J\A2. Then there is

an element din L such that 2/ = Vid = i(?/2)ώ = j(y%d). By Lemma 2.5
there exists kyeK such that fc^) — ^ If s e S 2 , then s = ?/2c for
some c in L. α?(s) = x(y2c) = X(i/2)c = w = (jk^y^e = jkx(y2c) = / ί φ ) .
This says that a? — ;/&! e Aa

Inductively suppose that there exist &i , , fcΛ_! such that

z - x - O'fci + i2fc, + + iπ-^.-i) e A.. If

yn+ί e Sn+1\SnJ then jn(yn+ί) = ^

a nonzero element of Si by the above choice of j . Also z(yn+1) G SX

since «e -4*. Hence by the argument above there is a kne K such
that 2 — jnkneAn+1. The sequence {ifci + ••• + jnkn} converges to x
in the An topology by the nature of the construction. Also, since
Jn c An the sequence {kt + + jn~ιkn} is Cauchy and hence by the
completeness of K converges to some element k of K. Also by the
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construction jk — x. Since x was arbitrary in J, J = jk.
(ii) is proven by an argument similar to that of (i).
(iii) J = jK=Kj by (i) and (ii). Inductively suppose that

jn = jnR = Kjn9 T h e n j n + 1 = JnJ = (j*K){jK) = j*(Kj)K = jn(jK)K -
i%+1iΓ. Similarly J w + 1 = lζ/ +1.

PROPOSITION 3.3. j£ as above.
( i ) J* = Aw /or all n.
(ii) J% are the only onesided ideals of K.
(iii) K is a complete principal ideal domain.

Proof, (i) J = Aγ by Lemma 3.1. Inductively suppose that
An = J\ J^ c An+1 <zAn = J\ jηj"+1 = j«K/jn+1K ~ K/jK = K/J
which is simple. Therefore either An+1 = Jn+1 or An+1 = Jn. But by
the induction hypothesis j n ί An+ί so that An+1 = J% + 1.

(ii) It is sufficient to show that given xeK, xK = K or that
xK — Jp for some p. Take x e K and suppose that xK Φ K, then x
is not a unit and hence xeJp+1 for some p. By Lemma 3.1 x = jpk,
and yfc must be a unit; for otherwise k = jkλ for some kt in if and
x = j'JK e Jp+1. As a result £J£L •= i'feίΓ = jpK = Jp. Similarly Kx = J p .

(iii) i ί is a principal ideal domain by Lemma 3.2 and (ii). K
is complete by (i) and Lemma 3.1.

4. The Ring R. Let i2, ifcf, 5 , and 1/ be as in Theorem 1.1.
Then R is the full k x k matrix ring over L. Let ei3 , i, i = 1, 2, , n
be a complete set of matrix units for R. Let ML be a right L-module
and let ikf* = JMΊ 0 0 Jlί», a direct sum of w copies of l ί . Let /i
be the identity map on Mlf and let /4> i = 2, •••, w be an isomor-
phism from Mi to Λf<. Then M * can be made into an β-module by
defining fi{m)ei5 = fό{m) and fi(m)ekj = 0 if i Φ k. "*" is a category
isomorphism from the category of right L-modules to the category of
right β-modules. There is also a category isomorphism en from the
category of right 5-modules to the category of right L-modules
defined by (AR)en = Aen. M and Λf*eu are isomorphic for any right
L-module M (see [1], or [5] page 137).

PROPOSITION 4.1. R is the second endomorphism ring of the R-
injective hull of the simple right R-module.

Proof. Let E be the L-injective hull of the simple right L-module
as in §2. Then E* is the j?-injective hull of a simple right 5-module
since * is a category isomorphism. R/M is simple Artinian and M is
the Jacobson radical of R so there is only one isomorphism class
of simple right-jR-modules. Let K = end^(i?*) and take qeK.
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q(E*eu) = q(E*iieii) = q(E*eii)eu; t h u s each J£*e« is iΓ-invariant and

KE* = κF*en © κEe22 ® © κE*ekk. Each eo is a ϋΓ-isomorphism
so that E* is decomposed as a direct sum of k mutually isomorphic
ίΓ-modules. Thus each ϋΓ-endomorphism of E* can be given by
multiplication by a matrix of homomorphisms. The remainder of the
proof shows that the entries in this matrix are of the desired forms.
Each q e K restricted to E*it is an L-endomorphism of E*it. Each
L-endomorphism of E*eu can be extended in one and only one way
to an jS-endomorphism of E*; namely, if q is an L-endomorphism of
E*βn, then its unique extension q is defined by q(z) — SjUtfOsβii)^/
for zeE*. Hence K ~ endL(E*eu) via the restriction map. By pro-
position 2.8 each element of endκ(E*ea) can be given by right multi-
plication by an element of euReu. If h:E*eH —• E*ejj is a JΓ-homomor-
phism, then heόi is a i£-endomorphism of E*eH where edi denotes right
multiplication by eH. Hence heH = euτeu for some reR. If zeE*iit

then (z)h = sλβyy — zh&j&a = ze^r^Av = zeurei3 so that Λ is given by
right multiplication by an element of βaRe^. As a result every iΓ-
endomorphism of i?* is given by right multiplication by an element
of R.

R can be considered as a subring of R; as a result every jξ-module
is automatically an i?-module. Also, if M is the maximal two-sided
ideal of R, then Mp Π R = Mp and every coset of R/Mp has a
representative in R (Theorem 1.1).

LEMMA 4.2. E* as in the proof of Proposition 4.1, then (E*)R is
the ascending union of R-modules 0aB1c:B2c: • where the composition
length of Bn is n. These are the only R-submodules ofE*. Furthermore,
the BiS are the only R-submodules of E* and every R-endomorphism
of E* is an R-endomorphism. That is, the structure of E* as an
R-module is identical to its structure as an R-module.

Proof. The first part follows since it was true of E and * is a
category isomorphism. Let Bι — Si*. A category isomorphism pre-
serves the submodule lattice. Note that the composition length of
(J5Λ)s is n; since M is the radical of R, BnM

n — 0. In order to prove
that the i?/s are the only iϋ-submodules of E* it is sufficient to show
that aR = aR for all aeE*. Take aeE*. Clearly aR c aR. Take
reR. aeBn for some n so that aMn = 0. By theorem 1.1 there is
an m in Mn so that r + m = reR, then af = ar + 0 = af + am =
a(r + m)ar. Thus aRaaR and aR = αJS.

Let g be an ϋί-endomorphism of i£* and take aeE* and r e S .
It must be shown that q(ar) — q{a)r. Since a e E*, a e Bn for some n.
The IVs are the only iϋ-submodules of E* and the composition length
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of Bn is n, so that q(Bn) c Bn and g(α) e Bn. As above there is an
meMn such that f + m = r e i2. jBJkf Λ = 0. Then

q(ar) = g(αr + 0) = g(αf + am) = g(a(r + m)) = q(ar)

= q(a)r = q(a)(r + m) — q(a)f + q(a)m

= q(a)r + 0 = q(a)r .

Thus q is an jξ-endomorphism.

LEMMA 4.3 E* is the R-injective hull of

Proof. By Lemma 4.2 (JSJ^ is an essential submodule of ^* Λ .
E* is an injective ^-module since * is a category isomorphism; in
particular E* is a divisible ^-module so that E* is a divisible i?-
module. i2 is a hereditary two-sided order so that E* is an injective
iϋ-module by [5], Theorem 3.4.

THEOREM 4.4. Let R be a Dedekind prime ring with a maximal
two-sided ideal M, and let P be a maximal right ideal of R containing
M. Then the R-endomorphism ring of the R-injective hull of R/P is
a complete principal ideal domain.

Proof. Let R, R, L, EL1 and E* be as above. Then by Lemma 4.3
E* is the injective hull of a simple right iϋ-module which is anni-
hilated by M. (BJR — R\P since both are simple modules over the simple
Artinian ring R/M; thus E* ~ E(R/P). By Lemma 4.2 e n d ^ * ) =
end^(i?*) which is isomorphic to endL(E) since* is a category isomor-
phism. Hence the result follows by Proposition 3.3.

THEOREM 4.5. (Main Theorem) Let R be a Dedekind prime ring
with a nonzero prime ideal M, and let P be a maximal right ideal
containing M with E(R/P) the R-injective hull of R/P. Then R, the
completion of R at M, is isomorphic to the second endomorphism ring
of E(R/P).

Proof. Consider E*; as above E*~E(R/P). By Lemma 4.2 the
R and R structures of E* are identical. Thus R is second endomor-
phism ring of E(R/P) by Proposition 4.1.
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ON GENERALIZED TRANSLATED QUASI-CESARO

SUMMABILITY

B. KWEE

Let a > 0, β > —1. The (Ct, a, β) transformation of the
sequence {sk} is defined by

_ Γ(β+n+2)Γ(a-\-β+l) ^ Γ(a + k)Γ(k + n + ϊ)
n Γ(n + l)Γ(β + l)Γ(α) έ i Γ(k+l)Γ(a+β+n+k+2) Sk '

and the (Ct, a, β) transformation of the function s(x) is de-
fined by

Q(y) _ na + β + ΐ)
Γ(a)Γ{β + l)y Jo (x + y)*+w dX *

Some properties of the above two transformations are
given in this paper and the relation between the summability
methods defined by these transformations is discussed.

1* For any sequence {μn} the Hausdorff summability (H, μn) is
defined by the transformation

In
= Σ

inhere

Transposing the matrix of the (H, μn), transformation we get the
matrix of the quasi-Hausdorff transformation

which will be denoted by (if*, μn). Ramanujan [8] introduced the
<S, μn) summability, which is defined by the transformation

Thus the elements of row n of the matrix of the (S, μn) transformation
are those of the corresponding row of the (if*, μn) transformation
moved n places to the left.

It is known [8] that if (H, μn) is regular and if μn—>0 as n—> oo,
then (S, μn+1) is regular; conversely, if (S, μn+ί) is regular, then (iJ, μn)

731
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can be made regular by a suitable choice of μQ.
When

n + a

n

(H, μn) reduces to the Cesaro summability (C, a). Borwein [3] intro-
duced the generalized Cesaro summability (C, a, β) which is (H, μn)
with

( 1 )

n + β

n
n + a + β

n

The aim of this paper is to discuss properties of the (S, μn+1}
summability with μn given by (1) for a > 0, β > — 1 and of the ana-
logous functional transformation. We shall denote this summability
by (Ct, a, β). The case in which β — 0 has been considered by Kuttner
[6] and a summability method similar to (Cu a, β) has been discussed
by me [7].

A straightforward calculation shows that the (Ct, a, β) transfor-
mation is given by

t. = t{n, a, β) = (β
nl

,2\ x v β(g + 1) - (ft + A? - l)(fe + l)(fe + 2) - -«(k + n) c

=̂o (a + β + l)(α + /5 + 2) . . ( α + /5 + ^ + l + &) *

+ 2)Γ(a+β+l) f Γ(a + k)Γ(k + n + 1)
l)Γ(α) έ i *

nl

It is clear that, if (2) converges for one value of n, then it con-
verges for all n. Further, a necessary and sufficient condition for
this to happen is that

(3) Σ - ^ -
v J έί k^2

should converge.
Let s(x) be any function L-integrable in any finite interval of

x ^ 0 and bounded in some right-hand neighbourhood of the origin..
Let a> 0, β> - 1 , and let

( 4) g(y) = g(y, a, β) = ΣjSί+βjtΆyβ^ X"~\{xl+i dx .
Γ(a)Γ(β 4- 1) Jo (x + y)a+?+L

If g(y) exists for y > 0 and if
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lim giy) = s ,

we say that six) is summable (C*, α, /3) to s.
It is clear that a necessary and sufficient condition for the con-

vergence of (4) is that

(5)

should converge.

2* The relationship between sequence-to^sequence and func-
tion- to-functions transformations* Given any sequence {sn}y let the
function fix) be defined by

fix) = sn in ^ x < n + 1; n = 0, 1, 2, •) .

Then the (Cf, α, /3) summability of {sn} is equivalent to the (C«, α, /S)
summability of /(a?) for α > 0, β = 0 (see [6] Theorem 4). However,
the proof breaks down when β > 0. We can prove that they are
equivalent for — 1 < β <Ξ 0 as follows. Write

a(n k) = Γ ( a + k)Γ{k + n + l )

S k+1 χa-l

dχ

As in [6], we may suppose that s0 — 0. Then the result would follow
if, corresponding to equation (11) of [6], we proved that, if (3) con-
verges, then uniformly for 0 ^ Θ < 1,

(6) Σ [a(n9k) - b(n + 0, k)]sk = o

Choose an integer Q such that Q ^ β + 3. From equations analogous
to those of the last line and line 6 from bottom of p. 709 of [6], we
find that

where j>(ί) is a polynomial in ^ (which may be different for each term
in the sum), and the sum is taken over those integers q, r which are
such that

q ;> 1, r Ξ> 1, q, r not both 1, q + r ^ Q .

Since the convergence of (3) implies that

sk =
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and since a > 0, Q >̂ β + 3, we see that the contribution to the ex-
pression on the left of (6) of the "0" term in (7) is

Hence the result would follow if (corresponding to Lemma 2 of [6])
we could prove that the convergence of (3) implied that, for relevant
4, r,

(8) Σ
*=Ί (A;

Now write

so that vk—*0 (and this is all we know). The sum on the left of (8) is
0 0 ha+β+2-g

£ (fc + n ) ^ (Vk

(ft -
v k

(n + l)«+t+r hz k I (k + ^) a +^+ r (ft -

The first term on the right of (9) is o(l/V+1) (since r ^ 1, a > 0). The
expression in curly brackets in the second term is

o( * λ

(k + n)a+^r J

(and this result is best possible). This gives the required result when
β ^ 0; but if β > 0, all that we can deduce in the "worst" cases
(which are q = 1, r = 2 or # = 2, r = 1) is that the sum (9) is o(l/n).

Of course, the fact that the proof breaks down does not imply
that the theorem itself is false. My guess is that the theorem pro-
bably is false for p > 0; but I have not actually got a counter example.

3* Theorems* The following two theorems with β = 0 are
Theorem 1' and Theorem 2' given by Kuttner [6]. The proof of
Theorem 1 is similar to that of Theorem 1' in [6], and Theorem 2
follows from Lemma 1 and Lemma 2 of this paper.

THEOREM 1. Let a > 0, β > —1 and r ^ 0 and let s(x) be sum-

mάble (C, r)1 to s and (4) converge. Then s(x) is summable (Ct, a, β) to s.

THEOREM 2. Let a> a' > 0, β > —1, and let s(x) be summable
(Ctr a, β) to s. Then s(x) is summable (Ct9 a!, β) to s.

For definition of the (C, r) summability of s(v), see [7].
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In § 5, we shall prove

THEOREM 3. Let a > 0, β > βf > — 1. Suppose that s(x) is sum-
mable (Cf, a, β) to s and the integral

S°° s(x)
i χP'+2

converges. Then s(x) is summable (Ct, a, βr) to s.

The sequence {sn} is said to be summable Aλ to s if

converges for all x in the interval 0 ̂  x < 1 and tend to a finite limit
s as x—*l—. The Ao method is the ordinary Abel method

It is known (see [1] and [2]) that Aμi) Aλ for λ > μ > — 1. For
other properties of this summability method, see [1] and [6]. We
shall prove

THEOREM 4. Let λ > — 1, β > — 1. Suppose that the sequence {sn}
is summable Aλ to s and that (3) converges. Then the sequence is
summable (Ct,X + l,β)to s.

4. Lemmas*

LEMMA 1. Let a > a* > 0, β > —1. Suppose that (5) converges.
Then

, a', β) = Γ(

The proof of this lemma is similar to that of Lemma 4 in [6].

LEMMA 2. Let

S CO

Φ , v)s(y)dy .
0

Then in order that

s(y)->s (y-+co)

should imply

t(x) —* S (X-+ oo)

for every bounded s(y), it is sufficient that

[°\c(x,y)\dy <H,
Jo
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where H is independent of x, that

\ I c(x, y) \dy -> 0
Jo

when x —> oo, for every finite Y, and that

\ c(x, y)dy -> 1
Jo

when x —* ©o.

This Theorem 6 in [4].

5. Proof of Theorem 3. Let

φ(x) = Jj -^L-du
w

for x > 0. Then φ(x) is continuous in (0, oo), and Φ(x)—>0 as x
hence ^(x) is bounded in (B, oo) for any B > 0, say

for x ^> B, where If may depend on B if B is small, but may be
taken as an absolute constant for large B. It follows that

x^sjx) -M x + t
β

dφ(x)

(10)

dx

+ ty
g (a + β + 2)M.

Since s(x) is bounded in some right-hand neighbourhood of the
origin, there exists Bo > 0 such that

\s(x)\^K

for 0 < x < Bo. By partial integration, we obtain

(11)
o (x + t)a+ί>+ί

K(a + 2/3 + 2)
a{β + 1)

By combining (10) and (11) it follows that git, a, β) is bounded
in any finite interval (0, T). Since it tends to s as t-+ °°, g(t, a, β)
is bounded in (0, oo). Thus, for y > 0, the integral
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+ β + 1) Jy

converges. In view of the definition of g(t, a, β) it follows that

(12) / = lim I(A)
A->oo

where

[A \~ x*~l8(χ) dx .\
Jo (x + £)α+

It follows from (10) by dominated convergence that, for fixed A,

Γ (t -
(X + t

as B—>oo. Hence, by Fubini's theorem

0

(13)

We will now show that, for fixed y>

(14) (°° a ? - 1 ^ ) ^ ! " (* ~ yy~β'~1 dt — 0

as i - > o o . It is clear that for large A the inner integral in (14) is
0{A~a-β'-1) uniformly in 0 ^ a? ̂  1, so that the contribution to (14) of
the range 0 < x < 1 tends to 0 as 4->oo, Now write

thus we are given that ψ(x) exists and that it tends to 0 as x
The contribution to (14) of x > 1 may now be written

(15) - (~ x"+W&lr(x)\~ ΰ ~ V)β~β'~l dt .

It is easily seen that, for fixed y, A and large x, the inner integral
in (15) is 0{x~a~β'~1)) thus, integrating by parts, (15) becomes

(16)

(X + ί) α +ί+ 2

Now for fixed y and large A, uniformly in 0 <^ x <L A, the inner in-
tegral in (16) is
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Hence

JA (a? + t ) β + ' +

J/logA PJ

+
1 Jj/log.l

-a-β'-lΓAβogA

I

J
/ Δ β l Γ A

-a-ι>'-1 sup lt(«0lΓ aj«+'W) = 0(1) .
xi(ΛllogΛ) JA/logΛ /

Nothing that for fixed y and large t

(t - yy-r-1 = t^-f'-1 + 0(t^'~2) ,

and also t h a t

f- V-r-'Ka + β' + l)t -(β- β')x)dt = 0

Jo (x + ty+w

we see that, for large A uniformly in x 2Ϊ A, the inner integral in
(16) is

A t'-f'- β' + l)t - {β-β')x\
o (x + ί)«

, 0(f" ^"ίi'-2l(« + ̂  + l)t - (β - /3')
IJ-t (x + ί)

(except that, in the case β — β' = 1, we must insert an extra term
Oix'^^logx)). It is now clear that the expression (16) tends to 0
as A—>oa, and this completes the proof of (14). We deduce from
(12), (13) and (14) that

=\~x^s(x)dx\~ «
Jo )y (X

dt
(X

= Γ(β - β')Γ{a + β' + ϊ) f- x°->s(x)
Γ(a + β + 1) Jo (x + 2/)α+-s'+

Thus, in view of the definition of /, we have
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g(y, a, β') = —-Πβ±^——y^ t~^(t - yy~^g{t, a, β)dt .

The kernel of this last transformation can easily be verified to satisfy
the conditions of Lemma 2, and the theorem now follows.

6* Proof of Theorem 4* It follows from the convergence of
(3) that for β> — 1, su = o(vβ+2). We can easily prove that the func-
tion tn+k(l — t)λ+βt+1 has a maximum when

+ _ k + n
0 :

For large k + n, this maximum is O((k + n)~~λ~~β'~ι). Hence, if β' >
β + 2, we have, the inversion in the order of integration and sum-
mation being justified by absolute convergence,

(0 ) y ( 1 _ t ) i + , + ι | ( )
Γ(n + l)Γ(β' + 1) Jo V ' ΨA k I ί

(17) " Γ(n + l)Γ(β' + 1) έ i

= t{n, λ + 1, /§') .

By analytic continuation, (17) holds for β' ^ /3. Hence

By Lemma 2 the result with follow if

n + 2)( i ) j
Γ(n + l)Γ(β + 1) JO

where i7 is independent of TO,

(ii)

when π —* co, for every finite Y, and

(iii) —A/3 + w + 2)
Γ(n+ l)Γ(β

when w —» co. Since
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Γ(/9 + rc + 2)

(i) and (iii) are satisfied. We have Γ(n + β + 2) ~ nβ+1Γ(n 4- 1), and
the integral in (ii) is, by changing the variable,

tn{l - ί)'dί .
jo

Hence (ii) is satisfied.
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DIFFERENTIAL SIMPLICITY AND COMPLETE
INTEGRAL CLOSURE

YVES LEQUAIN

Let R be an integral domain containing the rational num-
bers, and let Rι denote the complete integral closure of R.
It is shown that if R is differentiably simple, then R need
not be equal to R'', even when R is Noetherian, and then
the relationship between R and Rf is studied.

Let gf be any set of derivations of R. Seidenberg has shown
that the conductor C = {x e R \ xRf c R) is a £^-ideal of R, so that
when R is ^-simple and C Φ 0, then R = Rf. We investigate here
the situation when C — 0.

The first observation that one must make is that it is no longer
true that R = Rf when R is differentiably simple, even when R is
Noetherian. We show this in Example 2.2 where we construct a 1-
dimensional local domain containing the rational numbers which is
differentiably simple but not integrally closed. This counterexamples
a conjecture of Posner [4, p. 1421] and also answers affirmatively a
question of Vasconcelos [6, p. 230].

Thus, it is not a redundant task to study the relationship between
a differentiably simple ring R and its complete integral closure. An
important tool in this study is the technique of § 3 which associates
to any prime ideal P of R containing no ZMdeal a rank-1, discrete
valuation ring centered on P; by means of this, we show in Theorem
3.2 that over such a prime ideal P of R there lies a unique prime
ideal of R\ When R is a Noetherian ϋ^-simple ring with {Pa}aeΛ as
set of minimal prime ideals, Theorem 3.3 asserts that R' = f\aeA {Ra \ Ra

is the valuation ring associated with the minimal prime ideal Pa};
Corollary 3.5 asserts that Rf is the largest ^-simple overring of R
having a prime ideal lying over every minimal prime ideal of R.

1* Preliminaries. Our notation and terminology adhere to that
of Zariski-Samuel [7] and [8]. Throughout the paper we use R to
denote a commutative ring with 1, K to denote the total quotient
ring of R, and A to denote an ideal of R; A is proper if A Φ R. A
derivation D of R is a map of R into R such that

D(a + b) = D(a) + D(b) and D(άb) - aD(b) + bD(a)

for all a,beR.
Such a derivation can be uniquely extended to if, and we shall

741
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also denote the extended derivation by D. D is said to be regular
on a subring S of K if D(S) czS. If ^ is a family of derivations
of R, A is called a ^-ideal if D(A) c A for every D e ̂  when &r =
{Z)}, we merely say ZMdeal. If i? has no ϋ^-ideal different from (0)
and (1), R is said to be ^-simple. We use D{o)(x) to denote x, and
for n^l D{n)(x) to denote D{D^~1]{x)), i.e. the wth derivative of x;
by induction one proves Leibnitz's rule:

We assume henceforth that &r is a family of derivations of R
and that De Ξf. Let φ: R—+ S be a homomorphism onto; then

2T(9>(r)) - φ(D(r))

defines a derivation D' on S if and only if the kernel I of φ is a D-
ideal. Suppose that I is a ϋ^-ideal, and write ϋ^ ' to denote the set
of derivations of S thus induced by £2f\ if A is a ^-ideal of R, then
9>(A) is a £^'-ideal of 5, and conversely if 5 is a ϋ^'-ideal of S, then
φ^iB) is a ϋ^-ideal of J? containing /. Thus, in particular, if A is
a maximal proper ^"-ideal of i?, then i?/A is ^'-simple.

LEMMA 1.1. Let D be a derivation of R, M a multiplicative
system of Ry and h: R —> RM the canonical homomorphism. ThenΫ

we can define a derivation on RM, which we also call D, by

D{h{r){h(m))-1) - [h(m)h(D(r)) - h(r)h(D(m))](h(m2))-' .

Furthermore, if A is a D-ideal of R, then h(A)RM is a D-ideal of
RM, and if B is a D-ideal of RM, then h~~ι(B) is a D-ideal of R.

Proof, ker h — {x e R \ xm — 0 for some m e M) is a D-ideal of
R since 0 = D(xm) — xD(m) + mD(x) = xmD(m) + m2D(x) — m2D(x).
Hence D induces a derivation on R/ker h, a derivation which can be
then extended to RM. The remainder of the lemma is straightforward.

LEMMA 1.2. Let & be a family of derivations of R, and sup-
pose that R contains the rational numbers. Then, the radical of a

of R is a ^

Proof. See [2, Lemma 1.8, p. 12].

COROLLARY 1.3. If P is a minimal prime divisor of a S)-ideal
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A, and P does not contain an integer Φθ, then P is a &-ideal.

Proof. Localize at P and apply 1.1 and 1.2.

THEOREM 1.4. Let A be a maximal proper ^f-ideal of R, then
( i ) A is primary.
(ii) If R/A has characteristic p Φ 0, then V~A is a maximal

ideal.
(iii) If R/A has characteristic 0, then A is prime.

Proof. ( i ) Suppose x, y e R, x g A and xy e A; then, U?=o (A:
yn) ZD A: y > A. But U~=o (A: y%) is a ^-ideal; hence, by the maxi-
mality of A, U~=o 04.: yn) = R and there exists n such that yn e A.

(ii) Let P be a maximal ideal of R containing A. Consider the
ideal B = (A, {xp \ x e P}) c P; since i?/A has characteristic pr B is a
^-ideal; hence, by the maximality of A, 5 = A and P = l/A

(iii) Since 22/A has characteristic 0, A contains no integer other
than 0, hence the prime ideal P = V~A contains no integer either, and
by 1.3 P is a ^-ideal. Then, by the maximality of A, P = A.

COROLLARY 1.5. Let R be of characteristic 0. Then R is £&-
simple if R contains the rational numbers and has no prime 3f-
ideal different from (0) and (1). If R is ^-simple, then R is a
domain.

One should note that a ^"-simple ring R always contains a field,
namely F — {x e R \ D(x) = 0 for all D e i^}; moreover, if the charac-
teristic of R is p Φ 0, 1.4 shows that R is a primary ring and hence
is equal to its total quotient ring; so this case will not be of interest
in our further considerations, and throughout the remainder of this
section we shall be dealing with a ^-simple ring of characteristic 0,
which is then a domain containing the rational numbers.

DEFINITION 1.6. Let R be a domain with quotient field K. An
element x e K is said to be quasi-integral over R if there exists an
element d e R, d Φ 0, such that dxn eR for all n*>l. The set Rr of
all elements of K that are quasi-integral over R is a ring, called the
complete integral closure of R. R is said to be completely integrally
closed if R = R'. Note that if R is Noetherian, the concepts of in-
tegral dependence and quasi-integral dependence over R for elements
of K become the same.

LEMMA 1.7. Let R be a domain with quotient field K, S a ring
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such that Rcz SdK, and & a family of derivations of R regular
on S. Then S is ^-simple if R is Sf-simple.

Proof. If B is any ^-ideal of S, then B Π R is a ^-ideal of
R, and if B is different from (0) then B Π R is also different from
(0) since SczK.

THEOREM 1.8. Let R be a domain of characteristic 0 and Rf its
complete integral closure. Then Rf is &simple if R is ^-simple.

Proof. By [5, p. 168], any De& is regular on R', hence the
theorem follows from 1.7.

2* Example of a l^dimensional local ring which is D-simple
but not integrally closed* First, in this section, we modify an idea
of Akizuki in [1] to construct some 1-dimensional local ring R of
arbitrary characteristic such that the integral closure R is not a
finite ϋ?-module.

THEOREM 2.1. Let k be a field of arbitrary characteristic, Y
an indeterminate over k, π = axY + a2Y

3 + + arY
2r~ι + an

element of k[[Y]] which is transcendental over k[Yf. Set

θx = πY~\ θr = (θ^ - dr-dY-*"1

for r ^ 2 (alternatively θr = ar + ar+1Y
2r + + asY

28~2r +•--); for
r ^ 1, set

tr = (θr - ar)
2 and πr = TΓ - (a,Y + + α^Γ21"-1).

αiso Γ = Λ[Γ, π, tγ, ί2, , ίr •] α^ώ P = (Γ, π)T.
Tczk[[Y]] and that Pa Yk[[Y]]. Then,

( i ) For r > 1, ̂  = Y2r(a2

r + £r) + 2αrY7Γr and P is a maximal
ideal of T.

(ii) For r :> 1, π\ — F2 r + 1~2tr and k(Y,π) is the quotient field
of T.

(iii) The ring R = TP is a 1-dimensional local domain.
(iv) The integral closure R of R is not a finite R-module.

Proof. ( i ) For r > 1, we have

t^ = (θ^ - ar^)2 = (Y2*-1^)2 = Y2\a\ + tr) + 2arY
2r(θr - ar) .

But

Y2\θr - ar) = Y[π - (a,Y + . . . + arY
2r^)] = Γτrr ,

1 Such an element exists; take for example π = aiY'+ α^F3 + +
with αr 3F 0 for every r ^ 1.



DIFFERENTIAL SIMPLICITY AND COMPLETE INTEGRAL CLOSURE 745

hence tr_x = Yir{a\ + tr) + 2arYπr. Since furthermore P(zYk[[Y]\,
l&P, and P is a maximal ideal of T.

(ϋ)

πr = π - {a,Y + ••• + arY
2r~')

= y-Hα^r2 ' + . . . + α^F"*'- 2 ' + ...)

= Yίr-\θr - ar)

thus π\ = F 2 r + t" 2ί r and fc(F, π) is the quotient field of T.
(iii) Let us show that F belongs to every nonzero prime ideal

of R. Since k(Y, π) is the quotient field of R it suffices to show that
R[Y-Ί = k(Y, π). Let βek[Y, π]; then β = E?=oS^ with s^klY].
For any integer r ^ 1, set fr = Σ?=o s^a.Y + • + α rF

! Γ-') ;; then

fr+ί = Σ βίίαxΓ + + α.Γ2"-1 + α ^ ^ * ^ 1 - 1 ) ' = /, + Y2r+1-%+ί

with hr+1 eA;[Γ], and since 2r+1 - 1 > r, we have / r = δ0 + b,Y +
+ &rF

r + Γ'+'i/,. and

/ r + 1 = b0 + b,Y + + brY
r + br+1Y

r+ί + Yτ+tgr+1

with b0, '•', br, br+ίe k and gr, gr+ιe & [Y]. Now, since

Tr = πr + ( o ^ + + arY
ϊr-1), β = Σ βίJr* = M r + Λ

t = 0

w i t h 8r e T. H e n c e , t h e r e e x i s t s 60, δ x , •••,&,., e fc, δj, •••,<?,., e T
a n d flTi, , gr, € fc[ Γ ] s u c h t h a t

() Σ i

Note that πre P and therefore that πr is a nonunit in R.
If 60 ̂  0, with r = 1, the relation (*) gives that β = &0 + (δx Y" +

π Λ + ΓVi) is a unit in 12 and thus that β-1 e Ra R[Y~1].
If δ0 = bx = = δr_! = 0 and δ r ̂  0, the relation (*) gives β =

F r (δ r + Fgfr) + τcr8r where wr = br + F# r is a unit in R; then

r - TΓA) - F2rw2

r - τr2

rδ
2

r - Y2r(w2

r - Y2r+1-2r~%δ2

r)

where w\ - Y2r+1-2r-%§2

r is a unit in 12, so that β^
If br = 0 for every r >̂ 0, then by the relation (*) we have

βe Π (τrr, F + 1 ) Γ c ή F^fc[[Γ]] - (0) .
r=l r=l

Thus, if β e fc[ F, π], either β-1 e Λ[ F-1] or β = 0. If 37 e fc(F, π),
then 77 = v\-1 with y, λe A;[F, π], λ ^ 0, so that ^e-RfF"1]; hence
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Now,

π2 = (Yθ,)2 =[a,Y+ (θ, - a,)Yf = (t, - a\)Y2 + 2a,Yπ

so that Y-1 e R[π~ι], k(Y, π) = R[Y~ι] a R[π~ι], and π belongs also to
every nonzero prime ideal of R. Thus PR = (Y,π)R, which is the
unique maximal ideal of R and which is contained in every nonzero
prime ideal of iϋ, is the only nonzero prime ideal of R. As further-
more PR is finitely generated, R is a 1-dimensional local ring.

(iv) First, let us show that θλ = π Y~ι £ T. Suppose that θ, e T =
k[ Y, π, t19 , tr, •]; then θ1 — f(π, tly , t/) where / is a polynomial
in ^ + 1 indeterminates over k[Y]. For r < s, by (i), tr can be ex-
pressed as a linear combination of 1, ί/and π with coefficients in k[Y],
hence θ1 = /(TΓ, ίx, , V) = F{π, t/) = F(YΘ19 {θ/- a/γ) where F is a
polynomial in two indeterminates over k[Y], Furthermore, by defini-
tion θr-x = Y2r~ιθr + α r _ n hence ^ = Γ2^26>^+ ^ with β/e k[Y] and
we have

(* *) Y*'-*θ, = G( Y^θs, (θ, - a/f)

where G is a polynomial in two indeterminates over &[F]; but π being
transcendental over &[F], θ/ is transcendental over k[Y] also, and the
relation (**) has to be an identity, which is absurd. Thus, θί g T.

Now, let i2* be the completion of R with the (PR)-adic topology;
{πr}r^0 is a Cauchy sequence in R. Suppose that πr e P2R for some
T ^ 1; since P 2 is a primary ideal of Γ, we have πr e P2R Γ\ T = P2aYT,
and π = πr + {aJΓ + + ^Γ27*-1) e Γ Γ which is absurd since θι £ T.
Thus, for every r ^ 0, πrgP2R and /S = lim rτr r is ^ 0 . However, we
also have β2 = limr 7Γ2 = limr Y2r+1~% = 0; hence J?* has a nonzero
nilpotent element and R is not a finite ϋ?-module [1, p. 330].

EXAMPLE 2.2. Let Q be the rational numbers, (Xlf •••, Xr, •••)

a set of indeterminates over Q and fc = Q(Xίf •'•> Xn •••)• Let

π = b.X.Y + + 5 J J 2 M + •

be transcendental over k[Y] with b{eQ - {0} for every i ^ I 2 . Con-
struct the rings T = fe[Γ, TΓ, ίx, , ίr, •] and i? = T P as in 2.1. On
the quotient field k(Y, π) = Q(Xi, , X r, Y,π) define a derivation
D by

D(q) = 0 for every q e Q

D(Y) = 1

d = 0
2 There exists such a π since & is countable.
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D(X2) - -Ίb^X.Y*

Then,
( i ) D is regular on R
(ii) R is a 1-dimensional local D-simple ring which is not inte-

grally closed.

Proof. ( i ) Since R = TP, it suffices to show that D(T) c R.
By definition of D we already have D(&) aR, D(Y) e R and D(ττ) e R;
hence it remains to show that D(tr) e R for every r ^> 1. Differentiat-
ing τr2 - Γ2r+1-2έr, we get 2πrD(πr) = Γ2r+1~2D(£r) + (2r+1 - 2) Γ2 r + 1-%;
but tre YR by 2.1, hence D(tr) e R if and only if πrD(πr)e Y2r+1~2R.
Let us show that in fact we have D(πr) e Y2r+1~2R. From πt = TΓ —
δ ^ Γ we get Dfo) = D(π) - bLX, = 362X2Γ

2; by induction, if we
suppose that D(πr^) = (2r — l)brXrY

2r~2 and if we differentiate the
relation τrr = TΓ^, - brXrY

2r~ι, wegetD(τr r) = (2 r+1 - l)brhlXr+1Y
2rΛ1~2e

Y^^^R. Hence D is regular on R.
(ii) The only prime ideal of R which is not (0) or (1) is PR =

(Y, π)R; it is not a D-ideal since D(Y) = 1; thus by 1.5, R is D-simple.
Furthermore by 2.1. R is a 1-dimensional local, not integrally closed,
domain.

3* On the complete integral closure of a ^ - s i m p l e ring* We
have seen in the preliminaries that a ϋ^-simple ring of characteristic
p Φ 0 is equal to it total quotient ring. In this section we are con-
cerned with rings of characteristic 0. Henceforth, R will denote a
ring containing the integers.

THEOREM 3.1. Let R be a ring, D a derivation on R, P a prime
ideal of R containing no D-ideal other than (0). Define v: R\{0} —>
{nonnegative integers} by v(x) — n if D{i)(x) e P for i — 0, , n — 1
and D{n(x) g P. Then,

( i ) R is domain.
(ii) v is rankΛ-discrete valuation whose valuation ring Rv con-

tains R and whose maximal ideal Mυ lies over P.
(iii) D is regular on Rv and Rv is D-simple.

Proof. ( i ) If n is any integer, D{n) = 0 and nR is a D-ideal
of R; hence 0 is the only integer contained in P. Now, (0) is a D-
ideal, hence by 1.3 any minimal prime divisor Q of (0) is a D-ideal
also; then, by the hypothesis made on P, we have (0) = Q and R is
a domain.
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(ii) Let x and y be two nonzero elements of R, and let v(x) = n,
v(y) = m,n ^ m. For every i such that 0 <̂  i <Ξ w — 1, both Da)(x)
and D(ί)(?/) belong to P, hence Z)(ί)(# + y)eP and

tf(α + #) ^ w = inf M#), v(y)} .

Let & be such that O^k^n + m — 1. For 0 ^ ΐ ^ inf {&, w — 1}
we have D{i)(x)eP, hence also CiD{i){x)D{k-i]{y)eP) for w ^ fc and
n ^ i ^ k we have 0 ^ & — i <^ k — n ^ m — 1, hence D{k~i](y) e P
and CiD{i)(x)D{k-i)(y)eP; thus

Σ CiD^(x)D^i\y) e P .
4 = 0

Now,

whereas C:+mDin)(x)Dim)(y) $ P since C; + m , D ( w )(^), Z)(w)(τ/) ί P; thus

Din+m)(xy) £ P , v(a?i/) = % + m = v(α?) + v(y)

and v is a valuation, rank-1-discrete since its value group is the group
of integers. Furthermore, we obviously have R c Rυ and Mv Π R = P.

(iii) Let ab~~ι be any element of Rv with α, δ e R, b Φ 0, v(α) ^
v(6); then ^(αδ-1) = [bD(a) - αD(δ)]6-2. If v(a) > v(b), then v(D(α)) =
v(a) - 1 ^ v(6) and v(D(b)) ^ v(6) - 1 so that

v(bD(a) - aD(b)) ^ inf {v(b) + v(-D(α)), v(α) + v(D(b))} ^

and ^(αδ-1) e Rv. If v(α) = v(b) = 0, then v(δjD(α) - αD(δ)) ^ 0 = 2v(b)
and ^(αδ-1) e J?,. If v(a) = v(b) = n > 0, then v(bD(ά)) = v(aD(b)) =
2n - 1, so that D{k)φD(a) - aDφ)) e P for every fc ^ 2 w - 2; further-
more we have

with ^ e P , and similarly D^^ (aDφ)) = α2 + C^D^icήD^φ) with
α 2 e P, so that D^-^φDia) - aDφ)) = aλ- a2eP; hence, ^(δί)(α) -
aDφ)) ^ 2w and Dfab-1) e ϋ?v. Thus Z) is regular on i^ . Moreover,
β v is D-simple since if A ^ (0) were a ZMdeal of i2v, then AC] R ^ (0)
would be a D-ideal of R contained in P, which would be absurd.

THEOREM 3.2. Let R be a domain with quotient field K, S a
ring such that R a S a K and D a derivation of R regular on S.
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Let P be a prime ideal of R such that RP is D-simple. Then,
( i ) There is at most one prime ideal Q of S lying over P, Q

being a minimal prime ideal when P is.
(ii) If S is the complete integral closure Rf of R there is ex-

actly one prime ideal P ' of Rr lying over P.

Proof. ( i ) Let Q be a prime ideal of S such that Q D R = P.
Being regular on S, D is also regular on SQ, and SQ is D-simple since
Sρ Z) RP. Define v: R\{0} —> {nonnegative integers} by v(x) = n if

Dw(x), , D[n-1](x) e P and D{n){x) $ P ,

and w: S\{0} —> {nonnegative integers} by

w(y) = m if Dw{y), . , D(7Ά~1](y) e Q

and D{m)(y)£Q. By 3.1, v and w extend to valuations of K; further-
more, for xeR we have D{k)(x)eP if and only if D{k)(x)eQ since
Q Π R = P; hence v = iv, and ζ) = ikf7 Π S where Mv is the maximal
ideal of the valuation ring Rv of v.

If P is a minimal prime ideal of i?, suppose that Qr is a prime
ideal of S such that 0 < Q ' c Q . We have 0<Q'Γ\Rc:QC}R = P
and Q' Π i? = P by the minimality of P; then Q' = Q since Q is the
only prime ideal of S lying over P.

(ii) By [5, p. 168] every derivation of R is regular on R'. Being
a rank-1 valuation ring, Rv is completely integrally closed and contains
R\ Then, Pf = M, Π J?' is a prime ideal of Rf lying over P; of
course, by (i), P' is unique.

THEOREM 3.3. Lβί R be a Noetherian ^-simple ring and R its
integral closure. Let {Pa)aeΛ be the set all the minimal prime ideals
of R. Then,

( i ) For every ae Λ, there exists D e & such that RPa is D-
simple, and there exists a unique prime ideal Pa of R lying over Pa.

(ii) {Pa}aeΛ is the set of all the minimal prime ideals of R.
(iii) Let D e & such that D(Pa) (£ Pa, wa the valuation associated

by 3.1, and Ra its valuation ring. Then Ra = RP(x {hence, any two
derivations D and Π such that D(Pa) ςt Pa and D (Pa) ςt Pa give rise
to the same valuation wa).

(iv) R = Γ l - X

Proof. ( i ) Being ^-simple, R is a domain containing the
rational numbers, and for any aeΛ, there exists ΰ e S such that
D(Pa) ςt Pa, and by 1.3, RPa is D-simple. Then, by 3.2, there exists
a unique prime ideal Pa of R lying over Pa.
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(ii) That every Pa is a minimal prime ideal of R is given by 3.2.
Now, let P be a minimal prime ideal of R, and let P = P Π iϋ; let M
be a minimal prime ideal of R contained in P; by [3, (10.8), p. 30]
there exists a prime ideal M of R lying over M; since P is the only
prime ideal of R lying over P, we have MaP by [3, (10.9), p. 30],
hence M = P, and P = P Π i 2 = i W is a minimal prime ideal of P.

(iii) Since R is Noetherian, 5 is a Krull ring [3, (33.10), p. 118],
and Rpa is a rank-1-discrete valuation ring. As furthermore RPacz Ra

we get Rpe = Ra.
(iv) β is a Krull ring and {Pα}β6il is the set of all the minimal

prime ideals of R; thus R — Γ\asΛR?a — Π«e^i?«.

COROLLARY 3.4. Let R be a Noetherian ^-simple ring with
quotient field K. Let S be a ring such that R c S c K and such that
every De £^ is regular on S. Then, the following statements are
equivalent:

(i) For every minimal prime ideal P of R there exists a
(unique) prime ideal Q of S lying over P.

(ii) S is integral over R.
(iii) For every prime ideal M of R there exists a (unique) prime

ideal N of S lying over M.

Proof. That (ii) => (iii) is a consequence of [3, (10.7), p. 30] and
3.2; that (iii) ==> (i) is obvious. Now, let {Pa}aeA be the set of the
minimal prime ideals of R, {wa}aeΛ the associated valuations and {Ra}aeΛ

the valuation rings of the wa'&. For any aeΛ, let fle ^ be such
that D(Pa) <t Pa, and let Qa be a prime ideal of S lying over Pa; SQa

is Z)-simple, the valuation associated to Qa is equal to wa and S c Ra.
Hence, S c R = ΓUΛ Ra*

COROLLARY 3.5. Let R be a Noetherian ^-simple ring with
quotient field K, and R its integral closure. Then,

( i ) R is the largest ^-simple overring of R in K having a
prime ideal lying over every prime ideal of R.

(ii) R is the largest 3$-simple overring of R in K having a
prime ideal lying over every minimal prime ideal of R.

Proof. Apply 3.4.

The author wishes to acknowledge the many helpful discussions
on the topics of this paper he had with Professor Ohm.
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ON NONNEGATIVE MATRICES

M. LEWIN

The following characterisation of totally indecomposable
nonnegative ^-square matrices is introduced: A nonnegative
^-square matrix is totally indecomposable if and only if it
diminishes the number of zeros of every ^-dimensional non-
negative vector which is neither positive nor zero. From
this characterisation it follows quite easily that:

I. The class of totally indecomposable nonnegative n-
square matrices is closed with respect to matrix multiplica-
tion.

II. The in — l)-st power of a matrix of that class is
positive.

A very short proof of two equivalent versions of the
Kόnig-Frobenius duality theorem on (0, l)-matrices is supplied
at the end.

A matrix is called nonnegative or positive according as all its
elements are nonnegative or positive respectively. An ^-square matrix
A is said to be decomposable if there exists a permutation matrix P

such that PAPT = \ r ph where B and D are square matrices;
otherwise it is indecomposable. A is said to be partly decomposable
if there exist permutation matrices P, Q such that

[B 0Ί
PAQ = , where B and D are square

matrices; otherwise it is totally indecomposable.
Whereas the notion of indecomposable matrices first appeared in

1912 in a paper by Frobenius [2] dealing with the spectral properties
of nonnegative matrices, totally indecomposable matrices were intro-
duced fairly recently apparently by Marcus and Mine [10]. Their
properties have been studied in several papers on inequalities for the
permanent function.

In [11] Mine gives the following characterisation of totally in-
decomposable matrices:

A nonnegative ^-square matrix A, n ^ 2, is totally indecomposable
if and only if every (n — l)-square submatrix of A has a positive
permanent.

A well-known theorem states:

THEOREM 1. If A is an indecomposable nonnegative n-square
matrix then
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(A + If~ι > 0 [3], [9] .

An indecomposable matrix is primitive if its characteristic value
of maximum modulus is unique.

Wielandt [15] states (without proof) that for primitive w-square
matrices we have

By using solely the properties of total indecomposability we
establish a different characterisation for totally indecomposable matrices
from the one given by Mine. Using part of the characterisation we
show that if A is a totally indecomposable nonnegative ^-square
matrix then An~x > 0. This result is best possible as for every n
there exist totally indecomposable n-square matrices A for which
An~2 y> 0. Theorem 1 then follows as a corollary of the latter result.

We should like to point out that Theorem 2 is by no means
essential for the proof of Theorem 3. Two independent proofs of
Theorem 3 are given in § 4. It seems justified however to present
Theorem 2 on its own merit.

We conclude with a very short proof of two equivalent versions
of Konig's theorem on matrices.

2* Preliminaries* | S | denotes the number of elements of a
given set S. Let Mn be the set of all nonnegative %-square matrices,
let Dn be the subset of Mn of indecomposable matrices and let Tn be
the subset of Dn of totally indecomposable matrices. Let A e Mn and
let p and q be nonempty subsets of N= {1, •••,?&}. Then A[p|g],
A(p I q) is the \p\ x \q\ submatrix of A consisting precisely of those
elements ai5 of A for which iep and je q, ί&p and jί q respectively.
A[p I q) and A(p \ q] are defined accordingly. We can now formulate
equivalent definitions for matrices in Dn and Tn:

D . I . A e Dn if A[p \ N — p] Φ 0 for every nonempty pc N.
D. 2. Ae Tn if A[p \ q] Φ 0 for any nonempty subsets p and q

of N such that \ p \ + I q | = n.
Let us now establish some connections between indecomposable

and totally indecomposable matrices.

LEMMA 1. IfAe (Dn — Tn) then A has a zero on its main diagonal.2

Proof. Since A& Tn there exists a zero-submatrix A[p \ q] with
I p I + I q I — n; but since A e Dn1 pf] q Φ 0 , which means that A has

1 A proof is supplied in [5].
2 Lemma 1 is part of Lemma 2.3 in [1] but the shortness of our proof seems to

justify its presentation.
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a zero on its main diagonal.

COROLLARY 1. If AeDn then A + IeTn.

Proof obvious.

3* The main results* Let A — (ai0) G Mn and let v denote an
^-dimensional vector with at(v) its ίth entry.

Define: Jk = {j: akj = 0}, Ik = {i: aik = 0},

70(v) - {i: c φ ) - 0} , I+(v) = {i: β φ ) > 0} .

Let Rn denote the space of %-tuples of real numbers.
Let Xn be the set of all nonnegative vectors in Rn which are

neither positive nor zero. We then have the following

THEOREM 2. A nonnegative n-square matrix A is totally in-
decomposable if and only if | I0(Ax) | < | IQ(x) \ for every x e Xn.

Proof. Let Ae Tn and xe Xn. A necessary and sufficient condi-
tion for aio(Ax) = 0 for some i0 is

( 1 ) J+(&) c JiQ .

If I0(Ax) = 0, then there is nothing to prove, so we may assume

( 2 ) I0(Ax) Φ 0 .

xe Xn implies

( 3 ) I+(χ) Φ 0 .

(1), (2) and (3) imply that A[IQ(Ax)\I+(x)] is a zero-submatrix of A.
Since Ae Tn by assumption, we have (by D. 2.)

\I0(Ax)\ + \I+(x)\<n=\I0(x)\ + |I+(s)|

and hence | I0(Ax) | < | I0(x) \ which proves the first part of the theorem.
(It is not generally true however that I*(Ax) c IQ(x) as it may happen
that <ii(x) > 0 and a^Ax) = 0, a situation which differs somewhat
from that in the similar case for indecomposable matrices (5.2.2
in [9])).

Let now A$ Tn. Then A contains a zero-submatrix A[I\ J] such
that I, J Φ 0 and \I\ + \J\ = n. Choose now xe Rn such that

( 4 ) I+(x) = J.

Then clearly xeXn. We have I0(x) = N - I+(x) = N - /, and hence
I IQ(x) I = 17|. For iel we have /,- Ώ J, and hence by (4) I+(x) c J^,
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so that for i e I according to (1) a^Ax) = 0 and hence I0(Ax) Ώ. I.
Then I I0(Ax) | ^ 11\ = \ I0(x) |. This completes the proof.

Xn in Theorem 2 may of course be replaced by its subset Yn

consisting of the 2" — 2 zero-one vectors.
Theorem 2 admits of two simple corollaries which we present as

Theorems 3 and 4.

THEOREM 3. If A is a totally indecomposable nonnegative n-square
matrix then

An~ι > 0

Proof. If for some j0 we had | IJQ | ^ n — 1 then A would be
partly decomposable and hence | IJQ | ^ n — 2 for j e N and the rest
follows.

Theorem 1 follows from Theorem 3 as an immediate consequence
of Corollary 1. For A — I + P where P is the ^-square permutation
matrix with ones in the superdiagonal, so that ai3 = 1 if i = j or
i = j — 1, anl = 1 and ai5 — 0 otherwise, it is easy to show that
An~2 > 0, which shows that our result is best possible.

THEOREM 4. The product of any finite number of totally in-
decomposable nonnegative nsquare matrices is totally indecomposable.

Proof. It is clearly sufficient to prove the statement for two
matrices. Let therefore A, Be Tn. Choose an arbitrary element x
of Xn. We then have

(5) \UABx)\£\UBx)\<\Ux)\

by Theorem 2. Since x was arbitrary, (5) applies to all elements of
Xn. Again by Theorem 2 it follows that AB is totally indecompo-
sable, which proves the theorem.

4* Independent proofs of Theorem 3* A lemma of Gantmacher
[3] states that if AeDn and x e Xn, then I0[(A + I)x] c I0(x).

The following proof of Theorem 3 assuming the lemma has been
suggested by London3: Let Ae Tn. Using the fact that a matrix in
Tn possesses a positive diagonal d, put

A, = ~PT(A - aP) = — PTA - / where 0 < a < min aiό{ai5 e d)
a a

3 D. London, oral communication.
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and P = (pij) is an ti-square permutation matrix such that pi3 = 1 if
and only if ai3- e d. Then A e Tn implies Ax e Tn.

We have A = aP(Aι + I); since AιeDn we obtain

J0(Aa?) - UPiA, + I)x] = U(A1 + I)x] c I0(s) ,

for xeXn. Then /O(AW-^) = 0 , and A""1 > 0.
Another proof has been kindly suggested by the referee of this

paper: We show that if A is totally indecomposable, then if x e Xn,
then

\UAx)\<\I0(x)\.

The theorem then follows immediately.
Suppose I IQ(Ay) | ;> | IQ(y) | for some yeXn.
Put I I0(y) I = s. There are permutation matrices P and Q such

that

PAy =
0

u
and Qτy =

0

v

where u is an (n — s)-dimensional nonnegative victor and v is an
(n — s)-dimensional positive vector: The 0's represent s zero components
in each case.

[ A A~\
"71 j : 2 where Ax is s x s, A2 is s x (n — s),

A, is (n-s)xs and A4 is (w-8)x(w-β). Then Γ^1 ^ 2][^1 [ J l
and so A2V — 0. Thus A2 = 0 and hence Ag Tw, a contradiction.

5* Kόnig's Theorem* Let A be an m x n matrix. A covering
of A is a set of lines (rows or columns) containing all the positive
elements of A. A covering of A is a minimal covering of A if
there does not exist a covering of A consisting of fewer lines. Let
M{A) denote the number of lines in a minimal covering of A. A
basis of A is a positive subdiagonal of A of maximal length. m{A)
denotes the length of a basis of A. The ith column of A is essential
to A if M(A(0J)) < M(A).

We now give the two versions of Konig's Theorem and their
proofs:

K. T. 1. If A is an m x n matrix, then m(A) — M{A).
K. T. 2. If A is an n-square matrix, then A has k zeros on

every diagonal (k > 0) if and only if A contains an s x t zero-
submatrix with s + t = n + k.
This is a generalized version of a theorem of Frobenius. The follow-
ing theorem appears in [8] (we reproduce it here in a hypothetical
form).
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E. T.: If A is an m x n matrix and K. T. I. holds for A, then
there exists a minimal covering of A (called essential covering) contain-
ing precisely the essential columns of A (and may be some rows).

Proof of K. T. 1. m(A) ^ M(A) holds trivially. The theorem is
clearly true for 1 x n matrices for all n. Assume that the theorem
is true for all μ x n matrices, μ < m and all n. Let A be an m x n
matrix. Consider A' = A({m}\N]. A! is an (m — 1) x n matrix so
that K. T. 1, holds for A' and hence E. T. holds for Af. Let Q be
the essential covering of A'.

Case 1. Q is a covering of A. Then m(A) ^ m(A') = M{A') ^
M{A).

Case 2. Q is not a covering of A. Then there exists j 0 e N for
which amjo > 0 which is not covered by Q and hence the i o th column
is not essential to A'. Then clearly there exists a basis V of A'
without elements in the i o th column. Then 6 — V U {a<mj0} is a sub-
diagonal of A and hence M(A) ^ M{A') + 1 = m{A') + 1 ^ m(A). This
proves K. T. 1.

Proof of K. T. 2. Necessity. If A has k zeros on every diagonal
then m(A) <* n — k. By K. T. 1, M(A) ^ n — k. Apply a minimal
covering to A. Then there remains a n s x ί zero-matrix of A which
is not covered, with s + t Ξ> 2n — ikf(A) ^ w + k.

Sufficiency. Let A contain a n s x ί zero-submatrix with s + t —
n + k. Then there are positive elements on at most 2n — (n + &) =
w — & lines, meaning that there are at least k zero-rows, which
proves the sufficiency.
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SPECIALITY OF QUADRATIC JORDAN ALGEBRAS

KEVIN MCCRIMMON

In this paper we extend to quadratic Jordan algebras
certain results due to P. M. Cohn giving conditions under
which a Jordan algebra is special, the most important of
these being the Shirshov-Cohn Theorem that a Jordan algebra
with two generators and no extreme radical is always special.
We also prove that the free algebra on two generators x, y
modulo polynomial relations p(x) — 0, q(y) = 0 is special, and
hy taking a particular p(x) we show that most of the properties
of the Peirce decomposition of a Jordan algebra relative to
a supplementary family of orthogonal idempotents follow im-
mediately from the analogous properties of Peirce decomposi-
tions in associative algebras.

Throughout we will work with algebras over an arbitrary (com-
mutative, associative) ring of scalars Φ. A (unital) quadratic Jordan
algebra is defined axiomatically in terms of a product Uxy linear in y
and quadratic in x [4, p. 1072]. We can introduce a quadratic Jordan
structure 2t+ in any unital associative algebra Sί by taking

Uxy = xyx .

Any (Jordan) subalgebra of such an algebra 2I+ is called a special
Jordan algebra. A specialization of a quadratic Jordan algebra S is
a homomorphism of $ into an algebra of the form 3ί+.

With any quadratic Jordan algebra $ we can associate its special
universal envelope, consisting of a unital associative algebra suffi) and
a (universal) specialization σu: £5 —•> st6(^)+ such that any specialization
σ: $ —»SX+ factors uniquely through an associative homomorphism su(σ):

21,

carries a unique involution, the main involution π, such that
the elements of $σ% are [symmetric: x°uZ = xa%. This association is
functorial—if φ: ^y—>^ is a homomorphism of quadratic Jordan algebras
there is induced an associative homomorphism su{φ) making

F»
su(φ)
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commutative. An algebra £5 is special if and only if it is imbedded
in suffi) via σu.

For any set X we have a free quadratic Jordan algebra FJ(X),
a free special Jordan algebra FS(X), and a free associative algebra
F(X) on the set X (over the ring Φ). We have FS(X) imbedded in
F(X) as the (Jordan) subalgebra of F(X)+ generated by X, and F(X)
with this inclusion map serves as special universal envelope for FS(X)..
When X consists of just two elements X — {x, y} we know FJ(x, y) =
FS(Xj y) by Shirshov's Theorem. For all these see [3].

l Cohn's theorem and criterion. We consider a set X = {Xi}iei
where the indices are linearly ordered. The free associative algebra
F(X) carries a reversal involution, whose action on a typical monomial is,

(xh xinY = xin xh .

The subspace Q(F(X)9 *) of ^-symmetric elements is a Jordan sub-
algebra of F(X)+ containing X, hence containing FS(X). Cohn's
Theorem measures how far FS(X) is from being all of Q(F(X), *).

COHN'S THEOREM [1, p. 257; 2, ex. 2 p. 9]. Q(F(X), *) is the
Jordan subalgebra of F(X)+ generated by 1, X, and all the n-tads

K *« J = XH ' * * Xin + Xin * * 3<i

ίL < i2 < < in.

Proof. Clearly φ = ^( i^X), *) contains X and all w-tads. Con-
versely, to show the subalgebra & generated by such elements is alL
of & we must show & contains all {x{ί xin} = xiχ xin -f xi% .τ^
and all x^ %ίny%in x^ (where y is either 1 or one of the x{) since=
these clearly span £ . Now the xh ••• xinyxin ••• a?4l = ϋ ^ ^»ίΛ2/"
are generated by X alone, so we need only generate the {x{l ••• x{j.
We do this by induction on n. The result is trivial for n — 2, 3 since
{a^ί j = a?̂  o aji2, {a;<1α;ί2αjί8} = Uxii,xixh where a on and J7β,β2/ are the-
linearizations of x2(— Uxl) and Uxy. We assume n ;> 4 and that alL
{̂ ή *'# χί<J ^or m < n are in ^ .

Our first task is to show

( 3 ) K ( 1 ) xiπ{j = ±K Xin] (mod $>

for any permutation π. It suffices to do this for the generators
(12 n) and (In) of the symmetric group Sn. For the transposition.
(In) we have

K Xin) + {VinXi2 ' ^ - ^ J = ^.ίr i K * ' * *inj = 0
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by our induction hypothesis, and for the cycle (12 n)

{xh xin} + {xh . . . xinxh] = xh o {xh . . . χ.n} = 0 .

If all the indices are distinct then (3) shows that {xiι xίp} is
congruent to ± an %-tad, which belongs to B by hypothesis, so
{x^ xin} also belongs to B. If two indices coincide, (3) shows
{xh — α; — a? — xin} = ±{xxh Xinx) = Ux{xh xin} Ξ 0 by induc-
tion. In either case, {xiL xin} e Si.

Since there are no %-tads for n ^ 4 if there are only three vari-
ables, we have the following useful corollary.

COROLLARY. For m ^ 3, the suhalgehra of F(xiy , xm)+ generated
by xλ, - ,xm is all of $(F{xu , xm), *).

The next result gives a criterion for when a homomorphic image
of a special Jordan algebra is again special.

COHN'S CRITERION [1, p. 255; 2, p. 10]. If £5 is a special Jordan
algebra and & an ideal in $ then Ϊ^/Si is special if and only if $ Π
$ — $ where ^ is the ideal in su(^s) generated by &.

Proof. A standard functorial argument shows that the algebra
k and the specialization of ^/St induced from ^ —>
by passage to the quotient serve as special universal

envelope for £$/$) (i.e., satisfy the universal property (1)). The kernel
of this specialization is 5̂ Π $)/$, so the specialization is injective (i.e.,
$/& is special) if and only if 3 n ! = <$.

In particular, for % = FS(X) and su($) = F{X) we obtain

COROLLARY. FS(X)/St is special if and only if Si n FS(X) = B
where ίk is the associative ideal in F(X) generated by the Jordan ideal
B in FS(X).

2. Shirshov-Cohn theorem* The extreme radical of a unital
quadratic Jordan algebra $ is the set of elements z such that Uz =
ϋZtX = 0 for all x in $; this always forms an ideal. Since 2z = z o 1 = 0
for such elements, the extreme radical is always zero when J e Φ.

PROPOSITION [I, p. 260]. // B is an ideal in FS(x, y, z) having a
set of generators {k} such that all tetrads {xyzk} belong to Si, and if
FS(x, y, z)/B has zero extreme radical, then FS(x, y, z)/B is special.

Proof. _By the Corollary to Cohn's Criterion FS(x, y, z)/B will_be
special if B Π FS(x, y, z) c B. To prove that any p(x, y, z) in B Π
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FS(x, y, z) belongs to $ it will suffice to show it is in the extreme
radical modulo ®,

( i ) Upr = prp e ffi
( i i ) UPίQr = p r g + qrp e® {q,re FS(x, y , z))

since we are assuming FS(x, y, z)/& has no extreme radical.
It will be enough to prove the stronger results
( i ) ' prp* 6 β
(ii)' p + p*e® (pe®,reFS(x,y,z))

since p ~ p* if p e ® Π jPS(α?, 2/, 2;) and then ^rg e $ has prq + (prq)* —

We tackle (ii)' first. The proof is the standard one [2, p. 11].
It suffices to consider p = skt for s, t monomials in x, y, z and k a
generator of $, since such elements span $. As sw£ + t*ws* is a.
symmetric element of the free algebra F(x, y, z, w), by Cohn's Theo-
rem it is a sum of Jordan products of x, y, z, w and the tetred {xyzw}
where each term in the sum has a factor w or {xyzw}. But then
(applying the homomorphism F(x, y, z, w) —> F(x, y, z) sending x —• x,
V —+ V, z —> z, w ~+ k) we see p + p* = skt + t*ks* is a sum of Jordan
products of x, y, z, k and the tetrad {xyzk} where each term has a
factor ke& or {xyzk}e& (by our hypothesis), so p + p* falls in the
ideal Si.

Since (i)' is not linear in p we must first consider a general p —
Σp{ = Js^iίi. Here prp* = Σ^rpf + J^iίPirp; + Pjrpf). By (ii)'
the latter sum is in $ since the ^ r p / belong to $ if 2̂  does, so once
again we need only consider an individual p{\ to consider prp* for
p — skt. Now 2>rp* — sktrt*ks* = skhks* for

Λ = ίrί* e ©(^(a?, y, «), *) = ΉS(*τ, 2/, «)

by the Corollary to Cohn's Theorem. But since S is an ideal in
FS(x, y, z) this yields kf = A M = Z7*Λ e β, and if s = st sm where
each Si is a n x , y , or z t h e n s&'s* = U$ι ••• USmk' e$t. Thus prp* e&
in all cases, finishing (i)' and the Proposition.

Shirshov-Cohn Theorem [1, p. 261; 2, p. 48]. Any united quadratic
Jordan algebra on two generators without extreme radical is special.

Proof. By universal properties, any quadratic Jordan algebra $
on two generators is a homomorphic image of the free quadratic Jordan
algebra FJ(x, y) on two generators, hence (by Shirshov's Theorem) of
FS(x, y): $ ~ FS(x, y)/B for some ideal SI. We now apply the Propo-
sition; we can forget about tetrads, since we are not concerned with
the variable z.

More precisely, let {k} be a set of generators for β, let 3 be the
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ideal in FS(x, y, z) generated by z, and let 8 be the ideal generated
by z together with the k's. Then FS(x, y) = FS(x, y, z)/3 and

FS{x, y)/B ~ (FS(x, y, s)/3)/(S/3) = FS(x, y, z)/2 .

Each {xyzk(x, y)} or {xyzz} belongs to 2—the latter is {xyz2} — Ux>zty
and the former is a sum of Jordan products of x, y, z each term of
which has a factor z, so in fact the tetrads belong to 3 c: 8. Since
FS(x, y, z)/ί& ~ %$ has no extreme radical, we apply the Proposition to
conclude $ is special.

Note that if J 6 Φ then the extreme radical is automatically zero,
so in that case we obtain the usual Shirshov-Cohn Theorem that any
Jordan algebra on two generators is special. A standard example [2,
ex. 3 p. 12] shows that this stronger form does not hold in general:
if & is the ideal spanned by x2, x\ x\ xe in the free algebra

FJ(x) - FS(x) = F{x)

on a single generator over a field Φ of characteristic 2 then the coset
x in FS(x)/St has x2 = 0 but x3 Φ 0 so FS(x)/$t cannot be special. (Of
course, x3 is in the extreme radical).

An algebra Qf is power-associative if each subalgebra Φ[z] generated
by a single element forms an associative algebra under the natural
structure induced from Qf [5, p. 293], and strictly power-associative
if it remains power-associative under all scalar extensions. Power-
associativity amounts to the condition that a polynomial relation
p(z) — 0 implies zp(z) = 0. In the previous example it was the failure
of this condition which led to trouble. However, the following example
shows that imposing power-associativity is not by itself enough to
guarantee speciality; the condition is necessary but not sufficient.

EXAMPLE. If ίϊ is the ideal in FJ(x, y) over a field Φ of charac-
teristic 2 generated by Uty and all monomials of degree ^>6, then
$ — FJ(x, y)/St is a strictly power-associative algebra generated by
two elements which is not special.

Proof. ££= FJ(x, y)/$t = FS(x, y)/B is not special by Cohn's Cri-
terion since $ Π FS(x, y) > $£; indeed, UxUyx = xyxyx = xy(Uxy) be-
longs to S and to FS(x, y), yet not to St. To see this, recall that
the ideal generated by Uxy is spanned by all Mι Mn{ Uxy) and
M, . . . Mlz(UU{X)y)m for meFS(x, y) and M, - Ux, Uy, UXtV, Vx, Vy, or
/. The part of the homogeneous ideal St of ^-degree 3 and /̂-degree
2 is spanned by Ux,y(Uxy), VxVy{Uxy), VyVx{Uxy), i.e., by

x2yxy + yxyx2, 2xyxyx + x2yxy + yxyx2, yx2yx

+ xyx2y + x2yxy + yxyx2 ,
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hence by x2yxy + yxyx2 and yx2yx + xyx2y in characteristic 2, so that
xyxyx is not in $ .

We will show $ is power-associative; since any extension $Q has
the same form over Ω that $ does over Φ, the same argument will
apply to all Ϊ$Ω, and consequently $ will be strictly power-associative.
We must show that if p(z) e $1 for some polynomial p then also zp(z) e ft.

First we get rid of the constant terms. Let z = aol + w where w
contains the homogeneous parts of z of degree ^>1. Then the degree
zero part of p(z) eft is p(a0), and since ft is homogeneous and contains
only terms of degree ^ 3 we have p(a0) = 0. Thus, if q(h) = p(λ + α0)
we have g(0) = p(a0) = 0, so q has zero constant term, and

p(z) = q(z - αol) = q(w) .

Therefore

= aop(z) + wp(jδ)' = ^o^(^) + wq(w) ,

and it will be enough if wq(w) lies in ft.
This shows we may assume (after replacing p, z by q, w) that

p(X) and z have no constant term:

for Zi homogeneous of degree i. We next get rid of the degree one
term zι — ax + βy. If 7t = = 7r_i = 0 but yr Φ 0 then the degree
r term of p(z)e& is 7rzΓ> so by the homogeneity of ft

z[ = (<x̂  + /Sl/)r = αraf + /3r2/r + •

lies in ft. Since all elements of ft have #-degree ^ 2 and ^/-degree ^ 1
we see ar = βr — 0. Thus a = /3 = 0 and ^ = 0 as desired.

We are reduced to considering z = z2 + zz + £4 + z5 (modulo terms
of degree ^6) ; in this case zk for k ^ 3 consists entirely of terms of
degree :>6, so p(z) = Ίλz + 72^

2 and «j>(2) = ΊXZ
% mod ft. If 7χ = 0 tri-

vially zp(z) e ft, while if Ίx Φ 0 then 7 ^ + y2z
2 = 7^2 + 7^3 + ( 7 A +

72^) + (7i36 + 72^2 ° «β) e ft implies «2, ^3 e ft by homogeneity, so 7i22 =
7i(^ + 2̂ ° «s) € ft. In all cases «p(«) belongs to ft, and $ is power-
associative.

We can improve slightly on the theorem. In dealing with asso-
ciative algebras Sί with involution * in situations where J g Φ it is
sometimes more convenient to work with certain "ample" subalgebras
of φ(St, *) rather than just with #(3t, *) itself. A subspace ft of £(2C, *)
is ample if & contains 1 and all aka* for a e 2t and ^ e S . (In parti-
cular, ft contains all norms αα* and traces a + α*, so if i e Φ then
ft = φ). We will say a Jordan algebra is reflexive if ^σ M is an ample
subspace of #(«%($), π ) (and strongly reflexive if $ σ " = ^(su(^), π)).
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By the Corollary to Cohn's Theorem $ = FJ(xu , xm) is strongly
reflexive for m ^ 3, but its homomorphic images may not be. How-
ever, they do inherit reflexivity:

THEOREM [2, p. 77] Ifί~$ is reflexive so is any homomorphic image.

Proof. Let φ: $ —• $ be an epimorphism. To see that 3°u is

ample in §(su(!3), it) we use (2) to see that (setting f = su(φ)) any

axa7 for a = ψ(a) e su($) = ψ(sw(S))f x = ψ(a?) e §'• - φ($γ* = ψ($σ")

has the form φ(a)φ(x)ψ(a)π = ψ(axaπ) e ir(^°u) = Sσ% and hence belongs

to ST .

COROLLARY. A ?̂/ quadratic Jordan algebra with three or fewer
generators is reflexive.

Since any algebra $ which is both special and reflexive has Qf =
c£*« ample in §(su(!3), π) we have the improved result

SHIRSHOV-COHN THEOREM [2, p. 77]. Any quadratic Jordan algebra
on two generators without extreme radical is isomorphic to an ample
subalgebra of £>(5Ϊ, *) for some associative algebra SI with involution.

Again, if J e Φ the only ample subspace of φ(3ί, *) is φ(2ί, *) itself.

3* An example* In this section we consider the free special
algebra FS(x, y, z) on three generators, together with three relations
p(x) = 0, q(y) = 0, r(z) = 0 where p(λ), g(λ), r(λ) are monic polynomials
of degree n, m, I respectively. (We allow any of these to be zero, in
which case we take the degree to be oo),

By singling out powers of x, y, z greater than or equal to n, m, I
we can write any monomial in F(x, yy z) uniquely as a word

w = a1w1a2w2 '' wkak+1

where (i) each wa is an x\ y', or zk for i ^ n, j ^ m, k ;> I; (ii) each
aa is a monomial containing only powers x\ y\ zh for i <n, j <rn, k <l;
(iii) there is no coalescing between the wa'& and the ajs in the sense
that if wa — xi then aa cannot end nor aa+1 begin with a factor x
(similarly if wa is y3' or zk). Since p, q, r are monic it is easy to see
( w r i t i n g i^>n a s i = ε + ne, j ^ m a s j = η + mf, k ^ l a s k = y + lg
for 0 ^ ε < m, 0 g 77 < n, 0 ̂  7 < I and e,/, ̂ r ^ 1) that i^>, 2/, ̂ ) has
a basis consisting of the

{ 4) m — aιmιa2m2 mkak+1
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where the aa satisfy (ii) and (iii) and the ma are either xεp(x)% yvq(y)f,
or zrr{z)9. We say ma has weight co(ma) = e,f, or g and m has weight
ω(m) = Σω(ma).

THEOREM. If Si is the (Jordan) ideal in FS(x, y, z) generated by
the elements p(x), xp(x), q(y), yq(y), r(z), zr(z) for some monic p(λ), g(λ)r

r(λ) then FS(x, y, z)/Sfc is special.

Proof. By the Corollary to Cohn's Criterion it suffices to show
Ul Π FS(x, y, z) c $. So suppose f(x, y, z)e® is symmetric. It is easy
to see that the elements m (as in (4)) of weight Ξ> 1 form a basis for
U (they are all contained in $, and they span an associative ideal
containing p, xp, q, yq, r, zr which are the Jordan generators for $ and
associative generators of $). Since the reverse m* of an element m
again has the form (4), f(xf y, z) is a linear combination of elements
m + m* and of symmetric elements m = m*.

Consider the homomorphism of the free algebra F(x, y, z, p, q, r)
on[6 free generators onto F(x, y, z) sending x —>x, y—»y, z —>zf p —• p(x)f

q—*q{y)iT-+r(z). Each m + m* has a pre-image of the form n + n*
where if m is as in (4) then n — ajb^n^ nkak+1 for aa as before
and na either xεp% yvqf, or zrrg; such n + n* is symmetric in F(x, y,
z, P, q, r), hence by Cohn's Theorem a Jordan product of x, y, z, p, q, r
and ^-tads {xh xin} for 4 g n ^ 6, where we order the variables
%<p<y<q<z<r. Applying the homomorphism, m + m* is a
sum of Jordan products of x, y, z, p(x), q(y), r(z) and w-tads. But all
the w-tads reduce to Jordan products of a?, y, z, p(x), q(y), r(z) together
with xp(x), yq(y), zr(z)—for example, the 6-tad

{x p(x) y q(y) z r(z)} = {xp(x) yq(y) zr(z)} .

Thus m + m* is a sum of Jordan products at least one factor of
which is a p(x)9 q(y), r(z) or xp(x), yq(y), zr(z) (since m is of weight ^ 1
and so has at least one factor p(x), q(y), or r(z)). This means that
m + m* falls in the Jordan ideal $.

A similar but more involved argument works for the symmetric
m = m*. Consider the homomorphism of the free algebra on 9 gen-
erators F(x, y, z, p, q, r, pf, q\ r') to F(x, y, z) sending x-*x,y-+yr

z->z,p-* p(x), q -• q(y), r -* φ ) , p' -> xp(x), q9 -> yq(y), rf -> zr{z). We
claim m = m* has a pre-image π = n* which is symmetric in F(x, y,
z$ P, QJ ri P\ Q'J r') (Once we have this we argue as before; we have
to worry about w-tads for 4 <£ n ^ 9 now, where we order the varia-
bles x<p<.p'<y<q<q'<z<r<r', but again all %-tads reduce
to ordinary Jordan products in FS(x, y, z) since xppf —* xp(xf%, xp —*
xp(x), PPr —+ p(x)xp(x) etc.—for example, the 7-tad {xyqq'zr r'} reduces
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to {x y q(y) yq(y) z r(z) zr(z)} = {x yqiyfy zr{zfz\—and thus again m = m*
falls in &). If m = ajn^ mkak+ί = m* = ak+1mk afπi^f we
have aγ = α£+1, α2 = α?, , α/c41 = α? and mx = mk, m2 == m ^ , by
uniqueness of the representation (4). Therefore n — α ^ c ^ nkak+ί

will be a symmetric pre-image of m if the wα are symmetric pre-images
of mn_. So consider mα = af£>(#)e. Now # εpe is not symmetric when
x, p are free variables, so we must find an alternate representation.
If ε = 2ε' is even then xεp(x)e = #ε'p(#)eαrc' has the symmetric pre-image
xe'pexε'9 similarly if e ~ 2er is even then xεp(x)e = p(x)e'χ-p(x)e' has
pre-image pe'xεp\ while if ε = 2ε' + 1 and e = 2er + 1 are both odd
xεp(x)e — xε'p(x)ef(xp(x))p(xy'xε' has symmetric pre-image xε'pe'p'pe'xε'
(here we need the extra free variables p', q', r'). We also note that
since m is of weight Ξ>1, π contains at least one factor p,q,r or
p'y <?', r'. As we said above, this is enough to allow us to complete
the proof that m — m* falls in SI.

Since FJ(x, y) = FS(x, y) by Shirshov's Theorem, specializing z—>0
gives

COROLLARY. If p(x), g(λ) are monic polynomials then FJ(x, y)/B
is special for $t the ideal generated by p(x), xp(x), q(y), yq(y).

It is essential (in the general case where \^.Φ) that we take xp(x)
and yq{y) along with p(x) and q(y) Indeed, in our pathological one-
generator example we divided out by x2 but not .τ3, and it was this
x°° that came back to haunt us. However, the Example of § 2 shows
that the condition p(z) e ̂  => zp(z) eSt is not by itself enough to
guarantee speciality.

It is also essential that the relations involve only one variable at
a time. The situation becomes much more complex when the variables
are intermixed. For example, if £ in FS(x, y, z) is generated by
x2 — y2 then FS(x, y, z)/$t is not special, but it 5Ϊ is generated by
Uxy — x, Uxy

2 — 1 then F/$t is special. Thus speciality depends very
much on the particular relations chosen.

4* Applications to Peirce decompositions* We define the free
Jordan algebra on X ivith n (supplementary, orthogonal) idempotents
FJ(X; e19 , en) to be the quotient FJ(X U Y)/B where Y = {ylt , yn}
is disjoint from X and ^ is the ideal generated by 1 — Σyif y\ — yί9

Vy.Vs, Vi ° y3{i Φ j). The cosets β̂  = y{: + S are supplementary ortho-
gonal idempotents in FJ(X; eu , en) = FJ(X U F)/β, and one has
the universal property that any map I - ^ S of 1 into a Jordan alge-
bra 3 with n supplementary orthogonal idempotents flf •••,/« extends
uniquely to a homomorphism FJ(X; eu , en) —> Jy sending e{ —>f{.
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Consider the following properties of the Peirce decomposition of
an arbitrary Jordan algebra $5 relative to a supplementary family of
orthogonal idempotents e19 •• ,en [2, p. 120-1; 4, p. 1074-5].

(PD 0) En = Ue. and E{j = Ue.,e. = E3i form a supplementary
family of orthogonal projections on $, so ̂  — φ . ^ y for

and for elements xpg of the Peirce spaces Q^ and distinct indices
i, j, k, I,

(PD 1) ^ e ^ , so X c ^
(PD 2) a% e $ „ + 3;;, so 3fo c $ „ + &,•
(PD 3) ffϋ o 7/-,. G &,•, so $ „ o $.,. c Q^.

(PD 4) α^ o τ/yfc G ̂ ί & , so %j o $J/C c $ik

(PD 5) α^ o Vrs = 0, so S, g o 3 r β = 0 if {p, g} Π {r, s} = 0
(PD 6) E7β..2/iίe&-ί, so t7 3 .^« c » „
(PD 7) [ / ^ G S , , SO ̂ 3 f«ca y

(PD 8) Ux..yis = xiά o t/βχa;ii o ̂ , ) ~ Vij o ίΓβ j(^.), so E7S..&, c 3fo-
(PD 9) UXpqyrs = 0, so t/3M3fr. = 0 if {r, s} £ {p, }̂
(PD 10) {α ίίi/ii^} = ( .τ^°^)oz j j = xiio{yi5o^), so { ^ ^ . ^ ^ j c ^ , -
(PD 11) {xiiyi3zjk} = (xiioyij)ozJk = xiio(yiJozjk), so { S ^ i S ^ c i ^
(PD 12) {xijyjjzjk} = (xiJoyj3)oZjk = xijo(yjjoz3k), so { ^ i S ϋ S . J c : ^
(PD 13) {XiJyjkzkl} = (xijoyjk)ozkl = xijo(yJkozkl), so { ^ i ^ i ^ u l c i S ^
(PD 14) {Xijyjkzki} = Ue.{(Xij o yjk) o ̂ .} = ^.{^y o (yjk o ̂ ,)}, so

(PD 17) {»„!/„««} = «„ o (2/« o zu), so {^ί^α^o } c S«
(PD 18) {xi3yHzik} = xu o (yH o Zik), so {$„&<$«} c ^ ί f c

(PD 19) {xpqyrsztv} = 0, so {^^^^i j = 0 unless the indices may-
be linked

(PD 20) Um.,et = C/.^y

(PD 21) e{ o 2/i3 = 1/«, xL ° ί/i; = x« ° (a;« ° 2/Sj), C/αrί̂ ϋ ° Vn = Xu °
(z» ° (a?« o Ϊ/,,)) so that VH = I, Vx>{ = V^, Vσir,r),tί =
VXiΎHΎXii on %,.

It is an easy matter to verify these for special Jordan algebras, since
if 31 = Σijϊlij is the Peirce decomposition of the associative algebra Sΐ
then 3 = Σig^ij f° r $ ϋ = %J + %•* ^ the Peirce decomposition of the
Jordan algebra $5 = 2ί+.

We claim that if these relations hold in 5̂ = FJ(x; ely •••, ĝ )
(taking X = {£} to consist of one element) they hold in any $ . (This
is why there are two "missing" relations

(PD 15) {XijVjjZji} = ϋe-{(^i o Vjj) o ̂ -J = t/ejαji; o ( % i o ^.)}, so

(PD 16) {xuVijZii} = UH{(xu o Vij) o Zji} so {Sf«3fίŷ -«} c %%i;

these do not seem to follow from £$, and must be verified directly).

The reason for this is that for any collection of elements xid from
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distinct Peirce spaces $< y there is an element x = Σxi3 having the xi3

as its Peirce ίi-compoments; there is a homomorphism 3ί—+3> sending
x—* % and βi—+ eiy so the Peirce components xi3 of x map into the
Peirce components xi3 of x. Hence any relation holding among the
xi3 will also hold for the xi3 . That is, any relation involving elements

from distinct Peirce spaces will hold in $ if it holds in $. This im-
mediately applies to (PD 1-5), (PD 7), (PD 9-14), (PD 19-20), and the
first two parts of (PD 21). The same argument works for (PD 0): if
I = ΣEijy E!3 = Eih EpqErs = 0 on x then I = ΣEi3J E2

3 = Eih EpqErs = 0

an any x, so the Eί3 are supplementary orthogonal idempotents).
The remaining formulas can be derived from the previous ones

by various stratagems. For (PD 17-18) we use the relation

{abb} = a o b2 {abc} + {acb} = a o (6 o c)

valid in any Jordan algebra. In (PD 18) {xi3y3izik} = xi3 o (yH o zik) —
{XifiikVίi} = B»i ° (Va ° «ijfe) since U^.βik = 0 by (PD 9), and similarly
in (PD 17) since 1/%.$^ = 0. (This argument also shows either one
of (PD 15), (PD 16) implies the other).

For (PD 6), (PD 8), and the last part of (PD 21) we use

dy{nB}\χ = U9y + UXfyX = Uxy + {xxy} = Uxy + x2 <> y .

Now the relations
(PD 6/ */...&„ G&,
(PD 8)' UXi.xi3 - α?4i o UH{x\3)

(PD 21)' T^^, .^ = ViH on 3fiy

will be inherited from $, and this remains true over any scalar ex-
tension Ω of Φ, so we can linearize to get

yrr/ . + V2 — V V V + V2 V + V V2

The first of these implies (PD 6) via (PD 1), the second implies (PD 8)
via (PD 2), and the third implies (PD 21) since we already know
y 2 _ y 2 a m j S G y _ y y , y y

Thus the task of verifying Peirce relations for an arbitrary Jordan

algebra $ reduces to verifying them for the free Jordan algebra $ on
one generator with idempotents. The whole point of this reduction is

that $ is special, and we already remarked that the relations were
easily verified in any special algebra.

THEOREM. The free Jordan algebra FJ(x; e19 •• ,e Λ ) on one gen-

erator with n supplementary orthogonal idempotents is special.
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To show FJ(x; eu , en) = FJφ(x; eίy , en) is special it will be
enough if it is imbedded in a special algebra FJφ(x; el9 * -,en)Ω =
FJΩ(x;eί9 •• , e Λ ) . We choose Ω as follows. Consider t h e polynomial
ring φ[Xlf , Xn]. The element μ = Π;<; Pw — λ i ) is homogeneous in
the λ 's and the coefficient of λΓ~1λ2

%~2 λUi in μ is 1, so μ is not a
zero divisor in Φ[X19 •••, λ w ] . This guarantees Φ is imbedded in Ω —
Φ[Xl9 •• »λΛ][l/μ]; the important thing about £? is t h a t each X€ — λy is
invertible in Ω. Since μ is not a zero-divisor in

FJΦ(X; eu , O ® Φ[λx, , Xn] ,

FJΦ(X; elf , βΛ) is imbedded in FJΦ(X; e19 , β j^ = FJΩ(X; e19 , βΛ).

PROPOSITION, i^or αni/ X, FJΩ(X; el9 , βΛ) = FJΩ(X, y)β where Si

is the ideal generated by p(y) = Π (V ~~ ^1) and VP(v)'

Proof. Consider the polynomials p(X) = Π(X — λ«) and p^λ) —

Π ^ ί (λ - λ ViLvi (^ - λ^) i n fl W e h a v e ^( λ ^) = x> P*(λi) = ° i f

i Φ i. Therefore 1 — Σ ^(λ) is of degree ^n — 1 yet has w roots
λ1? , λΛ, so it must be identically zero, and similarly for X = ^Xipi(X):

(We always assume n > 1 since for n = l FJ(X; et) = FJ(X; 1) = FJ{X)
has only the trivial idempotent et = 1). Also

s(\), Pi(X) o

Pi(x) = Pi(xy - Σ

are all divisible by p(λ) and belong to the (Jordan) ideal generated
by p(x) and λp(λ).

These conditions imply that the elements e€ = Pi(y) in FJΩ(X, y)
satisfy Σ &< = 1» Σ ^%^% = 2/» ^ β y e $, ê  ° ^ e Sί, β? — 8i e ίB, so the
cosets βi = e'i + ^ in FJΩ(X, y)/St form a supplementary family of
orthogonal idempotents. (Note #;(?/) is defined since we are allowed
to divide by λ* — Xj in Ω). We show FJΩ(X, y)/® is isomorphic to
FJΩ(X; e19 , en) by showing it has the universal property of the
latter. Given any map φ of X into a Jordan algebra $ with idempo-
tents /i, •••,/» we have a homomorphism FJΩ(X, y)-+$> sending x —•
<£>(#), 2 / - * Σ \ / i T h e n β< = ί?«(2/) is mapped into

into p ( Σ λy/y) = Σ ί>(λi)/y = 0, and 2/ί>(2/) into Σ \P(^j)fj = 0. Since
and 2/?>(2/) generate ίδ we have an induced homomorphism

FJ0(X,v)/St >%
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sending β̂ —*fim The uniqueness follows since FJΩ(X, y)jR is generated

over Ω by X and the ^ (because Σ λ* β; ~ V)

Applying the Proposition when X = {a?}, we have

^ ( a ; ex, , en) = FJΩ{x,

where $ is generated by p(y) and ?/p(j/). By the Corollary to the
Theorem of the previous Section (with q(λ) = 0), FJΩ(x, #)/$ is special.
Therefore .Fe7(α;; et, , en) c FJΩ(x; eu , βn) is special too, completing
the proof of the theorem.

The algebra FJ(x, y; el9 « ,βn) on two generators is no longer
special, since it has the exceptional algebra φ((£3) as a homomorphic
image ((£ a Cay ley algebra); indeed, the exceptional algebra can be
generated by two elements x, y and the idempotents el9 e2, e3 [2, ex.
1 p. 51].
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SINGULAR PERTURBATIONS OF DIFFERENTIAL
EQUATIONS IN ABSTRACT SPACES

HUSSAIN S. NUR

In a recent paper, Kisynski studied the solutions of the
abstract Cauchy problem εx"(t) + x'(t) + Ax{t) = 0, x(0) = XQ
and x'(0) = Xι where 0 ^ t ^ T9 ε > 0 is small parameter and
A is a nonnegative self-adjoint operator in a Hubert space
H. With the aid of the functional calculus of the operator
A, he has showed that as ε —> 0 the solution of this problem
converges to the solution of the unperturbed Cauchy problem
x'(t) + Ax(t) = 0, x(0) = XQ. Smoller has proved the same
result for equation of higher order.

The purpose of this paper is to study the solution of a
similar problem and allowing the operator A to depend on t.

To be precise, we shall show that if the initial data is taken
from a suitable dense subset of iϊ, then the solution of the Cauchy
problem:

(1.1) εx~{t) + x'{t) + A(t)x(t) = 0, x(0) = x0, x'(0) = x,

converges to the solution of the unperturbed Cauchy problem

(1.2) x'(t) + A(t)x(t) = 0, x(0) = xQ

as ε —> 0 where 0 ^ £ f g T , ε > 0 is a small parameter, A(t) is a
continuous semi-group of nonnegative self-adjoint operators in H with
infinitesimal generator A.

2. The problem (1.1) when H = Rx. Before considering (1.1)
in the general case, it is necessary to consider (1.1) in the case
when H = Rx (i.e., the real line). Thus we consider the Cauchy
problem:

(2.1) εu"(t) + u-(t) + eμtu(t) = 0 . u(0) = xQ, w(0) = xL

when t ^ 0, μ ^ 0. ε > 0.
According to theorem (1) in [2], equation (2.1) has two linearly

independent solutions:

m—l m~ 1

0 0

^2 = Σ u23(t)ε3'e~tlε + εmE0 , u2 — Σ (d/dt)[u2j(t)e~tε]ε3' + εm~1E1
0 0

775
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where wfJ (ί) (ί — 1, 2) are C°° functions on [0, T] and Mt 0(£) (i = 1, 2)
does not vanish at any point of [0, T] and Eo, Eι are functions of ε
and others, but bounded for small ε ^ 0.

Hence the general solution of equation (2.1) is u = cxuγ + c2^2.
Solving for cλ and c2 by using the initial condition we obtain u =
xosm + x1s01 and w — x0s10 + x1s11 where

sm = H~\ε)[v$ήutf) - uι(0)u2(t)]
sQ1 = H-^luM^it) - ^(OKίί)]

(2.3) _ __ tf

dt

and

H(e) = ^(0)^(0) - ^(0)^(0)

How taking the limit as ε-*0, we find that

s o o (ί , ε, /i) > ff0tt10(£)

Consequently, w(ί, ε) —> a;0u10(ί). From equation 15 in [2] we find that
ulo(t) is the solution of the equation

(2.5) u + e!ίtu = 0

and this is what we wished to show.

3* Estimates for the Functions si3(t, ε, μ). In this section we
would like to find estimates for the functions %(£, ε, μ) (ί, i = 0, 1).
We may do so by solving for ui5{t) (ί = 1, 2; j" = 0, 1, , m — 1)
from equation 15 in [2]. Since this would be rather tedious we will
take the simpler approach of estimating ^( ί , ε, μ) and Ui(t, ε, μ)
(ί = 1, 2). Multiplying (2.1) by w and integrating between 0 and t
we obtain:

2 ' )«

Consequently

u2 ^ 2 I c I + μΓwVeZί .
Jo

Now using Bellman's lemma, we obtain
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*(3.1) u2 £ 2/c/eeμt .

For estimating w(t), we multiply equation (2.1) by e~μtum, integrating
between 0 and t and using Bellman's lemma we obtain:

(3.2) u'2(t) ^ 2ε-1/c/e2*ίt .

In [2] page 323 we proved that for all small ε ;> 0 H(ε) Φ 0, there-
fore we see that (2.3), (3.1), and (3.2) yield,

(3.3) I βoo I ̂  JSΓ(ε) exp (-ξl

K(ε) is a bounded function in ε, and

•(3.4) \s

K(ε) is a bounded function in ε.
To obtain an estimate for sίy (ί, i = 1, 2) we write equation (2.1)

in amatrix form as:

U- = AU

when

A = ( ° *
\ — ε1ex^)(μt) — ε1

Hence

ί/ = exp
" \s10

and from the equation

SoΛ /Soo S01\/ 0 1

/ o κ . Uo su/ Uo sn)\-έ1exp(μt) -έ1

(ό.D)

κ — ελ exp(μt) — έ1/

we obtain

(3.6) s10 = -solε-1exp(μt)

(3.7) s — s — ε~ιs

4. The problem (1*1) in abstract Hubert space* We shall
now consider the problem (1.1) in any Hubert space H with
norm II II.
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Since {A(t)} is a semi-group of a nonnegative selfadjoint operator
in H, with infinitesimal generator A, there is a resolution of the
identity Eμ such that A(t) has the spectral representation:

A(t) = \ V
Jo

We shall next use the functional calculus of the operator A(t). For
fixed ε > 0, ί ^ 0, we define the operator S i y on H by

(4.1) Si3{t, e) = (~sίy(ί, ε, μ)dEμ (i, j = 0, 1)
Jo

where the si3(t, ε, μ) are defined by (2.3). If we let D denote the
dense domain of the operator eA2{t) for all t, then our estimates (3.2)
through (3.7) imply that D is contained in the domain of Sij(t, ε)
for every i, j — 0, 1.

For #0 and ^ in ί) , we write

(4.2) xe(t) = SJt, ε)xQ + SQl(t, e)xL

and we see that xε(t) is in the domain of A(t) for every ε > 0. We
now state the main theorem.

THEOREM. Let xε(t) be defined as in (4.2) when xQ, xL are in
D. Then x£(t) is the unique solution of the Cauchy problem (1.1)
and xε(t) converges to the solution of (1.2) as ε —> 0.

To prove this theorem we first prove the following lemmas:

LEMMA 1. For xeD, (d/dt)Sij(t, ε)x exists and

(4.3) (d/dt)Si3{t, e)x = [°(d/dt)si3(t, ε, μ)dEμx (i, j = 0, 1) .
Jo

Proof. We shall prove the lemma for i = j = 0. Since t h e proofs
for t h e other cases are similar, they will be omitted. For xeD and
t 2̂  0 fixed, we have:

II S00(t + Jt, ε) - S0Q(t) ς (f w

 2

— x — o10^6, ε)x
II At

= V°rso0(t + M,ε,μ)-s00(t,ε,μ) _ ^ ^ ^ „ β | | 2

J o L At -I

= ( [sio(ί'» e, / i) - s l o ( ί . ε . / i ) ] 2 d |ί ^ . τ | | 2 ,
Jo

where t ^ f ^ t + Aty using the theorem of the mean and (2.3).
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Now there is a Γ such that t + At ^ T for all At sufficiently
.-small, so that if we use (3.3) through (3.7) we see that

I sl0(t', ε, μ) - s l o ( ί , ε, μ) \ £ \ sl0(t', e , μ ) \ + \ slQ(t, ε, μ) \
e'meμτ rg N(e, T)e«μτ

where N(ε, T) is a constant depending on T and ε only. Therefore
the function | slo(ί', ε, μ) — slo(t, ε, μ) |2 is summable with respect to
the measure d\\Eμx\\2 if At is sufficiently small. Furthermore,

lim [slo(t\ ε, μ) - sn(t, ε, μ)f = 0 .
At-*O

So that the Lebseque dominated convergence theorem yields:

lim Γ[s l0(ί', ε, μ) - slo(ί, e, μ)]2d \\ Eμx ||2 - 0 .
/Jί-»0 Jo

This completes the proof of the lemma.

L E M M A 2 . F o r x e D and t^O, w e have

<(4.4) lim I SJt, ε)x - exp ( - [ i l^c fo^ I = 0
ε->0 II \ J / II

.(4.5)
e-»0

Proof.

/ Γ \ II2

ί, ε)x - exp ^-\A(s)ds) x

(ί'ε> ^ "•exp (~ Γ^'*)) \d

From (3.3) we see that soo(t, ε, μ) — exp ί — I eμsds) is summable with

respect to the measure d\\Eμx\\2 and, as we have seen in (2.4) and
(2.5), the integrand converges pointwise to zero. We apply the
Lebesgue dominated convergence theorem to conclude that the integral
likewise converges to zero as ε—*0. This proves (4.4). Relation
(4.5) follows from (2.4) and (2.5) likewise.

LEMMA 3. Let B be a bounded operator in H. If χ (t) + Bx(t) = 0,
0 ^ t ^ 0, and x(0) = 0, then x(t) = 0.

The proof of the above lemma is in [3] and therefore will be
^omitted.

The proof of the theorem. That xε(t) defined by (4.2) is a solu-
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tion of (1.1) follows at once from Lemma 1 by direct verification..
The uniqueness of x£(t) follows from Lemma 3 just as in [1], Finally,,

since expί — 1 A(s)dsjx0 is the solution of (1.2) Lemma 2 shows that.

I f rt \ II

xε(t) — exp ( — \ A(s)ds )x0 = 0 .
\ J / II

This completes the proof of the theorem.
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A NON-COMPACT KREIN-MILMAN THEOREM

D. K. OATES

This paper describes a class of closed bounded convex
sets which are the closed convex hulls of their extreme points.
It includes all compact ones and those with the positive
binary intersection property.

Let K be a closed bounded convex subset of a Hausdorff locally
convex linear topological space F. Denote by EK the extreme points
of if, by co EK their convex hull and let co EK be its closure. We
are interested in showing when

K= cόEK .

The principal known results are the following:

THEOREM 1.1. // either
(a) K is compact;

or (b) K has the positive binary intersection
property;

then K=coEK.

Case (a) is the Krein-Milman Theorem [3? p. 131]. Case (b) was
proved by Nachbin in [6], and he poses in [5, p. 346] the problem of
obtaining a theorem of which both (a) and (b) are specializations.
This is answered by Theorem 4.2. For the whole of this paper, S is
a Stonean (extremally disconnected compact Hausdorff) space,1

A simplified version of Theorem 4.2 reads as follows:

THEOREM 1.2. Let X be a normed linear space. Then any
norm-closed ball in the space 33 (X, C(S)) of continuous linear oper-
ators from X to C(S) is the closure of the convex hull of its extreme
points in the strong neighborhood topology.

The result concerning the unit ball of a dual Banach space in its
weak*-topology and that concerning the unit ball in C(S) in its norm
topology are special cases of Theorem 1.2.

A sublinear function P from a vector space X to a partially or-
dered space V satisfies

P(χ + v)^ P(χ) + P(v)

and

1 Theorem 2.3 and its proof are valid when S is zero-dimensionaL

781
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P(tx) = tP(x)

for all x, y in X and £ ̂  0.
A linear operator T from X to V is dominated by P if To; <Ξ P#

for all a? in X. The set of all linear operators from X to V dominated
by P will be written L(P).

2. Let P be a sublinear function into C(S), where S is Stonean.
We obtain a compact approximation to L(P) by considering a finite
partition ^ = {Ϊ7i, , 17*} of S into disjoint open-and-closed sets. Let
C{SW) denote the set of all function in C(S) whose restrictions f\ Uk

are constant. The constant values will be written as f(Uk).

LEMMA 2.1. Let P be a sublinear function from a vector space
X to C(SW) and let L(P^) be the set of all linear operators from X
to C(Sf/) dominated by P. Then

EL{PW) s EL(P) .

Proof Suppose Te EL(P^). For k = 1, •••, M let tk be chosen
arbitrarily in Uk. If G,HeL(P) and T= 1/2(G+H) define G', H'e
L(P*) by

G'x = Σ (Gx)(tk)χk H'x = Σ J2α(ί*)Z*

where χfc is the characteristic function of Uk. Since 1/2(G' + Jϊ') = T
and TeEL(P^), we have G' = H' = T. Hence, for each x e l and
& = 1, •••, M,

G'x{Uk) = ί ί ^ ( ^ ) = Tx{Uk)

so that

Ga;(ίfc) = Hx(tk) =

Since tk was chosen arbitrarily in Uk, G = J ϊ = Γ. Hence TeEL(P).

DEFINITION 2.2. Let X and i? be linear topological spaces and let
35(X, E) be the space of all continuous linear operators from X to E.
The strong neighborhood topology for 93 (X, J57) is the topology with a
base given by sets of the form

N(T; xl9 •••,&»; £7) = {Se^8(X,E): (T-S)xie U, i = 1, ••-, n)

where x19 , xn e X and 17 is a neighborhood of 0 in E.

If 2? is normed, then we write
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N(T; xγ, •••,#»; ε) for N(T; x19 •••,<&»; U) when U is the open

ε-ball about 0.

THEOREM 2.3. Let CW" be a finite partition of S into nonempty
open-and-closed subsets. Let P be a sublinear function from a linear
space X into C(S^). Then L(P) = co EL(P), with the closure in
the strong neighborhood topology of 23(X, C(S)).

Proof Let ^ be any finite partition of S into nonempty open-
and-closed sets. From Lemma 2.1, co EL(P) 3 co EL(PW). Now L(P//)
can be linearly identified with a certain compact convex subset of a
finite product X* x ••• x X*, where X* is the algebraic dual of X
with the topology w(X*, X). Hence, from the Krein-Milman Theorem,
w EL(PW) = L(P*).

Let TeL(P) and let N(T; x19 fxn; ε) be a strong neighborhood
of T. The functions {ΪX : i — 1, •••,%} are continuous so for each
fixed i there is a finite covering

of S by open sets such that

Yar(Txi9 Vi)<ε

for all k.
Since S is zero-dimensional, there is a finite partition

of S into nonempty open-and-closed sets that simultaneously refines
5^(1), •••, ̂ {n). By taking a further refinement if necessary, ^ may
also be assumed to be a refinement of "W and then the functions P(x)
are constant on each of the sets Uk.

For each k = 1, •••, If define a sublinear functional gfc on X by
qk(x) = sup{Γa?(ί): teUk}. From the Hahn-Banach Theorem, there
exists a linear functional ^ on X dominated by qk. Define 7\: X
by

ϊ 7 ^ = Σ Φu(χ) iuk.

Then T.eLiP^) and, for i = 1, •••, n,

Γ C7fc)< ε .

DEDUCTION of THEOREM 1.2. With X and S as in the state-
ment of the theorem, let ^ be the closed unit ball in 35 (X, C(S)).



784 D. K. OATES

The set 3^ is L{P), where P is the sublinear function P(x) — \\x\\ ef

e being the unit function in C(S). By Theorem 2.3 fdx — co E^&1 and
the result for any closed ball then follows by a scalar multiplication
and translation.

3* Nachbin's problem* Let if be a closed bounded convex
subset of a linear topological space E. Recall that K has the positive
binary intersection property if every pairwise-intersecting subfamily
of

{x + XK: xeE, λ ^ 0}

has nonempty intersection.
If K is bounded and has the above property, it may be shown to

be centrally symmetric with a unique centre c, and to have the binary
intersection property where the restriction λ ^ 0 is removed. This is
proved in [6].

Results in [4] and [2] then show that the set KQ = K — c gener-
ates a subspace of E which is a hyperconvex normed space and iso-
morphic to C(S), with S Stonean.

THEOREM 3.1. Let E be a locally convex Hausdorff linear
topological space containing a closed bounded convex subset K with
the positive binary intersection property. Let p be a continuous sub-
linear functional on a locally convex Hausdorff linear topological
space X.

If L is the set of linear maps T: X—+ E such that for all x in
X

Txe± [p(x) - p(-x)] e + i- [p(x) + p(-x)] Ko
Δ Δ

where e is any extreme point of Ko, then L = co L, with the closure
taken in 33(X, E) with the strong neighborhood topology.

Proof. Because p is continuous the set L(P) is closed in the
space S3 (X, E) in the strong neighborhood topology. Since K is
centrally symmetric, Ko has the binary intersection property and is
linearly isomorphic to the unit ball in a space C(S) with S Stonean.
The isomorphism may be chosen as in [4] so that e is mapped onto
the unit function of C(S). Using e to denote also this unit function,
we may define a sublinear function P(x) — p(x) e from X to C(S)r

which is the situation of Theorem 3.1. with W~ = {S}.
Given TeL(P), x19"*yxneX and ε > 0 there exists AecoEL(P)

with
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(T - A) Xi e eK0 (i = 1, . . , n) .

Given a neighborhood U of 0 in E, there exists r > 0 with Ko S f U,
since E" is bounded. So choosing ε = r~ι there exists A e co EL(P)
with

(T - A) a?t. 6 r-1 iΓ0 £ U (ί = 1, . , n) ,

which completes the proof.

DEDUCTION OF THEOREM 1.1. (a) Let pκ be the sublinear func-
tional defined on F* by

Then, from the bipolar theorem,

L={ge F**: (/(/) ^ pκ(f) for all / 6 F*}

is identical with the canonical image K oί K under the evaluation
map. Now apply Theorem 3.1 with E = R, K = [ — 1,1], e = 1 and
X = iΓ*, taken with the topology of uniform convergence on compact
subsets of F. This shows that K is the closure of co EK in the
topology w(F**, F*), which is equivalent to K being the w(F, F*)
and hence the strong closure of co EK in F.

(b) Apply Theorem 3.1 with X = R and E = F. Then, under
the natural isomorphism of S3 (X, E) and E, Ko corresponds to L,
which satisfies L — coEL. Since i? is a linear topological space we
have
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OPERATORS THAT COMMUTE WITH A
UNILATERAL SHIFT ON AN INVARIANT

SUBSPACE

LAVON B. PAGE

A co-isometry on a Hubert space £%f is a bounded opera-
tor having an isometric adjoint. If V is a co-isometry on
£έf and Λ € is an invariant subspace for V, then every
bounded operator on ^ ^ that commutes with V on ^J? can
be extended to an operator on £ίf that commutes with V,
and the extension can be made without increasing the norm
of the operator. This paper is concerned with unilateral
shifts. The questions asked are these: (1) Do shifts enjoy
the above property shared by co-isometries and self-adjoint
operators? (The answer to this question is "rarely".) (2)
Why not? (3) If S is a shift, ^£ is an invariant subspace
for S, So is the restriction of S to f̂f, and T is a bounded
operator on ^ satisfying TS0 = SQT, how tame do T and
^f have to be in order that T can be extended (without
increasing the norm) to an operator in the commutant of >S?
Extension is possible in a large number of cases.

The result mentioned above for co-isometries is due to Sz.-Nagy
and Foias [8]. (An excellent exposition on the problem is found in
[3]; see Theorem 4 in particular.) For self-adjoint operators the state-
ment is trivial for the simple reason that every invariant subspace is
then reducing and any commuting operator on a subspace can be ex-
tended by simply requiring it to be zero on the orthogonal complement
of the subspace.

Recall that a unilateral shift S is an isometry having the pro-
perty that Πn=oSnβ^ = {0}. The Hubert space dimension of the
subspace {S^f)L is called the multiplicity of S. Within the class of
partial isometries on έ%f the unilateral shifts are in a sense as far
removed as possible from the co-isometries and the self-adjoint partial
isometries. For shifts have no self-adjoint part, and far from being
co-isometric if S is a shift S*n goes strongly to zero. (These and
other simple properties of shifts may be deduced from problem 118
and the surrounding material in Halmos [5].)

II. We begin with a complex Hubert space 3ίf (not necessarily
separable) and a unilateral shift S on £%f. It is well known that shifts
decompose the underlying Hubert space in the following way:

= Θ Σ $nr^ where <g>
91 = 0
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(See for example Halmos [5], problem 118).
We also fix an invariant subspace ^€ of S. By So we denote

the restriction of S to ^/f, SQ = S\^C The commutant of S is the
algebra of bounded operators on £ίf which commute with S and is
denoted by j^J.

The invariant subspaces of S are known to the following extent.
Every invariant subspace of S is the range of a partial isometry in
jtfs whose initial space reduces S. (This well known result appears
in many forms. The particular form cited here appears in [7], see
proof of Theorem 1.) Particularly when a function space model is
used these operators are often referred to as inner functions or rigid
functions.

Finally we will fix a bounded operator T on ^/S which commutes
with So. As indicated earlier the problem being considered is that of
extending T to an operator on S(f lying in sfs and having norm
equal to

THEOREM 2.1. If S is the simple shift, i.e., if d i m ^ = 1, then
T has an extension in s/s whose norm is equal to \\T\\.

Proof. This theorem will follow from a later result. (See Remark
2.4 below.) The simple shift can be represented as the usual shift on
the Hardy space H2 of complex valued functions on the unit circle
(Helson [6], chapter 1). It is instructive to sketch a proof in this
setting where ^€ — BH2 with B an inner function in H2. Also Be
^T, and T:B->Bg for some g in H2. The fact that TS0 = SQTallows
one to argue that T: Bf—> Bfg for all fe H°°, and finally using stand-
ard techniques one shows that g e H00, that T is multiplication by g
on j f , and hence that T has an obvious extension to an operator on
H2 which commutes with S. The extension does not increase the
norm.

EXAMPLE 2.2. T does not necessarily have a bounded extension
which commutes with S if S is a shift of multiplicity two, i.e., if
dim <Sf = 2.

Proof. Here we let £%f = H2 0 H2. Vectors in 3^ will be written
as ordered pairs (/, g). Let χ be the identity function on the unit
circle, χ(eu) — eιt, and then the shift S of multiplicity two on gff is
S:(f,g)-*(χf,χg).

Let ^f be the subspace of <%f consisting of all vectors of the
form (/, χg) where f,ge H2. Clearly S^ S Λ. Define T o n y /
by T: (/, g) —> (χg, 0), the bar denoting complex conjugate. It is trivial
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to verify that T is a bounded operator mapping ^ into ^^, and
that TS — ST on ^ C But it is equally easy to see that T can have
no extension in j^J. For if T is an extension of T to βίf, then we
must have TS: (0,1)—> (1, 0), whereas everything in the range of ST
must be orthogonal to (1, 0).

It becomes apparent in the discussion which follows that the re-
ason we obtain different answers in the case of the simple shift as
opposed to nonsimple shifts is that the simple shift is the only shift
having an abelian commutant. Recall that ^-£ — B^f where B is a
partial isometry in jzfs and B*3ίf reduces S. Let Aτ be the operator
on £ί? defined by

Aτ = B*TB .

Since BB* is the orthogonal projection onto ^-/f we have

BB*TBS = TBS = STB = SBB*TB = BSB*TB ,

or BATS = BSAT. Now the range of Aτ is contained in the range of
J5* which is a reducing subspace for S. Since B is isometric on the
range of J3* we can infer from the last equation that ATS = SAT.
Thus Aτ satisfies the three conditions

( i ) Aτ e As

(ii) TB = BAT

(i i i) H A r l l ^ l l Γ I I .
Clearly an operator A in s/s is an extension of T if and only if
AB = TB. Thus it follows that T has an extension in ,s^s if and only
if there exists an operator Ae s>/s such that AB — BAT, i.e., the pro-
blem is now one of solving the operator equation AB = BAT for A e
J^fs. (B and Aτ are already in J ^ . )

A hyperίnvariant subspace for S is a subspace which is invariant
under every operator which commutes with S.

PROPOSITION 2.3. If ^/ί is a hyperinvariant subspace of S, then
T has an extension in s/s whose norm is \\T\\.

Proof. The fact that ^/ί is hyperinvariant guarantees that B
can be chosen so as to have the additional property that B commutes
with every operator in s$fs. (Douglas and Pearcy [2], Theorem 5).
Thus ATB — BAT1 and Ύ possesses the desired extension by the re-
marks above.

REMARK 2.4. Since every invariant subspace for the simple shift
is hyperinvariant, the above proposition contains Theorem 2.1.
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There is a relationship between T having an extension in s^s and
a factorization of a familiar type. From the definition of Aτ it is
clear that range A* £ range J3*. Thus by a standard factorization
result (Douglas [1]) there exists a bounded operator D on ^f such
that Aτ = DB.

PROPOSITION 2.5. If Aτ = DB where ΰ e j / 5 , then T has an ex-
tension in

Proof. Suppose ΰ e j / s and Aτ = DB. Then BAT = JKDJ3. Sett-
ing A = BD it follows from the remarks made preceeding Proposition
2.3 that T has an extension in

III. In order that an operator A on έ%f commute with the shift
S it is necessary that every subspace Sn<%?(n ^ 0) be invariant under
A. The proposition below is a slight generalization of this statement.
For n ^ 0, let Pn — I — SnS*n, the orthogonal projection onto the
orthogonal complement of

PROPOSITION 3.1. If Aej%?s, then there is a constant a such that
| |PnA/|| ^ a\\Pnf\\ for every n^ 0 and every fe έ%f. In fact a can
he chosen to he \\A\\.

Proof. If n ^ 0 and fe <%* write / = Sng + h where g = S*nf
and h - PJ. Then since S*«Sn = I and PnA* - PnA*Pn, \\PnAf\\ =
I I P A H I I A I I H Λ I ^ | | A | | | | P / | |

With T defined initially on ^ Proposition 3.1 indicates that it
is fruitless to look for an extension of T in s*fs unless T initially
satisfies a similar condition on ^ . Henceforth we assume that there
exists a constant a such that

for all fe ^f and n ^ 0.

It is easy now to see that in Example 2.2 T could have no ex-
tension in stfs because condition (*) is not satisfied. If in that example
we take / = (0, χ), then \\PJ\\ = 0 but | |Pn2y|| = 1 when n = 1.

Whether condition (*) is sufficient to guarantee that T has an
extension in As we have been unable to determine (see Remark 3.6).
We have been able to show, Example 3.5 below, that such an extension
cannot always be made without increasing the norm.

The next theorem indicates the existence of a certain subspace
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*W between ^€ and ^f and also invariant under £ to which T, if
T satisfies condition (*), can always be extended without increasing
the norm and so as to commute with S. Two corollaries indicate that
frequently W * is all of £ίf.

If fe £έf, l e t p(f, ^ ) = inf {||/ - g\\:ge Λ).

THEOREM 3.2. Let Ύ/^ be the set of all fe £ίf such that

p(S% ^f) -> 0

as n —> co. Then "W" is a (closed) subspace of £έf which is invariant
under S, and if T satisfies condition (*) on ^ then T has an ex-
tension to an operator Tf on <W~ satisfying T'S = ST' on W~ and

Proof. It is easy to verify that 'W" is a linear manifold and that
S W~. To see that "W is closed, suppose that / is in the closure

of W. Then for g e Λ#7

By choosing g sufϋciently near to / and n sufficiently large, the two
terms on the right can be made as small as desired.

We next describe the manner in which T extends to W. Sup-
pose / is in W". Let {gn} be a sequence in ^/S such that lim 11 Snf —
gn\\ = 0, and set hn — Snf — gn. Now if m ^ n,

\\S^Tgn - S*mTgm\\ - \\S^TSm~ngn - S*™Tgm\\

^ \\T\\ \\S"-*gn - gm\\ = \\T\\ \\S—hn - hm\\

and the last expression goes to zero as n, m —> co. Thus we have
shown that the sequence {S*nTgn} is a Cauchy sequence. To extend
T to <W~, if fe ?/^ we select a sequence {gn} in ^ such that

as n—+ oo and set Ύf — lim S*nTgn. In light of the earlier remarks
in this paragraph it is easy to see that the way in which Tf is de-
fined here is independent of the sequence {gn} chosen and coincides
with the original operator T in case fe ^f. It is also clear that the
extension does not increase the norm.

To see that Tf<W S ^ 7 we assume fe ^ Let {gn} be a sequ-
ence in ^/f such that \\Snf— gn\\—> 0. Now making use of the fact
that T satisfies condition (*) we have 11PnTgn|| ^ a\\Pngn\\, and the
right-hand side here goes to zero. Furthermore,
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ρ(SnT'f, ^€) ^ \\SnT'f- S*S**Tgn\\ + p(S*S**Tgn, ^f) .

The first term on the right goes to zero by the definition of Tf, and
the second goes to zero because Tgne^/t and \\PnTgn\\—>0. Thus
T'fe w:

Finally we show tha t T'S = ST' on 5 ^ If fe ^ 7 let {<?J be
a sequence in ^ # such tha t \\Snf— <7W|| —>0. Then

\\T'Sf- ST'f\\ ^ lim sup \\S*nTSgn - SS*nTgn\\
= lim sup \\S*^]Tgn - SS**Tgn\\
g lim sup WS^S^^Tg,- Tgn\\+\imsup\\Tgn- SnS*nTgn\\
g a lim sup HP^gJI + a lim sup | | P^J | - 0 .

Frequently the subspace "W of Theorem 3.2 will be all of Sίf.
The two corollaries below give examples of this occurrence.

COROLLARY 3.3. // dim ^ L < °o, and if T satisfies (*), then T
has an extension in St?s tvhose norm is \\T\\.

Proof. Let W^ be the subspace of Theorem 3.2. Assume that
x is an eigenvector for the operator on W~ι obtained by compressing
S to 2 ^ \ the operator (I-P)S\Ύ^L where P is the orthogonal
projection of £$f onto ^ Γ Let λ be the corresponding eigenvalue,
so |λ| 5̂  1 and Sx — y + Xx where y — PSx.

Then S2x = Sy + XSx = (% + λ?/) + \2x. In general

S%x = yn + Xnx

where yne W: Now if |λ| - 1 then | |S^| | 2 - | |^| |2 + ||α;|!2, implying
that y ~ 0 since S is a contraction. But this would imply that λ is
an eigenvalue of S, and since S is a shift S has no eigenvalues.

Thus |λI < 1, and Xnx —> 0 as w —> ©o, implying that .τ e ^ T This
too is a contradiction and we have shown that in fact (I— P)S\"WL

can have no eigenvalues and hence since (WL is finite demensional we
must have dim W^L = 0. The proof is now complete in light of
Theorem 3.2.

There is a special type of invariant subspace for nonsimple shifts
which is encountered frequently in the literature. Such subspaces are
the ones which, in the Hardy space model (Helson [6], chapter 6),
correspond to operator valued analytic functions on the unit disk as-
suming unitary values on the boundary. For a general invariant
subspace the corresponding rigid function (see Halmos, [4]) can be
required only to assume partially isometric values.

There is an equivalent abstract formulation of the condition that
an invariant subspace correspond to a unitary valued function. First
of all it is evident that the minimal unitary extension of a unilateral
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shift is a bilateral shift of the same multiplicity. If we continue to
let S and Sίf denote respectively a unilateral shift and the space on
which it acts and now let U and 3ίΓ denote respectively the minimal
unitary extension of S and the space JίΓ on which U acts, then for
each subspace ^//S of 3ίf invariant under S it is clear that ^/£ is
invariant under U as well. It can be shown without great difficulty
that in the Hardy space model ^ corresponds to a unitary function
if and only if the smallest reducing subspace for U containing ^€ is

itself.

COROLLARY 3.4. / / the smallest reducing subspace for U which
contains ^f is JyΓ {where U and 3ίΓ are as in the preceeding par-
agraph) then every operator T on ^ίS satisfying (*) has an extension
in s/'s whose norm is \\T\\.

i

Proof. Recall that ^// — B£^ where B is a partial isometry in
j#%. From the folklore of the field we know that B has a unique
extension to an operator on J?Γ, call it B', which commutes with U.
(This also can be deduced from the lifting theorem of Sz-Nagy and
Foias, Theorem 4 of [3].) Now the range of Br reduces U and con-
tains ^ C Hence by assumption Br5ίΓ = ^ Γ

Let fe §ίf. Since the subspaces U*n3ίf, n^Q, span J>Γ, for each
ε > 0 there is an integer n ^ 0 and age U^^f such that

\\B'g-f\\<e.

We have UnB'g = BrUngeBβ^ = ^£, and | | S * / - UnB'g\\ < ε. Thus
we have shown that "W — βίf in Theorem 3.2 and therefore that T
has the desired extension.

Our final task will be to show that in general condition (*) on T
and ^£ is not sufficient to guarantee an extension in sfs with norm
equal to || T\\. Because the condition is sufficient in the rather inclusive
instances already considered, it is not surprising that some care must
be exercised in constructing the following example.

EXAMPLE 3.5. We take S to be a shift of multiplicity 7 on
Let {βJLi be an orthonormal basis for {S£έf)L. We take the subspace
^f of £ίf to be the smallest invariant subspace for S containing the
following vectors:

Wi = ex + Se2i u2 — e3 + Seά1 u3 = eδ + Se6, u4 — e5 + Se7 .

The operator T is defined on a dense linear manifold in ^ by
requiring that
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Tut = Us, Tu2 — u4, and Tu3 — Tu4 = 0

and by requiring that TS — ST. (The linear manifold referred to is
the linear span of the vectors P(S)uk, k — 1, 2, 3, 4, where P(S) is a
polynomial in S.)

Some elementary calculations show that T is in fact bounded on
this linear manifold, and that moreover || T| | <£ i/3/i/2 . Further-
more it can be shown that T on Λ€ satisfies condition (*) where the
constant a can be taken to be V 2 .

Finally one shows that any extension of T to £έf which is to
commute with S on £έf must map e1 + e3 to 2β6, and must hence have
norm not less than V 2 . Thus T cannot be extended to an operator
which commutes with S on έ%f without increasing the norm.

REMARK 3.6. It is peculiar in the above example that we could
show only that any extension of T to an operator in s/s must have
norm not less than a where a is the constant in (*). This leads
naturally to the following conjecture.

CONJECTURE. If T on ^ satisfies (*) then T has an extension
in s/s having norm less than or equal to a.
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PROPERTIES OF FIXED POINT SETS ON DENDRITES

HELGA SCHIRMER

Every nonempty closed subset of a dendrite can be the
fixed point set of a self-map, but in general it cannot be the
fixed point set of a map with special properties. Necessary
conditions found here for the fixed point sets of homeomor-
phisms and monotone surjections of dendrites are mainly
concerned with the order of the possible fixed points, and
extend earlier results by G. E. Schweigert and L. E. Ward,
Jr.

1* Introduction. It was proved in [3, 4] that every closed,
nonempty subset of the %-ball Bn can be the fixed point set of a
self-map of Bn, but that not all such subsets can be the fixed point
set of a homeomorphism of Bn. We investigate in this paper related
questions for dendrites. The first result (Theorem 3.1) shows that
again every closed nonempty subset can be the fixed point set of a
self-map of a dendrite.

It is already known that not every closed nonempty subset A of
a dendrite D can be the fixed point set of a homeomorphism of D,
or even of a monotone surjection of D. Results for homeomorphisms
by G. E. Schweigert [5] and generalizations for monotone maps by
L. E. Ward, Jr. [7] show that A cannot consist of one end point
of D:

THEOREM 1.1. (Schweigert and Ward). Let f:D—>Dbea

monotone surjection of a dendrite D which leaves one end point e of

D fixed. Then there exists at least one fixed point distinct from e.

We extend this theorem in several ways. In § 4 we prove more
details about the order (see [8, p. 48]) of the possible fixed points if
the fixed point set consists of only finitely many points. The theorem
by Schweigert and Ward states that the fixed point set of a monotone
surjection cannot consist of one end point, i.e., of one point of order
one. We show in Theorem 4.1 that it also cannot consist of two
points of order two, and in the case of a homeomorphism it cannot
consist of three points of order three. But it can consist of n points
of order n for all n > 3. We further strengthen Theorem 1.1 by
proving a restriction on the fixed point different from e: if / is a
homeomorphism, then it can be chosen of an order Φ 2 (Theorem 4.5).
This is no longer true for monotone surjections.

The work by Schweigert and Ward is concerned with fixed point
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sets containing one end point. In § 5 we investigate fixed point sets
which contain almost all of the end points, and show that they must
contain also all points of a sufficiently high order (Theorem 5.1). In
particular we can conclude that if a monotone surjection leaves all
but one of the end points fixed, then it leaves in fact all points of
order Φ 2 fixed (Corollary 5.5).

In § 4 we saw that a distinction exists between fixed point sets
of homeomorphisms and of monotone surjections. In the final paragraph
(§ 6) we show that such a distinction no longer holds for finite
dendrites, i.e., that a subset of a finite dendrite can be the fixed
point set of a homeomorphism if and only if it can be the fixed point
set of a monotone surjection (Theorem 6.1). The same is true for
open maps of finite dendrites, but nothing is known so far about fixed
point sets of open maps of arbitrary dendrites.

Ward actually proved Theorem 1.1 not only for dendrites, but
more generally for trees, i.e., he did not assume that the space has
a metric. It is likely that most or all of the results of this paper
can be extended to trees. The metric of the dendrite is used crucially
in the proof of Theorem 3.1, and it is also used implicitly in the
parts of the paper concerning the order of a point as this concept
was developed in [8] for the metric case.

2. Dendrites* A dendrite D is a metric continuum (i.e., compact
connected Hausdorff space) in which every pair of distinct points is
separated by a third. We use the partial order structure of dendrites
which was developed by Ward [6, 7]. Take an arbitrary point reD
as root, and define a partial order ^ on D by x^y if x — r, x separates
r and y, or x — y. Then r ^ x for every x e D. Define

L(a) = {yeD\y£ a} ,

M(a) =

The sets L(a) and M(a) are closed in D. Let [α, b] = M(a)f]L(b); it
is a nonempty closed chain (i.e., it is linearly ordered) if a < b. Let
(α, b) be the interior of [α, b]. A point m is called a maximum of a
subset A of D, written max A, if m < x for each xeA. It is shown
in [6, Theorem 1] that every nonempty closed subset of D has a
maximum.

We also need in the following some results about dendrites, in
particular about the order of points and about arcwise connectedness,
which can be found in [8]. Frequently we use the next lemma which
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characterizes the order o(a) of a point a [8, p. 48] in the case where
it is finite.

LEMMA 2.1. Let a be a point of a dendrite D. If either the
order o(a) or the number of the components of D\{a} is finite, then
these two numbers are equal [8, p. 88].

aeD is called an end point if o(a) = 1, a cut point if o(a) Ξ> 2,
and a branch point if o(a) ̂  3.

LEMMA 2.2. Every maximum of D is an end point, and every
end point is either a maximum or a root.

Proof. Let m be a maximum of D. If m is not an end point,
then it is a cut point [8, p. 88], and therefore m separates D into two
disjoint separated sets A and B [8, p. 42]. Choose A and B so that
the root r is in A, and take any yeB. Then m separates r and y,
i.e., m < y. But this is impossible if m is a maximum. Hence m is
an end point. Let now e be an end point with e Φ r. As ^ is not
a cut point, the set D\{e} is connected, and e cannot separate any
two points of D\{e}. So e < x is not possible for any x e D, and hence
e is a maximum of D.

It follows from [6, Theorem 5] that M(x) is connected for all
xeD, and therefore M(x) is a subdendrite with root x [8, p. 89]. The
space D, and hence M(x)9 are not only connected, but they are also
arc wise connected, and the arc between any two of their points is
unique [8, p. 89]. We write arc ab for the unique arc from a to 6 if
a,beD.

LEMMA 2.3. Ifbub2eD and m = max [L(61)nl/(δ2)], then arc
bj)2 = [m61]U[mδ2].

Proof. The sets [mbi] — M(m)Γ\L(b1)f where i = 1,2, are connected
chains and hence arcs [7, Theorem 1; 6, Theorems 4 and 6; 8, p. 36].
As [mί>J and [mb2] have exactly one point in common, [mb^\[j[mb2] is
an arc, and hence it is the unique arc bj)2.

An immediate consequence of Lemma 2.3 is

LEMMA 2.4. If the connected subset A of D contains the points
b1 and 62, then it also contains max [Lφj) Π L(b2)\.

We finally state a lemma concerning homeomorphisms and monotone
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maps (i.e., maps where f~ι{y) is connected for all points of the range
of /) which is crucial in most of the following work. Its proof can
be found in [6, Lemma 13 and p. 156].

LEMMA 2.5. / / / : D -» D is a monotone surjective self-map of
a dendrite D, then it is isotone (i.e., x < y implies f(x) ^ f(y)). If
f:D-»Disa homeomorphism, then it is strictly isotone (i.e., x < y
implies f(x) < f(y)).

From now on all monotone surjections are assumed to be
continuous.

3* Fixed point sets of arbitrary maps on dendrites* We show
in this paragraph that any closed nonempty subset can be the fixed
point set of a self-map of a dendrite.

THEOREM 3.1. Let A be an arbitrary closed nonempty subset of
a dendrite D. Then there exists a map f:D-+D with A as its fixed
point set.

Proof. Give D the convex metric d (see [1, 2]). As D is acyclic
and complete, it follows that for every x, y e D the point

z = tx + (l-t)y (0 ^ t ^ 1)

is a unique point of D. As D is compact, it is bounded, hence the
diameter diam (D) is finite. Select a point aeA, and define

fix) = A

d(x' f> a + Γl - J ^ L Λ x for every x e D .
diam (D) L diam (D) J

Then / is the desired map.

Note that the result is not true any longer if we ask in addition
that / is surjective. It is e.g., not possible to construct a map from
the unit interval onto itself such that its fixed point set consists of
one end point of the interval.

4* Nonexistence of some finite fixed point sets* Theorem 1.1
by Schweigert and Ward shows that the fixed point set of a monotone
surjection on a dendrite cannot consist of one point of order one.
We investigate in this paragraph the existence of fixed point sets on
dendrites consisting of n points of order n, for arbitrary positive
integers n. The main result is stated in the following theorem.

THEOREM 4,1. Let f: D -» D be a surjerMve self-map of a dendrite.
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( i ) If f is monotone, then the fixed point set of f cannot consist
of n points of order n for n = 1 or n = 2.

(ii) If f is a homeomorphism, then the fixed point set of f cannot
consist of n points of order n for n = 1, n = 2 or n — 3.

The proof of Theorem 4.1 is lengthy and will be accomplished
in several parts. The next lemma is used in the proof of part (i) of
Theorem 4.1 and in the proof of Theorem 4.5 below.

LEMMA 4.2. // a is a point of order two in D and different
from the root, then it is a point of order one in the subdendrite M(a).

Proof. As o(a) = 2 in D, we can assume that D\{a\ —
where Kx and K2 are the two components of D\{a} and the root
reKx. As Kι is arcwise connected, we have

Kx = {x I a $ arc rx}

= {x\a<£[rx]} = D\M{a) .

Hence K2 ~ M(a)\{a}, so that Λf(α)\{α} is connected and o(a) = 1 in
M(a).

Proof of part (i) of Theorem 4.1. Because of Theorem 1.1 we
only have to prove the nonexistence of a fixed point set consisting of
two points of order two.

Let / :D -» D be a monotone surjection which has two fixed points
of order two. Take one as root r, and let a be the other fixed point.
As f is isotone (Lemma 2.5), we have f(M(a)) Q M(a). The restric-
tion f\M(a): M(a) —> M (a) is monotone, as for any yef(M(a)) the
counterimage f~ι(y) is connected in D and hence (see [8, p. 88])
f~\y)\ΛM{a) is connected in M(a). If f\M(a): M(a)-+M(a) is onto,
then it follows from Theorem 1.1 and Lemma 4.2 that / has a second
fixed point on M(a), and part (i) of Theorem 4.1 is proved.

Assume now that f(M{a)) Φ M(a), and choose q e M(a)\f(M{a)).
As / is surjective, there exists p e D\M(a) with f(p) = q, and because
/ is isotone, we have f([ra]) = [ra], so that in fact p e D\{M(a) (J [rα]}.
Let m = max [L(p)f]L(q)]. Then r <S m < a and hence r ^ f(m) ^ α.
But in fact f(m) — a: as f([mp]) = [f(m)q] and ae[f(m)q], there
exists an x e [mp] with f(x) = α. But we also have f(a) = α, so that
by Lemma 2.4 the connected set f~ι(a) must contain

max [L(x)ΠL(a)] = m, i.e., f(m) = a .
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So we see that if / has no other fixed points but r and α, then there
exists m e arc ra\{a} with f(m) = α. If we take a instead of r as
root, then an analogous argument shows: if / has no other fixed
points but r and α, then there exists n e arc ra\{r} with f(n) = r.
But as /(arc rα) = arc ra, the existence of m and % implies the
existence of a fixed point on arc ra different from r and a. Hence
/ must have a fixed point different from r and α, and part (i) of
Theorem 4.1 follows.

We now set out to prove part (ii) of Theorem 4.1. This is done
with the help of the next two lemmas. The first is stated in much
more generality than is needed here for the sake of its use in the
proof of Theorem 5.1 below. We say that f:D—>D permutes the
set of n points {bi\ί = 1, 2, •••, n} of D if it transforms the set {6J
bijectively onto itself; the identity transformation of the bi is included
as a possibility.

LEMMA 4.3. Assume that the monotone surjection f:D-^>D leaves
the root of D fixed and that it permutes the set of points

{bi\i = 1 , 2 , • • • , % } ,

where n >̂ 2. Then

m = max ΠL(δ<)

is a fixed point of f.

Proof. Let r be the root of D. As r <; m ^ biy the fact that /
is isotone (see Lemma 2.5) implies

r ^ f{m) ^ f(bi) = bk (i, k = 1, 2, . . . , n)

and hence f(m) ^ m. But f([rbi\) = [r6fc], so that there exists for
i = 1,2, * , n an α̂  with r ^ m ^ Xi^bi and /(»«) = m. Therefore
the connected set f"ι{m) contains all xίf and as

max [n^(^)] = m a x |i[max Q ^(^JJ Π L(x

it follows by induction from Lemma 2.4 that m e /^(m). Thus
m = /(m) is a fixed point of / .

LEMMA 4.4. Let f:D-»Dbea homeomorphism which leaves the
root r of D and a point a fixed. Then f maps M(a) homeomorphίcally
onto itself.
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Proof. We see from Lemma 2.5 that f(M(ά)) £ ilf(α), so that
f\M(a) is an injection. As / is a homeomorphism, its inverse f~ι

is a homeomorphism too, hence f-\M{a)) £ M(a) or M(α) £ f(M{a)).
Therefore f(M{a)) = M(a), and f\M(a) is a homeomorphism of M(a).

Proof of part (ii) of Theorem 4.1. As a homeomorphism is a
monotone map, it only remains to show that the fixed point set of a
homeomorphism cannot consist of three points of order three.

Let α, 6, and c be three distinct fixed points of order three of
the homeomorphism / : D -» D. Take a as root. Then

m = max[L(&) Π L(c)]

is a fixed point according to Lemma 4.3. So part (ii) of Theorem
4.1 is proved if m is different from α, 6, and c.

Assume now that m — α, i.e., that a separates b and e. Define

Mb(a) — {x\a separates b and x} ,

Mc(a) = {$|α separates c and #} ,

(i.e., Λf6(α) is the set M(a) if 6 is taken as root, and Me(a) is the
set M(a) if c is taken as root). Hence Mb(ά) and Mc(a), and therefore
[8, p. 88] the set Q = Mb(a) Π Λfe(α)» are continua. By definition a e Q,
but 6 ̂  Q and c ί Q. It follows from Lemma 4.4 (with b resp. c as
root) that / induces a homeomorphism of Mb(a) and of Mj^a), and
hence of Q. Therefore in this case part (ii) of Theorem 4.1 follows
from Theorem 1.1 if we can show that a is of order one in Q.

If a is not of order one in Q, then Q\{a} is not connected. Hence
we can select two points p, q e Q\{a} so that a e arc pq and therefore
a — max [L(p)Γ\L(q)]. As qeM^a), we see that a separates b and
q. So we have aearc bq and hence a — max [L(b)f]L(q)]. Similarly
a = max [L(x) Π L(y)] if x — b or x = cf and y = p or y = q. This
shows that the subdendrite D' = L(b) U L(c) U I/(p) U £(<?) consists of
the four arcs [α&], [αc], [αp], and [αg], and that the order of a in Df

is four. As a is of order three in D this is impossible. So a must be
of order one in Q> and Theorem 4.1 (ii) holds if m = α.

If m = 6 then 6 separates α and c. Therefore the same argument,
but with b and a interchanged, proves Theorem 4.1 (ii) in this case.
If m = c we proceed analogously. This concludes the proof of part
(ii) of Theorem 4.1, and hence of Theorem 4.1.
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REMARKS, (i) One might ask whether part (ii) of Theorem 4.1
can be extended to monotone maps. That this is not the case is
shown by the following example of a monotone surjection of a dendrite
which has a fixed point set consisting of three points of order three.

FIGURE 1

Let D be the dendrite illustrated in Figure 1. It is constructed
by attaching to the finite dendrite with vertices α, δ, p, q, r, and s
countably many line segments [c^], i = 1, 2, 3, •••, so that ct is the
mid point of [α&], that ei+1 is the mid point of [α^] for i = 1, 2, 3, ,
and that the length of [c^] equals the length of [αcj. Define
f\D-^D first on the vertices of D as follows:

f(x) — x if x — a, δ, or cx ,

fiv) = 9, /(?) = P, f(r) = s, /(«) - r ,

for % — 1, 2, 3, .

Now extend / linearly over Z^fcji], and define it over [cj)] as a
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monotone map of [cj>] onto itself with the only fixed points ex and b.
Then / : D -»D is monotone and has the fixed points α, b, and cl9

each of order three.

(ii) Tempted by one's habit of mathematical induction one might
also ask whether it is possible to prove the nonexistence of a fixed
point set under a homeomorphism consisting of n points of order n if
n > 3. That this cannot be done is shown by the next example, in
which for any positive integer n > 3 a dendrite Dn and a homeomor-
phism fn of Dn are constructed so that the fixed point set of fn

consists of exactly n points of order n.

FIGURE 2

Take a chain of n vertices α1? α2, •••,<&» (see Figure 2 for the
case n = 4). To both ax and an attach n — 1 segments with end points
ai3'(i = 1 or n; j = 1, 2, , w — 1); to each of α2, α3, , an^ attach n — 2
segments with end points a^(i = 2, 3, , n — l j = 1, 2, , n — 2).
Then o(α{) = n for i = 1, 2, , n. Define fn on the vertices of Dn by

i = 1, 2,

i - 1, 2, , n ,

where i ^ k and /w(a^) =£ f{aiό) if j1 ^ i '. Extend /w as a homeomor-
phism with no further fixed points over all edges of Dn. Then the
fixed point set of fn is {aly α2, , αJ.
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We conclude this paragraph by strengthening Schweigert's
theorem in a different direction.

THEOREM 4.5. If a homeomorphism of a dendrite leaves one end
point e fixed, then there exists at least one fixed point distinct from
e and of order Φ 2.

Proof. Take the fixed end point as root r of the dendrite D,
and let A be the fixed point set of the homeomorphism / of D. It
follows from Theorem 1.1 that A\{r} Φ 0 , and hence that a φ r if a
is a maximum of A. Assume that o(a) = 2. Then Lemmas 4.2 and
4.4 show that / induces a homeomorphism of Mia) which leaves the
end point a of Mia) fixed. Therefore Theorem 1.1 implies the
existence of a fixed point of / on M(α) different from a, in contradic-
tion to a = max A. So it is necessary that o(a) Φ 2.

REMARK. Theorem 4.5 cannot be extended to monotone maps,
for we can construct a monotone surjection of a dendrite such that
its fixed point set consists of one point of order one and of one point
of order two. For this purpose, let Df be the subdendrite obtained
from the dendrite D in Figure 1 by deleting the end points p, g, r,
and s, and the four edges which have these points as end points.
Let t be the mid point of cι and b. Define / on the vertices of Ώf

as follows:

fid) = α, fit) = t ,

fib) = t, fiCι) = t ,

fid,) = b ,

for i = 1, 2, 3, ,

and extend it linearly over the edges of D\ Then / is a monotone
map Df -» Dr with fixed points a of order one and t of order two.

5* Fixed point sets of monotone maps which leave almost
all end points fixed* Theorem 1.1 by Schweigert and Ward considers
the case where a map is known to leave one end point fixed. The
main result of this paragraph, Theorem 5.1, considers a case which
is, in a sense, the other extreme: a map is known to leave almost
all, or all, of the end points fixed.

THEOREM 5.1. Let f: D-» D be a monotone surjection of a
dendrite D and assume that at most n of the end points of D do not
belong to the fixed point set of f. Then every point of order n {where
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n ^ 3) belongs to the fixed point set of f.

λVe will prove Theorem 5.1 with the help of the following two
lemmas.

LEMMA 5.2. // aeD, then every component of D\{a} contains
either the root or an end point.

Proof. Let K be a component of D\{a], and let r be the root of
D. We can assume that r £ K. Take an arbitrary x e K. Then
x Φ r and x Φ a. For any y e M(x)\{x} we have a e [xy], as x < a < y
would imply [rx] c D\{a} and hence x would be contained in the same
component of D\{a} as r. Therefore M(x) c K. But M{x) is closed
in D and hence has a maximum. According to Lemma 2.2 this is an
end point, as a maximum of M(x) is clearly a maximum of D.

LEMMA 5.3. Let f: D -» D be a monotone surjection which leaves
the root of D fixed. Then the counterimage of any maximum of D
contains a maximum.

Proof. Let m be a maximum. As / is surjective, there exists
an xeD with f(x) — m. As / is isotone (Lemma 2.5), we have
f(M(x)) — m, and as M(x) contains a maximum, so does f~λ(m).

Proof of Theorem 5.1. Let α e ΰ be a point of order n (with
n >̂ 3). If D has only n end points, then it is a finite dendrite of
the form UΓ=i[αβi], where [ae^ are arcs. Hence a is fixed. (This
can easily be seen directly; it also follows from the arguments used
in the proof of Theorem 6.1 below.)

If D has more than n end points, then at least one of them
belongs to the fixed point set of / ; take it as the root r of D.
According to Lemma 5.2 we can select in each of the components of
D\{a} which do not contain r an end point, thus obtaining at least
n — 1. Choose them as fixed points if possible, and then select from
this set exactly n — 1 end points, again including as many fixed
points as possible. We now continue with the proof by investigating
three possible cases.

Case 1. At least two of the selected end points, say ef and e",
are fixed points. Consider m — max [L(e')Π L(e")], which is fixed in
consequence of Lemma 4.3. If a Φ m, then arc e'e" c D\{a] by Lemma
2.3, in contradiction to the selection of ef and e" in different com-
ponents of D\{a}. Hence a — m is fixed.
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Case 2. Only one of the selected n — 1 end points, say e, is a
fixed point. Let ely e2, , e%_2 (where n — 2 ^ 1) be the other selected
end points; they are not fixed. If one or two more nonfixed end
points of D exist, call them e%_L and en. Otherwise put en or both of
en-1 and en equal to e. Define

n

m — max [L(e) Π Π L^)] .

It follows from Lemmas 2.2 and 5.3 that the set {e}\j{ei\i = 1, 2, , n}
is permuted by /. Hence Lemma 4.3 shows that m is a fixed point.
As e and e^i = 1, 2, , w — 2) are in different components of Z)\{α},
we see that a = max [L(e) Π Mβi)] and therefore

%—2

α = max [L(e) Π Π Meύ]

This implies m ^ a.
If m = α, then α is fixed. If m < α, then at least one of en^

or en is > α. Without loss of generality we can assume that en^ > a
and that m ^ m a x I L ^ ί l l f e - ! ) ] . As / is isotone, we have
/([me]) = [me], hence there exists an x with m < x < e and /(#) = α.
If /(e%_i) > α, then there must also exist a point y with m < ?/ < βΛ_j.
and /(?/) = α. As f~\a) is connected, it must contain

max \L(x) Π ί/(?/)] = max [L(e) Π L{en^\ — m

by Lemma 2.4. But /(m) = m < a. Therefore f(en^) > α, and thus
/(β^O = en and ew > α.

Assume now that f(en) > a. Then there exists a point z with
m < z < en and /(«) = α, and /^(α) contains

k = max [L(x) Π L(z)] = max [L(e) Π L(en)] .

As eΛ > α, we have m ^ k < a. But as αe [me], we see that
m ^ /(α) ^ e, and as αe [mβi] for some et with i ^ ^ — 2 and
f(βi) = βΛ-!, we see that m ^ /(α) ^ en^. As m = max [L(e) Π L{en-^),
this implies /(α) = m, and therefore f{[ma\) = m in contradiction to
/(&) = α. So it is necessary that /(eΛ) > α, i.e., /(βΛ) = en_le We
can now apply Lemma 4.3 to the set {e}U{βi|i = 1, 2, •••, w — 2} to
see that a is fixed.

Case 3. None of the selected end points is a fixed point. Denote
these end points by eί9 e2, •••, e%^ι (where ^ — 1^2) . If one other
nonfixed end point exists, call it en9 otherwise put en = ex. As in case
2 we see that
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m = max Π L(eΛ
Li=i J

is a fixed point, that

a = max I

and hence that m ^ a. If m = α, then a is fixed. If m < α, then
en > α. Choose e4(i <L n — I) such that f(e^)Φen, i.e., /(ej > α. Then
α 6 /([mβ^]), hence there exists an x with m < x < ^ and /(#) = α.
But also αe/([mej), therefore there exists y with m <y <en and
/(T/) = α. Thus the connected set f~ι{a) must contain

max [L(x) Π L(y)] = max [£(>;) Π I/(βn)] = m

by Lemma 2.4, so that /(m) = α. But /(m) = m, so m < a is
impossible.

This completes the proof of Theorem 5.1.

Putting n = 3 in Theorem 5.1 we obtain the following special
case.

COROLLARY 5.4. Let f:D-»D be a monotone surjection of a
dendrite D which leaves at most three of the end points not fixed.
Then f leaves all branch points fixed.

We conclude this paragraph by formulating one further consequence
of Theorem 5.1, which is a complement to the theorem by Schweigert
and Ward.

COROLLARY 5.5. Let f:D-*>D be a monotone surjection of a
dendrite D which leaves at most one of the end points not fixed.
Then f leaves all end points and all branch points fixed.

Proof. Assume that we know that / leaves all end points fixed
with the possible exception of one end point, say e. Take any of the
fixed end points as root r. It follows from Lemmas 2.2 and 5.3 that
f~\e) contains an end point which must of necessity be e. So
f(e) = e is fixed. That all branch points of D are fixed follows now
from Corollary 5.4.

REMARK. It is not possible to strengthen Theorem 5.1 to include
the points with order n — 1. To see this, consider the finite sub-
dendrite D" of Figure 1 with vertices α, δ, p, q, r, and s, define / on



808 HELGA SCHIRMER

the vertices of D" by f(a) = δ, f(b) = a, f(p) = r, f(q) = s, f(r) = p,
/(s) = g, and extend it linearly over the five edges of D". Then /
leaves none of the four end points of Ό" fixed. Take n = 4 in
Theorem 5.1, and check that the two branch points a and 6 of order
n — 1 = & are not fixed.

6* Fixed point sets of monotone maps on finite dendrites* In
§ 4 we found it necessary to distinguish between fixed point sets of
monotone maps and fixed point sets of homeomorphisms on dendrites.
We will show now that this distinction is superfluous in the case of
finite dendrites, i.e., dendrites with finitely many vertices.

THEOREM 6.1. A subset of a finite dendrite D can be the fixed
point set of a homeomorphism of D if and only if it can be the fixed
point set of a monotone surjection of D.

Proof. It is only necessary to show that a subset AaD which
is the fixed point set of a monotone surjection f:D-»D can be the
fixed point set of a homeomorphism of D.

A is nonempty; select a root r of D with re A. Take the branch
points and end points of D, as well as r if not yet included, as the
set V of vertices of a simplicial complex K which is a triangulation
of D. We first show that /1V determines a simplicial map φ: K^» K
(i.e., f\V is a function of the vertices of K onto themselves such
that adjoining vertices are mapped onto adjoining vertices).

As D is finite, Lemmas 2.2 and 5.3 imply that the image under
/ of an end point is an end point. Similarly it follows that the
image of a branch point is a branch point if we can show that the
counterimage of every branch point contains a branch point. Assume
by way of contradiction that b e D is a branch point such that o(x) = 2
for all xef~\b). As f~\b) is closed and connected, it must be of
the form [mn], where m ^ n and [mn] is contained in an edge of
D. As / is isotone (see Lemma 2.5), we have f(M(n)\{n}) £ M(b)\{b}.
As o(n) = 2, the set M(n)\{n} is connected, hence f(M(n)\{n}) is
connected. But o{b) > 2, therefore M(b)\{b} is not connected, and
thus f(M(n)\{n}) Φ M(b)\{b}. Choose y e M(b)\{b} such that

f-ι(y)Γι[M(n)\{n}] = 0 .

As / is surjective, there exists xeD with f(x) — y, and we see that
then x > n and even x > m. As / is isotone, we have f([rx]) = [ry],
therefore there exists xr e D with r < x' < x and f{x') — b. This
implies m ^ χf <̂  n and hence m < x in contradiction to x > m. So
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it follows that f~\b) must contain a branch point.

We complete the argument that / (V determines a simplicial map
by showing that / maps adjoining vertices of K onto adjoining
vertices. Let a and b be adjoining vertices; we can assume that
a < b. Then f(a) < f(b). If there exists a vertex between f(a) and
fib), then there exists a vertex c which is its counterimage, i.e.,
/(α) < f(c) < f(b). As / is isotone and as there is no vertex between
a and b, this implies eg L(b)\jM(b). Let m = max [L(5)ΠL(c)], then
o{m) > 2. As m > a would imply ra ^ b and c e M(b), it follows that
m <̂  α. Now /([α&]) = [/(α) /(&)], hence there exists an x with
a < x < b and /(#) = /(c). The set f~ιf(c) is connected and therefore
contains max [L(x)f]L(c)] = max [L(b)Γ\L(c)] = m, so that/(m) — /(c).
As / determines a bijective transformation of V, we must have
m = c. But this would imply c ^ α in contradiction to cgL(b). So
the vertex /(c) cannot exist, and f\V determines a simplicial map
φ: K-»K.

As the image of an edge [ab] under a monotone map / must be
the edge [f(a) f(b)], it is now easy to check that the fixed point set
A of f must be of the following form:

(1) a e A for every a e V with φ(a) = a;
( 2 ) Af] (ab) is an arbitrary (possibly empty) closed set for every

edge [ab] of D with φ(a) = a and φ(b) = b;
(3) Af](ab) = 0 for all other edges.

But we can construct a homeomorphism of D with the same images
of the vertices as / and with this set A as fixed point set. Therefore
Theorem 6.1 holds.

Using a theorem by Whyburn [8, p. 182 Theorem 1.1] we can
extend Theorem 6.1 to open maps if D is finite and not an interval,
for a study of the proof of Whyburn's theorem shows that in this
case /1 V again determines a simplicial map. Hence we have

THEOREM 6.2. If the finite dendrite D is not an interval, then
a subset of D can be the fixed point set of a homeomorphism of D if
and only if it can be the fixed point set of an open surjection of D.

The case where D is an interval has to be excluded, as e.g., the
subset {1/3, 2/3} of the unit interval [01] can be the fixed point set
of an open surjection but not of a homeomorphism. It would be
interesting to know whether any or all of the results of § 4 and § 5
generalize to open maps. The method of proof will have to be
different, though, as an open map of a dendrite need not be isotone.
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ON THE NUMBER OF NON-ALMOST ISOMORPHIC
MODELS OF Γ IN A POWER

SAHARON SHELAH

Let T be a first order theory. Two models are almost
isomorphic if they are elementarily equivalent in the language
Loo,ω. We investigate the number of non almost-isomorphic
models of T of power 2 as a function of λ, I(T, λ). We prove
μ > λ ^ I TI, I(T, λ) ^ λ implies I(T, μ) ^ I(T, λ). In fact, we
generalize the downward Skolem-Lowenheim theorem for in-
finitary languages. Th. (1, 4, 5).

Let L be a set of predicates with finite number of places and
sufficient number of variables. (We assume there are no function
symbols in L for simplicity only.) \L\ will denote the number of
predicates in L plus ^ 0 . Models will be denoted by M, N. The set
of elements of M will be \M\, the cardinality of a set A by \A\ and
so the cardinality of M by ||M"||. Unless specified otherwise, every
model is an L-model. Cardinals will be denoted by λ, μ, tcy χ ordinals
h39oί9β. Twill denote a theory, i.e., set of sentences. We define
^ = Σc<*μ* For cardinals λ, μ we define the language L(X, μ) i.e.,
a set of formulas. This set is defined as the well known first-order
language where we adjoin to its operations conjunction and disjunction
on a set of < λ formulas (i.e., AieiΦn where | / | < λ) and existential
or universal quantifications over a sequence of <μ variables. L*(λ, μ)
will be defined as L(λ, μ) where in addition we permit quantification
of the form

if

\{xl, x[, •••, yl y\, •••, Xo" •••}!< μ .

RL*(X, μ) will denote the subset of Z/*(λ, μ) consisting of the formulas
Φ of L*(λ, μ) such that for every subformula φ of Φ, if φ = [(Vxι)
(3^) -]ψ, then h ^ -> 7[{lxι)(Vyι) •] 7 -f. Clearly i?L*(λ, ^) 3
L(λ, /^). i ί will denote any of those languages. Satisfaction (i.e., if
φ = φ(x), and a is a sequence from \M\, then Λf |= ψ[a\) is defined
naturally. (See Hanf [2] and Henkin [3].) The only nontotally tri-
vial case is

*(?) = [(v&wyw&KΦ) -w,«°, »s % °̂, r •)

M \= ψ[a] if and only if there are functions f"{x\ •• ,xw) such that
for every sequence α°, a\ from I , I N φ[a, α°, αι, , δ°, ft1, •]
where 6W = <• -,fin{a\ a\ , αw), •>. For a sentence ^, f=α/r if for

811
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every M, M \= ψ. (Such languages were first defined in Henkin [3].)

If Γ is a set of formulas (for example one of the languages defined
above), M is a Γ elementary submodel of N, if the set of elements
of M, \M\ is included in the set of elements of N, \N\, and for every
formula φ(x), φ(x) e Γ, and sequence a from \M\, M \= φ[a] if and only
if N 1= Φ[a], M, N are .F-elementarily equivalent if for every sentence
ΦeΓ, M^ φ if and only if N N φ.

THEOREM 1. LetX > μ, λ regular and T be a theory in RL*(X, μ)
[i.e., TciϋL*(λ, μ)\ and Γ be the set of subformulas of the formulas
in T. Then for every model M we can add < λ + \T\+ functions of
<μ places such that: If A a M, and A is closed under those functions,
then there exists a Γ-elementary submodel N of M, \N\ = A. So if
K Ξ> λ + \T\ (or £^> the number of those functions) and /ciμ) = tz, and
T has a model of power ^K, then T has a model of power it.

Proof. This theorem is proved in [9], and is a straight-forward
generalization of a theorem of Hanf in [2].

DEFINITION 1.

L(co, μ)=\j L(k, μ), L*(oo, μ) = \J L*(\, μ),
x λ

BL*(oo,μ) = \JRL*(X,μ) .
λ

DEFINITION 2. (1) M and N are //-almost isomorphic, M~μN
if M9 N are L(°o, /^-elementarily equivalent. We say M and N are
almost isomorphic if M ~*QN, and we write M ~ N.

(2) I(T, λ, μ), is the number of non-μ-almost-isomorphic models of
T of power λ. We assume always λ is Ξ> then \T\.

See footnote 1.

THEOREM 2. If T is a theory in J?L*(λ, μ), μ = ^ 0 or μ — μf,

tc>X = X{*} + λ + \T\ and I(T,χ,μ)£χ then I(T, ic, μ) £ I(T,χ, μ).

The proof is broken into a series of lemmas.

REMARKS. (1) It is not hard to show that if Γ c L ( λ , ^ 0 ) ,
I(T, χ, Ko) ^ χ, then for every κu κ2 ^ n(ίi+z,+, I(Γ, κlf « 0 ) - I(T, fc2,
«o). (See Makkai [7] and Eklof [15].)

1 The results here appear in the notices [10] Th. 5 [11] Th. 3. The lemma has other
uses: see [12] Th. 2.5 and Remark (4): in [11] their consequences are better formulated.
In Th. 2 we can replace T a RT*(λ, μ) by T<zRL*(λ+,μ) and similarly in other cases.
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(2) Let λ = μ = ^ 0 and suppose | T | ^ tc0. Then as the class of
such theories is a set, there is a number K — HAIKQ (Hanf number of
almost isomorphism) such that: for all T, | T | <£ κQ, I(T, K, y^0) <̂  tc if
and only if there is a χ, Z(T, χ, y$0) ^ %> and Λ: is the first such car-
dinality. (The existence of such numbers for a wide class of cases
was proved by Hanf in [2].)

Question 1. What is HAI^Ί (Clearly if λ-»(Λ;0

+)2

<^ then HAIKQ <λ) .

(3) It is known that ilf ~ N, « 0 = \\M\\ = ||i\Γ|| implies that AT,
JV are isomorphic (see Scott [8]).

(4) Ehrenfeucht in [1] defined a model to be rigid if it has no
nontrivial automorphisms and tried to investigate what can be the
class of cardinals in which a certain theory has a rigid model. He
gives some examples, but does not prove any theorem of the form:
If T has a rigid model of one power, then it has a rigid model in
another power.

DEFINITION. M is μ-rigid if there do not exist two different se-
quences of length <μ,a,b, such that (M,a)~μ(M,b). ((M, a) is
the model M when we adjoin the α's as individual constants.) See
footnote 2. Clearly

THEOREM. If μ < λ, and M is μ-rigid, then it is X-rigid and also
rigid. By a proof similar to that of Theorem 2, we can prove:

THEOREM. If a first-order theory T has a μ-rigid model of power
λ, I T\ + y 0̂ <£ K — tc{μ) ^ λ, μ — μi or μ = #0J then T has a μ-rigid
model of power fc.

Proof of Theorem 2.

DEFINITION 3. (1) Let Lx be L where we adjoin to it one two-
place predicate E and variables y, yQy yu we assume E, y, y0 ΦL.
We shall write xEy instead E(x, y).

(2) If R e L then RM will denote the relation of M corresponding
to R.

(3) Let {Mil ie 1} be a set of L-models and we define their sum
N — (BieiMi, (or ®{Mϊ.ieI}). For simplicity we assume that the
sets I Mi I are pairwise disjoint. N will be an I^-model | JV| — \Jiei\Mi\,
RN = UieiRMi for every ReL, and EN = {<α, 6>: (3i)[α, be \Mi\]}.

(4) For every formula φ of any language, we define by induction

2 Barwise [14] suggests a similar definition and argues its naturality.
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φ: if φ is atomic φ = φ; 7φ = 7Φ, φ\f ψ = φ\f ψ, (likewise for the
o t h e r c o n n e c t i v e s ) , 3(3#)0 = {lx)[φ A A ; XiEy], ( w h e r e # = <•••&{•••»

iEy—> φ], and

. \φ = [(V^1)(3^1) '](A xfEy -+ φ A A yΐEy)

if the language contains such formulas. Clearly for any language
K, φe K=>φe K. Also, if ψ is a sentence (yy)φ is a sentence.

(5) Define

f = {(Vy)φ: φ e T} (j {(V^cc^, (Vcco^x^^o^i Λ ^ 0 ^ 2 —* a?i^2)}

LEMMA 3. Each Mi is an L-rnodel of T if and only if ®ieIMi
is an Lrmodel of T.

Proof. Immediate

DEFINITION 4.

Ψl = ψl(χ\ χ\ , χ\ y\ , Ψ) = A {Λ(a?Ji, , xh •)

~R(VΪ\, % ί/iί •): ii, •> i* e {0, , n],

ReL,jlf •• ,iJfc ••• < α}

where

^ = < . . . x*.. .yi<aj ψ = < . . . y*.. .yi<a.
Also let

Φa = [ A ^ Γ ^ Λ A 2/r+1#2/] -> [ A xT+1Ex A A VfEy
i<a i<a i<a i<a

2n<m 2n + l<m 2n+l<m 2n<m

Λ A l ί ( ϋ ° , •• , « " , » ° , " ,Vn)]:

Φω

a = AΦa = ΨWA%, y, χ°, y°, χ\ Ψ, •)

For even n

Φl = ΦUx, y, χ°, y°, ", χn~\ Ψ~ι) = [(v^)(ar)(vr+ 1)(3r+ 1) ]Φa

For odd n

Φl(χ, y, χ°, y°,- , χn~ι, v*-1) = [(vp)(a»-)(VsB»+1)(a»-+1)(vf"+1). >\φ»a.

LEMMA 4. If

ae\M\, be\N\,M, iVe {Λf,: ΐe/}, M* = ®isIMi ,

and μ = κ+ or μ = ^ 0 , and K is finite, then M ~μN if and only if
M* N Φl[a, b].
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REMARK. Keisler in [5] used sentences similar to φn

a. These sen-
tences can be seen as asserting something about an appropriate game
(between a player choosing x\ y\ x2, ••• and a player choosing y\
x\ •••). In this presentation a similar theorem appears in Karp [4].

Added in proof. See also Benda [13].

Proof.

Part A- Suppose M ~ μN.

For every two sequences α, b of elements of M, either there is a
formula fc&(^) of L(°o, μ) such that M 1= Φa,τ[ΰ]> M t= 7 Φa,τ[b]i or there
is no such ψ and in this case, we let Φι,τ(x) = (x0 = xQ)

Let φ-(x) = Aτ Φa,τ(%) e L(oo, μ). Let φ-(x) = Φi(y, x). Let a < μ.
We define the functions

f2n(^;0 77-O ,771 ^ l ^ 2 ,772%—! ^2u—1 ^2w\

/ i {Λ,y,y,%,%, ' ,y , x , x ) >
/*2w + l / ^ 0 77O 771 X l̂ ^T2 ^ 2 % 772% 772w + l\

for i < α such that: If α°, 6°, α1, 6' are sequences of length a, a2n

a sequence of elements of M, and b2n+1 a sequence of elements of N,
and for every n

then M* \= φΐ[a, b, α°, 6°, •••].

Suppose we have defined fn for w < 2 m , and let us define f2m for
i < a. (f2m+ι are defined similarly.)

If for some n < 2m, i < α &J1 £ | iV |, or for some ΐ < α, n ^ 2m α? ί
ikf|, then//m(ά°, « ,α2 m) is defined as an arbitrary element of M*.

Also if there exists a formula ψ(z\ , zn) G.L(C^? /i) such that

M |= τ/r[ά°, α1, , a2m~ι]N \= 7 ψ[b°, , δ"^-1] ,

we define f2m{a°f a2m) arbitrarily.

So assume none of the previous cases occur. Define a[n] = d° ^
a1 ^ ^ an (the concatenation of alf , α%) and b[n] = b° ̂  ^ 6W.
Clearly

As M~μN,N also satisfies the above sentence; so there exists b2m

such that for every φ e L(co, μ)y M \= φ[a\ , a2m] if and only if
N N 0[6°, , ζ52m]. Let /?m(α°, 6°, , α2m) = bf.
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Clearly [this shows that Λf * |= Φa[a, b] for every a < μ, and in
particular for fc.

Part B. We now assume that M* h Φl[a, 6], and μ = ^ 0 The
proof in the case μ — κ+ or 1 < tc < ^ 0 is similar. For simplicity, we
shall not distinguish between a = <(aoy and α0.

Two sequences, α from M" and 6 from N, of length w, % < ω, will
be called equivalent if M* t= ̂ ί[α, &, α, 6]. If w = 2m, clearly for
every δw + 1e|JV| there exists anJrle\M\ such that a^(a%JrΫy and 6 ^
<δ%+1> are equivalent, and similarly for n = 2m + 1.

Let φ(x) e L(oo, ̂ ) , » a finite sequence of variables. We shall prove
that if α, b are equivalent then M N ^[α] if and only if N |= ̂ [6]. As
subformulas of formulas with < ^ 0 free variables have < ^ 0 free
variables we can prove it by induction. For atomic formulas it follows
from the definition of <ft. For yφ, φ V ψ, it is immediate, and so
also for the other connectives. For quantification it follows by the
fact mentioned above after the definition of equivalent sequences.

So we have proved that if α, b are equivalent sequences, φ(x) e
L(oo, μ), then M f= φ[a] if and only if N N Φ[b]. Since the sequences
of length zero from M and N are equivalent (by our hypotheses M* \=
φ\(a, b))y we get our conclusion that M ~ N. This proves Lemma 4.

LEMMA 5. φ°a(x, y) e u?L*(oo, μ). See footnote 3.

Proof. It is easily seen that the only thing we have to prove is:

h[(Vtf°)(3^)(V^W) •••] A Φl~ 7[(3^0)(V^0)(3^)(V^) . . . ] V 7 « .

For simplicity, let a — 1.

It is not hard to see that if M N [(V °̂)(3?/0) . .]Aw<ω Φΐ, then
M 1= 7[(3x°)(Vί/°) . . - ] y n < ω 7 φ?. (See, for example, Keisler [6].)

So suppose I N 7 [(3^0)(Vτ/°) . . . ] \f n<ω y φ?m It is not hard to see
that for every n < ω, and formula φ

7 [(Vί2;1)(3^2)(Vί2?3) \φ <—> (3^) 7

7 [(^22X^3) ] ^ <—» (3^i)(V^2) 7 [ ( ^ 3 ) * * *]Φ 9 e t c .

Now let us define functions gn(x\ y°, y\ , xi yj
 )Ϊ,J<Λ Let

θn(x, y, x°, y°, x1, yι, , xn, yn) = 7 [Vα;%)(3z/w)(V7/w+1)(3^+1) •] V 7 9

3 This lemma is, in fact, a translation of a well known theorem from game theory.
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(This is for even n, the definition for odd n is clear.) The functions
will be such t h a t if α°, , ane \M|, 6°, •••, δ n e |JVΊ, and for every
2m £ nb2m = #2w(α°, h\ •)> and for every 2m + 1 ^ na2m+1 = gim+ι(a°,
6°, . . . ) ; then M* \= θn[a, 6, α°, b° •]. The definition is self-evident.
Let α° ••• an ••• e \M\, b° ••• δ% ••• e \N\ be such t h a t for every
2mb2m = gim(a\ b° •) and for every 2m + 1 α 2 m + 1 - ^2 m + 1(α°, 6° •) and
let w < ω. A s M ' N 0»+i[α, 6, α°, 6° αΛ, δw], clearly M * N ^Γ(α, δ, α°,
δ° an, bn).

So M * 1= An<ω φΐ(a, δ, α°, δ°, , α%δ%), and hence M * N ^r[α, 6, °̂»
δ° •]. So ikf* N ^;[α, δ] (as this is t rue for every α°, δ1, α2, δ3 •) and
this is the desired conclusion.

LEMMA 6. Let μ = fc+ or μ = y$0, « = 1, IT α theory in RL*(X, μ),
χ = χ(̂ ) + x + I r I , α ^ /(Γ, χy μ) ^ χ. Γ^β^ for every model N of T
of power > χ , there exists a model M of T of power χ such that M ~ μN.

REMARK. This clearly proves Theorem 2.

Proof. Let {M^ i e /} be a maximal set of non-^-almost-isomorphic
models of T of power χ, and let N be a model of T of power > χ
such that for no ie I, N ~μ M^

Let M* = 0 ({iV}{M,: i e /}). Clearly M* is a model of 2\ = f U
{(Vaj, y)[7xEy-+ 7 ^ϊ(», 1/)]}. Let ae \N\, and A - {α} U U {\Mi\iieI}.
Clearly, |A| = χ.

Let Γ1 be the set of subformulas of formulas e 7\. By Theorem 1, it
follows that Λf* has a .Γ-elementary submodel JV*, | iSΓ* | ID A, Z =
[| JV* || = (the power of N*), such that every equivalence class (of E) in
iV* has exactly 1 elements. Clearly, iV* = φ ({iVJ U {M*: i G I}), and for
every i, Nu Mi are models of T, and they are non~μ-almost-isomorphic.
So N1 contradicts the definition of {M{: ie I}, thus proving Lemma 6.

This ends the proof of Theorem 2.
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MINIMAL FIRST COUNTABLE HAUSDORFF SPACES

R. M. STEPHENSON, JR.

If & is a property of topologies, a ^-space (X9^
r~) is

called a ^-minimal space if there exists no ^-topology on
X properly contained in ^ . Throughout the following,
3ίf — first countable and Hausdorff and ^ = first countable
and completely Hausdorff (a space X is called completely
Hausdorff if the continuous real valued functions defined on
X separate the points of X).

In this paper we give examples of Jg^-minimal ^-spaces
that are (i) not regular and (ii) regular but neither completely
regular nor countably compact.

Two other results obtained are the following, (a) Every
locally pseudocompact zero-dimensional ^g^-space can be
embedded densely in a pseudocompact zero-dimensional Sίf-
space, (b) Let & — ̂ , completely regular Jg^, or zero-
dimensional 3(f, and suppose that X is a & -space such that
for every & -space Yand continuous mapping f:X-> Y, f is
closed. Then X is countably compact.

N will denote the set of natural numbers, and C(X, Y) will
denote the family of continuous mappings of X into Y. For definitions,
see [4].

1» An embedding theorem and some examples* Recall that a
o

space (X, J7~) is said to be semiregular if {T\Tej^~} is a base for
^ 7 If (X, ̂ ~) has a property ^ , then (X, _$H is said to be &>-
closed provided that it is a closed subset of every & -space in which
it can be embedded.

For many properties ^ , it is known that ^-minimal and in-
closed spaces are closely connected. For the case & — £$f, the follow-
ing two results, established in [11], will be used below. An <^-space
X is ^g^-closed if and only if every countable open filter base on X
has nonempty adherence. An ^g^-space is J^-minimal if and only
if it is semiregular and ^g^-closed.

We shall now describe constructions which can be used to densely
embed certain ^-spaces in ^f -minimal (.^-closed) ^-spaces. As
special cases, we shall obtain examples with the properties mentioned
in the introduction. First some terminology is needed.

A space X is said to be locally pseudocompact (W. W. Comfort)
if every point of X has a pseudocompact neighborhood.

819
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A filter base j^~ is said to be pseudocompact if for every F e ^
and G e ̂  F — G is pseudocompact. ^ is called zero-dimensional
if the sets belonging to it are open- and-closed.

Notation. (B. Banaschewski). Let ̂ f be a family of open filter
bases on a space X. Let {p{^~)\^~ e ̂ Γ} be a new set of distinct
points, and let X(ΛP) be the space whose points are the elements of
X \J {p(^~)\^~ e ̂ } and whose topology has as a base sets of the
form F* = V U {p{^)\V contains some member of ^r}, where V is
any open subset of X.

THEOREM 1.1. Let X be an Sίf-space containing a point a such
that X-{a} is a zero-dimensional locally pseudocompact space. Let
~4^ == {^\^ is a free, countable, pseudocompact, zero-dimensional
filter base on X}9 and denote by ^// a maximal subset of <yK such
that whenever JFΊ & e ̂ f with j ^ Φ &, then there exist disjoint
sets Fe^ and Geg 7 .

Then the space X(^f) is an £έf-closed c^-space in which X is
embedded as a dense subset, and X{^^€) is J%f-minimal if and only
if X is semiregular.

Proof. X(^£) is clearly an <^-space. Furthermore, it follows
from the hypothesis that each point of X{^) — {a} has a fundamental
system of feebly compact open neighborhoods. Thus the characteristic
functions of open-and-closed subsets of X{^€) separate the points of
X(^T) and XP/T) is a <if-space.

Suppose that J^ is a countable open filter base on X{^) and
no point of X is an adherent point of ^ 7 A slight modification of
the proof of Lemma 2.17 in [11] shows that there exists a free,
countable, pseudocompact, zero-dimensional filter base g Ό n l which
is stronger than the filter base &~\X. By the maximality of
there exists ^T* e ̂  with G Π Hnonempty for all G e gf and He
Thus p{3ίΓ) is an adherent point of

To check semiregularity, it suffices to observe that if

aeV=IntxClxV, then F* =

THEOREM 1.2. Let X and a be as in Theorem 1.1, and suppose
that {Vn\neN} is a fundamental system of open neighborhoods for a
such that Vί = X and each VnZ)ClxVn+ι. Let ^ be a maximal
family of free, countable, pseudocompact, zero-dimensional filter bases
on X such that (a) whenever ^ , gf e ^ with ^ Φ S ,̂ then there
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exist disjoint sets F e J^" and GeSf, and (b) for every ^~ e ^ there
exists ne N such that U - ^ c Vn — Vn+1.

Then X(^/S) is a regular ^-space that is £$f-minimal and
contains X as a dense subspace. If each Vn is closed in X, then
X{^€) is zero-dimensional.

Proof. Since {p{^)\^ e ^£) — {a} is a closed discrete subset
of X{^T) - {α}, it follows from (b) that ClZwVt+ι = Vt+1UClxVn+1.
Thus X(^#) is regular, and if each Vn is closed in X, then X(^f)
is zero-dimensional.

The proof that X(^/f) is feebly compact is similar to the correspond-
ing proof given for Theorem 1.1-one just notes that for some n,
^\{ClxVn — ClxVn+1) is a filter base, and so ^ can be chosen with
the property that U 2^ c Vn — Vn+1.

REMARK 1.3. In case the set / of isolated points of X is a dense
subset of X, ^f can be defined as follows. Let g7 be a maximal
family of countably infinite subsets of I such that (a) the intersection
of any two members of if is finite, and (b) each member of g7 is a
closed subset of X (for Theorem 1.2, a closed subset of some
Clx{Vn - Vn+1)). For each Ee & let ^{E) be the complements in E
of finite subsets of E. Take «̂ T = {^(E)\Ee gf}.

REMARK 1.4. For the case X = N and ^f infinite, the space
is due to J. Isbell (see [5, 51]).

REMARK 1.5. In general, the space X(^£) is not countably
compact and hence not weakly normal, for each {p{^)\^" e ^£\ — VI
is a closed discrete subset of

COROLLARY 1.6. Every locally pseudocompact zero-dimensional
-space can be embedded densely in a pseudocompaet zero-dimensional
-space.

EXAMPLE 1.7. For the following X, the
Jg^-minimal ^-space that is not regular.

space X{^£) is an

Let T = {0}\j{l/neN}9 with the usual topology, choose a point
a not in the product space Nx T, and let X = {a} U (Nx T), topologized
as follows: every open subset of iVx T is open in X; a neighborhood
of a is any set of the form Vn = {a} U {(x, y) e X\x ^ n and 1/y is an
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even integer}, ne N. (X is homeomorphic to E — {6}, where E is as
in [13, p. 268].)

One can take ^€ to be a maximal family of infinite subsets of
X — CIV1 such that the following hold:

( i ) For all M, M' e ^£, MΦ W implies Mf] Mr is finite;
(ii) For all J l ί e y / and n e N, Mf] ({n}x T) is finite.

EXAMPLE 1.8. For the following X, the space X{^€) (of Theorem
1.2) is an ^g^-minimal ^-space that is regular but not completely
regular.

Let Y be the set of ordinal numbers less than the first uncounta-
ble ordinal, with the order topology, let M be the set of limit ordinals
in Y, and denote Y - M by / . Let Z = /x{0}U YxN, topologized
as follows: YxN has the product topology, and YxN is open in Z;
a neighborhood of a point (i, 0) e Z is any subset of Z that contains
(ΐ, 0) and all but finitely many elements of {i} x N. Let L and R
denote the product spaces Zx{l} and Zx{2}, and set U — L{jR, with
the weak topology generated by {L, R}. Let S be the relation on U
defined by the rule: (x, ί, j)S(y, k, n) if (a) x = y, ί = fc, and j — n,
or (b) x = y e M and i = Jc. Denote the quotient space U/S by T.
We shall continue to use the symbols (x, i, j) for the points of T.

n

On the product space TxN define (t, n) W{t', n') if (a) t = t' and
= nr, or (b) t = (a;, 0, i), f = (x, 0, i')> and v! — n = j1 - i ' = 1 or

n — n' = j ' — j = 1. Let Fbe the quotient space (TxN)/W. Choose
a new point a and let X = F u M , topologized as follows: every open
subset of V is open in X; a neighborhood of a is any set of the form
Vn = {α} U {(£, m) e Ffm ^ w}, ne N.

It is not difficult to see that X is a first countable regular space
whose isolated points are dense, and X — {a} is zero-dimensional and
locally compact. X is not completely regular, because for every
f G C(X) there exists me Y such that / is constant on

{(a?, 0, j , n)\x ̂  m, i = 1 or j = 2, and ne N} .

Thus V2, for example, contains no zero set neighborhood of α.

REMARK 1.9. The construction above is a modification of
TychonofΓs regular but not completely regular space [12].

In [7] F. B. Jones has constructed a ^-space that is not com-
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pletely regular but that is a Moore space. His space cannot be used
here, however, because it is neither locally pseudocompact nor zero-
dimensional.

In the literature there are many less messy examples of ^-closed
or J^-minimal spaces that are not regular; however, the author does
not know of any ^-minimal space appearing elsewhere that is not
regular (or completely regular).

REMARK 1.10. If one glues together (as in [2]) two copies of the
space in Example 1.8, then one gets an example of a regular gίf-
minimal space that is not completely Hausdorff.

2* ^-minimal spaces and closed mappings* If ^ denotes
any one of the usual separation properties, it is known that every
^-minimal completely Hausdorff space is compact (e.g., see [6]).
Moreover C. T. Scarborough [9] has observed that a completely
Hausdorff-minimal space is compact.

One might then expect if-minimal spaces to be well behaved, to
be, say, at least countably compact. Of course, IsbelΓs example or
Mrόwka's [8] (or ours) shows that this is not the case. The following
characterization theorems may, therefore, be of interest.

DEFINITION. (H. E. Hayes) An open filter base ^ on a space X
is said to be completely Hausdorff provided that for every x e X, if x
is not an adherent point of J^~, then there exist fe C(X) and F ej^
such that f(F) = 0 and f(x) = 1.

Using usual techniques, one can prove the following.

THEOREM 2.1. Let X be a ^-space. The following are equivalent.
( i ) X is ^-closed.
(ii) Every countable completely Hausdorff filter base on X has

an adherent potnt.
(iii) For every c^-space Y and feC(X, Y),f(X) is if-closed.

In order to obtain a if-analogue of Theorem 2.4 of [11], we need
a second definition.

DEFINITION. An open filter base j ^ ~ on a space X is said to be
almost completely Hausdorff if there exists peX SΘ that for every
xeX — {p}, if x is not an adherent point of ^~, then there exist
feC(X) and Fej?~ such that f(F) = 0 and f(x) = 1.
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THEOREM 2.2. Let X be a ^'space. The following are equivalent.
( i ) X is ^-minimal.
(ii) Every countable completely Hausdorff filter base on X that

has a unique adherent point is convergent.
(iii) X is semiregular, and every countable almost completely

Hausdorff filter base on X has an adherent point.

The proof is somewhat similar to the proofs needed for Theorems
2.4 and 2.9 in [11].

The next result, to be contrasted with (iii) of Theorem 2.1, is a
partial converse to the following well-known theorem: If X is a
countably compact space, Y is an .^"-space (or a space of the type
E1 studied in [1]), and f eC(X, Y), then / is closed.

We shall call an open filter base J^ on X completely regular if
for each F G ^ there exist G e ^ and feC(X, [0, 1]) such that /
vanishes on G and equals 1 on X — F.

THEOREM 2.3. Let & denote either completely Hausdorff, com-
pletely regular, or zero-dimensional, and suppose that X is a ^-space
which is also an S^f-space. The following are equivalent.

( i ) X is countably compact.
(ii) For every ^ίf-space Y and f eC(X, Y), f is closed.
(iii) For every έ^-space Y that is an ^f-space and f e C(X, Y),

f is closed.
(iv) For every closed subset C of X and every countable 3?-filter

base ̂ ~ on X, if ^\C is a filter base and if n J^~ = Γ){F\FeJ^},
then there is a point ceC which is in

Proof, (i) => (ii) is known, (ii) ==> (iii) is obvious. A proof not
too different from one in [3] shows that (iii) » (iv). We shall prove
that (iv) => (i) for the case & = completely Hausdorff.

Let us suppose then that X is a ^-space which contains a
countably infinite closed discrete subset C.

Consider a point ceC. Since X is completely Hausdorff and
C — {c} is countable, there exists / e C(X) for which f(c) £ f(C — {c}).
Since C — {c} is a closed subset of X and / is closed, we can choose
flfeC((-oo,oo)) with g(f(c)) = 1 and g(f(C - {c})) - 0. Set hc = gof.

Let ^ be the family of all finite intersections of

{h7ι(- 1/n, l/n)\neN and ceC}.
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Then it is easy to see that J^ is a countable completely regular (and
hence completely Hausdorff) filter base on X, that Π ^ = Γ){F\Fe J^},
and that j^\C is a filter base. On the other hand, one also has
Cf] ΠJ^ = φ. This contradicts (iv).

REMARK 2.4. There exists an i^-space X that is not countably
compact but which has the property: for every Hausdorff space Y
and feC(X, Y), f is closed. See [3] and [14].
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THE QUOTIENT ALGEBRA OF A FINITE VON
NEUMANN ALGEBRA

MASAMICHI TAKESAKI

We will prove the following: Let M be a finite von
Neumann algebra with center Z and A a von Neumann
subalgebra of Z. Let Ω be the spectrum space of A and
identify A with C(Ω). Let ε be a σ-weakly continuous linear
map of M onto A such that ε(x*x) = ε(a%c*) ^ 0 for every
xeM, e(ax) — aε(x) for every a e A and xeM, ε(l) = 1 and
ε(x*x) Φ 0 for every nonzero xeM. For each ωeΩ, let mω

denote the set of all xeM with ε(x*x)(ω) = 0. Then mω is a
closed ideal and the quotient C*-algebla M/xnω is a finite
von Neumann algebra. Furthermore, if πω denote the
canonical homomorphism of M onto Λf/m», then πω(N) is a
von Neumann subalgebra of M/mω for every von Neumann
subalgebra N containing A.

In [8], [3] and [5] it was shown that the quotient C*-algebra of
a finite von Neumann algebra by any maximal ideal is actually a finite
factor. This led us to the algebraic reduction theory for finite von
Neumann algebras, which is free from the separability restriction in
the direct integral reduction theory. In this paper we will show that
the above result still holds for certain ideals, not necessarily maximal.
Namely, we will give a straightforward proof for the following.

THEOREM. Let M be a finite von Neumann algebra with center
Z and A a von Neumann subalgebra of Z. Let Ω be spectrum space
of A and identify A with C(Ω). Let ε be a o-weakly continuous
linear map of M onto A such that ε(x*x) = ε(xx*) ̂  0 for every
xeM, ε(ax) — aε(x) for every aeA and xeM, ε(l) = 1 and ε(x*x) Φ 0
for every nonzero xeM. For each ωeΩ, let mω denote the set of all
xeM with ε(x*x)(β)) = 0. Then mω is a closed ideal and the quotient
C*-algebra M/mω is a finite von Neumann algebra. Furthermore, if
πω denote the canonical homomorphism of M onto M/mω, then ττω(N)
is a von Neumann subalgebra of M/mω for every von Neumann sub-
algebra N containing A.

Before going into the proof, we observe that there exists such a
map ε if Z is σ-finite. Since M has the b| -operation, it suffices to
show that there exists a σ-weakly continuous faithful projection of norm
one from Z onto A. If Z is σ-finite, then Z admits a faithful normal
state φ. Considering the cyclic representation of Z induced by φ, we

827
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may assume that Z acts on a Hubert space Sίf containing a vector
ξ0 such that (xξ01 ξ0) = <p(x), xeZ. Let e be the projection of έ%f
onto [Af0], Then e is an abelian projection in A' with central sup-
port 1. Note that the center of A' is A itself. Then there exists
an isomorphism θ of eA'e onto A such that 0(#β) = x for every ί c e i
because A is the center of A'. Put ê (a ) = ^(βxe) for every x e Z.
Since β is not orthogonal to any nonzero projection in Z, ez has the
required properties. As the composed map of this εz and the fc|-
operation in M, we get a desired map ε. Hence, the situation in the
theorem is always presented for any von Neumann subalgebra A of
Z if Z is σ-finite.

The proof of theorem. We will prove the assertion for the sub-
algebra N which implies immediately the former assertion.

Let τω(x) = ε(x)(co), x e M. Then τω is a finite trace of M with
the left kernel mω. Let {TΓ, ^g^, ς0} be the cyclic representation of M
induced by τω. Since π has the kernel mω, π induces a faithful re-
presentation π of the C*-algebra M/mω. Since π o πω(N) = ?r(iV), it
suffices to show that 7r(iV) is a von Neumann algebra. Since the
functional τω(x) = (xξo\ξo), xeπ(M)", is a faithful trace on the von
Neumann algebra π(M)", ξQ is a cyclic and separating for π(M)n.
Let SN denote the unit ball of JV. Then by Kaplansky?s density
theorem π(8N) is strongly dense in the unit ball S% of the von
Neumann algebra N = π(N)" generated by π(N). Since the map
x 6 π(M)" —> xξ0 is injective, if π(SN)ξ0 = S]£o, then we have π(SN) =
S%; hence JV - π(N)o

Therefore, we shall prove that π(SN)ξQ is complete. Let {xn} be a
sequence in SN such that

lim \\π(xn)ξ0 - π(a?w)f0|| = 0 .

n,m—>oo

Considering a subsequence of {a?ft}, we may assume that

II π(xn)ξ0 - π(xn+1)ξ \\< 2~n , n - 1, 2, . . . .

In other words,

ε((xn ~~ xn+1) * (xn - xn+1))(ω) < 4~n , π = 1, 2, . . . .

Let {Un} be a decreasing sequence of neighborhoods of ω in Ω such
that

for every cr e Z7ft, ̂  = 1, 2, . For each n = 1, 2, , let βΛ be the
projection of A corresponding to the closure of Un. Then en{ω) = 1
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for n = 1, 2, . Putting yx = x, and yn = βnα?w + (1 - O2/w-i for
n = 2, 3, by induction,

?o = π(a»)£o , rc = 1, 2, .

Now, for any normal state <ρ of A, put τψ(x) — φ o e(x), xeN. Then
τφ is a normal finite trace of N with the support s(φ) e A, where s(φ)
means the support of φ in A. By the inequality:

Tφ((yn - Vn+l) * (Vn ~ Vn+l)) = Ψ ° S((Vn ~ Vn+l) * (Vn ~ 2/ +i)) < 4 ^ ,

^ = 1,2, •••, {yns{φ)} converges σ-strongly to yφeSN because the σ-
strong topology in SN Π Ns(φ) is induced by the metric d defined by
d(x, y) = τφ((x -y)*(x- y))u\ x,yeSNf) Ns(φ). Let {<Pi}i&I be a

maximal family of normal states of A with orthogonal supports.
Then ΣtieMΨi) = 1. Let y = Σ ί e / ^ . e S * . Since d/ns(y.)} converges
σ-strongly to s(^<)i/ = yφ. for each i e /, {yn} converges σ-strongly to
y. Now we have, by the triangular inequality,

e((yn - yn+P) * (yn - ^ + P ) ) 1 / 8 ^ *2e((i/ fc - %+ ι) * (y
k

for w, P = 1, 2, . Hence we have

e((y, - V) * (y. - y)f<% = lim ε((yn - yn+p) * (y. - y%+,)yι* £ 2-+ 1 ,

so that

li 7r(^)ί0 - π(y)ξ0 ί| = e((»n - y) * ( ^

hence

lim π(yn)ξ0 =

Therefore, the given Cauchy sequence {τϋ(xn)ξ0} in π(SN)ξQ converges to
π(y)ξQ e π(SN)ξ0' Hence π(SN)ξ0 is complete, hence closed in έ%f. This
completes the proof.

By [7], we should remind that if M is a von Neumann algebra of
type Πx and if ω is not an isolated point of Ω then M/mω does not
admit nontrivial representation on a separable Hubert space even if
M does have faithful normal representation on a separable Hubert
space.

Suppose now A is σ-finite and ω is not an isolated point of Ω.
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Suppose that any nonzero projection eeN majorizes a projection feN
such that ε(/) = s(e — / ) . Then we claim that the von Neumann
algebra πω(N) does not admit a faithful separable normal representa-
tion.

Let {en} be a decreasing sequence of projections in A converging
<7-strongly to zero such that en(ω) — 1 for n— 1, 2, •••. Such a se-
quence does exist by the nonisolatedness of o) and the σ-finiteness of
A. Let fn = en — en+ί for n = 1, 2, . By the assumption for JV,
there exists orthogonal projections p1Λ and p?t2 in iV such that fn —
ί>Γ,i + PΓ,2 and ε(pffl) = ε(p*2) = J/ n . Suppose we have found projections
{p^: i = 1, . . , fc,./ = 1,2, - , 2*} such that

(1) for fixed i, {plf. j = 1, •••, 2*} are orthogonal;
(2) V™ — V™ ~h V™ •'

{*) ε(Pi,j) = * Jn

By the assumption for N, we can find orthogonal projections {Pi+UJ :
j =1,2, « ,2ί+1} such that

For each integer i, put

2n

Then we have u\)k = / Λ and for different ix and i2, un>hun>i2 is the
difference of two orthogonal projections p and q such that e(p) =
«(«) = έ/Λ; hence ε(wΛfίlwΛ,i2) = 0 if ^ ^ i2.

To each real number s we associate a sequence {i8,n} of integers
such that

lim hi± = s .

If s =5̂  ί, there is an π0 such that i8>w Φ it>n for every w ^ ^ 0 . Put
oo

us = y\ un i
n = l

Then we have ε(usut)(l — eWo) = e(usut). Therefore we have

7«(wϊ) = 1, ^ω(^ s^ί) = 0 if s Φ t .

Therefore {π(ws)f0} ^s a continuum of orthogonal vectors in [π(N)ξQ].
Therefore, the standard representation of the von Neumann algebra
πω(N) is not separable. Thus πω(N) does not admit a faithful normal
separable representation.

Now, let A and B be two abelian von Neumann algebras with
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no minimal projections. Let C be the tensor product i ® δ o f 4 and
B. Then A and B are regarded as subalgebras of C. If B admits a
faithful normal state ψ, then there exists a faithful normal projection
ε of norm one of C onto A defined by

= O, φ >

for every φeA*. This map has the property:

ε(α® 6) = 9>(δ)α, α e 4 , 6 € β .

If A is ί7-finite, then C/mω is an abelian von Neumann algebra, with
no separable faithful normal representation. It is easily seen that the
map πω is σ-weakly continuous on B; hence πω{B) is a proper von
Neumann subalgebra of C/mω if B has a faithful separable normal
representation. Therefore, the pathology that the component algebras
are much larger than the synthetic algebra does oocur even in the
abelian case.
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BENJAMIN B. WELLS, JR.

It is known from the work of Bade and Curtis that if 5ί
is a Banach subalgebra of C(Ω), Ω a compact Hausdorff space,
and if Ω is an F-space in the sense of Gillman and Hendriksen
then % = C(Ω). This paper is concerned with the extension
of this and similar results to the setting of Grothendieck
spaces (G-spaces for short). An important feature of the
extension is that emphasis is shifted from the underlying
topological structure of Ω to the linear topological character
of C(Ω).

As a corollary we show that if Ωt and Ω2 are infinite compact
Hausdorff spaces, then Ωγ x Ω2 is not a G-space. Consequently if Ω is
a G-space then C(Ω) is not linearly isomorphic to C(Ω x Ω).

If A is a commutative Banach algebra whose spectrum is a totally
disconnected G-space, a second corollary of our extension is that the
Gelfand homomorphism is onto. This establishes for G-spaces a result
due to Seever for iV-spaces.

Two definitions of G-space are to be found in the literature.
(A) A Banach space X is a G-space if every weak-* convergent

sequence in X*, the dual of X, is weakly convergent.
(B) A compact Hausdorff space Ω is a G-space if C(Ω) is a G-space

in the sense of (A).
Unless otherwise noted we shall accept (B) as our definition.

It is known from the work of Seever [7] that if Ω is an i^-space,

i.e., if disjoint open Fσ subsets of Ω have disjoint closures, then Ω

is a G-space. A result due to Rudin [3] states that if Ωγ and Ω2 are

infinite compact Hausdorff spaces then Ωλ x Ω2 is not an F-space.

Corollary 2.6 is an extension of this to G-spaces. Although an example

of a G-space which is not an F-space is given in [7], no necessary

and sufficient topological characterization of the G property is known.

1* Preliminaries* Let M(Ω) be the space of regular Borel measures

on Ω equipped with the total variation norm. A sequence {μn} in

M{Ω) converges for the weak-* topology if for each / in C(Ω), the

space of continuous complex valued functions on J2, the sequence

{£*»(/)} is convergent. Weak convergence of [μn] means convergence

of {Ύ(μn)} for every 7 in M*(Ω), the dual of M(Ω). If Ω is any set

l^Ω) will denote the Banach space of point mass measures on Ω with

the total variation norm.

A Banach subalgebra (subspace) 21 of C(Ω) is a subalgebra (subspace)

833
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of C(Ω) under the pointwise operations and is a Banach algebra (space)
such that the embedding 21—>C(Ω) is continuous. Si is said to be
normal if for each pair Fί9 F2 of disjoint compact subsets of Ω there
is an fe Sί such that / = 1 on F1 and / = 0 on F2. Following [2] we
call SI ε-normal if for each pair F19 F2 of disjoint compact subsets of
Ω there exists an /eSί satisfying

(i)
(ii) \f(ω)\<ε,ωeF2.

If Ωy. and Ω2 are compact Hausdorff spaces the projective tensor
product V = C(Ωj) 0 C(Ω2) is the set of all functions of the form

a n d g{(y) e C(Ω2) s u c h t h a t Σ Γ = u II f t I I - I I Λ I I - < ° ° Ίf h e V t h e n

|| Λ If,- = i n f { Σ II f i I I - II ft I I - : Λ = Σ Λ f t } .
U = i

Two Banach spaces X1 and X2 are isomorphic if there is a one-
to-one continuous linear map from X1 onto X2. If X2 is a closed
subspace of Xx, it is said to be complemented in X1 if there exists a
closed subspace Y of Xx such that X2 + Y = Xx and X2Π Y = {0}.
We write X, = X2 © Γ.

If Z) is a discrete space, C(D) will denote the bounded continuous
functions on D. It is well known that C(D) is isometrically isomorphic
to C(βD) where βD is the Stone-Cech compactification of D. A com-
pact HausdorfE space is totally disconnected if there is a basis for the
topology consisting of open and closed neighborhoods.

2* We shall need to recall here a criterion due to Grothendieck [5]
for relative weak compactness in M(Ω). Namely, a bounded sequence
{μn} in M(Ω) is relatively weakly compact if and only if for every
sequence {0J of pairwise disjoint Borel sets lmii ̂ μnφi) = 0 uniformly
in n. By the Eberlein Smulian theorem this is equivalent to every
subsequence of {μn} having a weakly convergent subsequence.

LEMMA 2.1. If Ω is a G-space and K is a closed subspace of Ω,
then K is a G-space.

Proof. Suppose {μn} in M{K) is weak-* convergent. One may
regard {μn} as a weak-* convergent sequence in M(Ω). It is therefore
weakly convergent as a sequence in M(Ω), and so by the Hahn-Banach
Theorem it is a weakly convergent sequence in M(K).
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LEMMA 2.2. Let Ω be a G-space and X a dense Banach subspace

such that X Φ C(Ω). Then for every M > 0 there is a measure μ with

no atomic part such that \\μ\\^>M and sup{| μ(f) \ :fe X, \\f\\Σ ^ 1}^1.

Proof. We shall write μa for the atomic part of μ and μc for the
continuous part. By a well known theorem of Banach there is a
sequence {μn} of measures such that \\μn\\^> n and sup

{\μ.(f)\:feX,

for each n. Since X is dense in C(Ω) setting vn = μj\\μ»\\ we have
lim%ι^ = 0 weak-* and hence lim%v% = 0 weakly since Ω is a G-space.
The natural projection p: M(Ω) —* lx(Ω) given by pμ — μa is continuous
and hence weakly continuous. Hence lim%v%,α = 0 weakly. Since in
l^Ω) weakly convergent sequences are norm convergent, it follows that
lim Λ | | i ; n f α | | = 0. Thus for an appropriate sequence of scalars {cn} we
have lim f t | |cnv f t f β | | = oo and

:feX,

for every n.

THEOREM 2.3. Let Ω be a G-space and let X be a dense Banach

subspace of C(Ω). Then there exists a finite open covering U19 •••, Un

of Ω such that X\Ut = C(Ui), 1 £ i ^ n.

Proof. From the compactness of Ω it suffices to show that each
point p of Ω has a neighborhood Uv such that X\ Up = C(UP). Suppose
this fails for some p, and choose U1 a neighborhood of p. Let X1 denote
the quotient space of X by all functions in X vanishing on Ό^
Applying Lemmas 2.1 and 2.2 it follows that there is a regular Borel
measure μ1 with no atomic part such that \\μ^\\ >̂ 1, supp μt S Ux and
s u c h t h a t \μx{f)\ ^ \\f\\Xί £ \\f\\x f o r e v e r y feX.

From the regularity of μx we may choose open U2 g ί/Ί, p e U2

such that iμ.Kϋ, - U2)> 1/2 Wμ^. Since X\U2 Φ C(U2) we may choose
in the same way a μz with no atomic part such that supp μ2 £ ϋ29

| |All ^ 2 and \μ2(f)\ ^ \\f\\x for all feX.

Continuing in this fashion, define inductively a sequence of
measures {μn} with no atomic parts such that \\μn\\ ̂  n, \μn(f)\ ^ il/llx
for every feX, supp μn s Un and | ^ 1 ( ^ - Un+1)> 1/2 | | ^ | | .

Setting vn = A/I I Λ 11 w e s e e limn^« — 0 weak-* from the density
of X. However, since \vn\ (Un — Un+1)>l/2 for each n9 {vn} is not
weakly convergent by the Grothendieck criterion. This contradiction
establishes the theorem.

REMARK. Theorem 2.3 is the sharpest result in the sense that
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for every compact Hausdorff space Ω there is a dense Banach subspace
X of C(Ω) such that X Φ C(Ω). By a result of [8] (corollary 3.2 page
201) there are closed subspaces Y, W of C(Ω) such that Y + W is
dense in C(Ω) but Y + W Φ C(Ω); in the terminology of that paper
every C(Ω) contains a quasi-complemented uncomplemented subspace.
Setting X = Y 0 W we have the result.

Our next theorem is an extension to G-spaces of a result of [2].
The work is all done by the following:

LEMMA 2.4. [2] Let Ω be a compact Hausdorff space, and let Sϊ be
a Banach subalgebra of C(Ω) such that

( i ) 21 is ε-normal for some ε < 1/2,
(ii) There is an open covering UΊ, •••, Un of Ω such that

Then SI - C(Ω).
Combining this with Theorem 2.3 and the remark that density

implies ε-normality we obtain:

THEOREM 2.5. Let Ω be a G-space, and let % be a dense Banach
subalgebra of C(Ω). Then 2ΐ = C(Ω).

REMARK. AS demonstrated in [2] ε-normality for some ε < 1/4 and
density of a Banach subspace of C(Ω) are equivalent in case Ω is an
i^-space. We do not know if "dense" may be replaced by "ε-normal"
in Theorem 2.5.

COROLLARY 2.6. If Ωx and Ω2 are infinite compact Hausdorff spaces
then Ωx x Ω2 is not a G-space.

Proof. We need only take 21 = Cψύ ® C(Ω2) and note that 81 is a
dense Banach subalgebra of C(Ωι x Ω2). (Sί happens to be normal as
well.) But it is well known that 31 Φ C(Ω1 x Ω2).

Let X± and X2 be Banach spaces such that X2 is a continuous
linear image of Xx. It is an easy consequence of the Hahn Banach
theorem that if X1 is a G-space in the sense of definition A, then so
is X2. Consequently if Ω is a G-space then C(Ω x Ω) is not even a
continuous linear image of C(Ω). This is contrasted with a result of
Milutin [6, p. 42] which states that if Ω1 and Ω2 are uncountable
compact metric spaces then C(ΩX) is isomorphic to C(Ω2). In particular
for such Ω, C(Ω) is isomorphic to C(ΩxΩ).

These notions may be of use in solving complementation problems.
Suppose that X2 is a complemented subspace of Xx. Then if Xx is a
G-space in the sense of definition A, so is X2. For example, if D
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denotes an infinite discrete space, C(βDxβD) may be viewed in a
natural way as a closed subspace of C(DxD). Since β(DxD) is a
G-space, by the above remarks C(βDxβD) has no complement in
C(DxD).

COROLLARY 2.7. [cf. [7] corollary 2 p. 278]. Let A be a com-
mutative Banach algebra whose spectrum Ω is a totally disconnected
G-space. Then the Gelfand homomorphism is onto.

Proof. By the Silov idempotent theorem the image of A in C(Ω)
contains the characteristic functions of open closed sets. Hence A is
a dense Banach subalgebra of C(Ω) and the theorem applies.

REMARK. An interesting fact suggested by the proof of Theorem 2.3
is that if Ω is a G-space then no normal subalgebra A of C(Ω), closed
in the uniform norm, is such that C(Ω)/A has countable (infinite)
dimension. To see this suppose to the contrary that C(Ω)/A has
countable dimension. Recall that if A is a normal subalgebra of C(Ω)
such that every point p of Ω has a neighborhood Up such that
A\UP = C(UP) then A = C(Ω). Thus there is a point p e Ω such that
for every neighborhood Up of p, A\ Uv Φ C(UP). Since A contains the
constant functions, by a result of Glicksberg [4 p. 421] we may choose
μ1eA1,\\μί\\ = l such t h a t \μL\ (U?) > δ > 0 where Uf is a closed

deleted neighborhood of p. By regularity of μ1 we may choose a
neighborhood U2 of p such that U2 <Ξ U1 and \μt\ (U*)<δ/2. Again
we may choose μ2 e A1, \\μ2\\ = 1, such that \μ2\(U2*) > δ > 0. Continuing
in this fashion we get a sequence of measures {μn} e A1, \\μn\\ = 1, and
a nested sequence of neighborhoods of p, {Un}, Un+1 <Ξ Un such that
\μn\{Un— Un+1)>δ/2 for each n. By Grothendieck'e criterion no sub-
sequence of {μn} is weakly convergent. Since C(Ω)/A is separable, the
unit ball in AL is weak-* sequentially compact. Thus a subsequence
of {μn} may be found which is weak-* convergent and hence weakly
convergent. This contradiction completes the proof.

In [7] the following theorem is proved.

THEOREM 2.8. If Ω is an F-space, and if X is a normal Banach
subspace of C(Ω), then X — C(Ω).

Question [7]. In Theorem 2.8 can "F" be replaced by "G"? In
the terminology of that paper is every G-space an JV-space? The
following may be of help in giving an answer.

THEOREM 2.9. Let X be a G-space in the sense of definition A,
and let Y be a closed subspace such that X/Y is separable. Then Y
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is a G-space.

Proof. Let {yX} denote a sequence in Y*. It suffices to show that
if \imnyZ = 0 weak-* then {yt} has a subsequence {yXk} such that
limkyXk — 0 weakly. Let x* be any normpreserving extension of
yX to all of X. Since X/Y is separable, a sequence {wn} in X may
be found such that sp{wn} + Y is dense in X. By a diagonal argument
a subsequence {#* J of {#i} may be found such that {xlk} converges
on each member of {wn} and hence on sp{wn} + Y. Since {||#*J|} is
bounded, {xXk} is weak^ convergent in X and hence weakly convergent.
Thus UmkyXk = 0 weakly.

Finally the author would like to thank the referee for his helpful
suggestions, and in particular for the statement of Theorem 2.9.
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