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Suppose that S is a finite dimensional cancellative com-
mutative clan with E = {0,1} and that H is the group of
units of S. We show that if square roots exist in S/H, not
necessarily uniquely, then there is a closed positive cone T
in E* for some n and a homomorphism f: (T U o) X H— S
which is onto and one-to-one on some neighborhood of the
identity. T U <o denotes the one point compactification of 7',

K. Keimel proved in (6), and Brown and Friedberg independently
in (1), that if S/H is uniquely divisible, then it is isomorphic to 7'U o
for some closed positive cone 7. Brown and Friedberg went on to
show that if S is uniquely divisible, then S is isomorphic to the Rees
guotient ((T U ) X H)/(«c x H). What we do here is to weaken
their hypothesis to assume just square roots in S/H and conclude that
S is isomorphic to some quotient of such (7' U =») x H, which will be
a Rees quotient if square roots are unique in (S/H)\0, but in general
need not be Rees.! f((T U <) x 1) is a subclan of S and a local cross
section at 1 for the orbits of the group action H x S-— S (which equal
277 classes here), but an example shows that it need not be a full
cross section. Also, square roots exist (uniquely) in S if and only if
they exist (uniquely) in S/H and H.

The proof consists essentially of showing that the ingenious con-
structions of (1) can still be done under the weaker hypothesis, in a
sufficiently small neighborhood of H.

For basic information about semigroups, see (5), (8) or (9). The
real intervals (0, 1] and [0, 1] are semigroups under usual real multi-
plication; as in (5), a one parameter semigroup is a homomorph of
(0, 1], and we also define here a closed one parameter semigroup to
be a nonconstant homomorph of [0, 1].

The Lemmas (I)-(II]) are variations on standard themes so we omit
proofs. (See (1), (3), (4), B-3 of (5), (6} and (7).) Throughout this paper
let S be a clan with exactly two idempotents, a zero and an identity
denoted by 0 and 1 respectively.

(1) If R is a one parameter semigroup in S which 1s not con-
tained in H and is not equal to 0, then R U0 1s a closed one parameter
semigroup and an arc with endpoints 0 and 1. Let ¢:(0,1] — R be
the homomorphism that defines R; if v = ¢(t)e R and k =0, we write

! Keimel has concurrently proved a further generalization, by a different method,
assuming instead of cancellation that z X H —> 2H is one-to-one for all » near H.
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x® for ¢(t), and if x %« 0, 1, each y e R\0 equals &* for unique k.

(I1) If H is mormal and every element of S/H has a square root
in S/H, then for each xe S there exists a closed one parameter semi-
group in S intersecting Hux.

(III) Let T be a commutative uniquely divisible clan with group
of units H(T) and E = {0, 1}, and let V be a set containing a neigh-
borhood of 1 in T such that T\V 1is an ideal. If S is commutative
and ;' V— 8 is a continuous function such that '(V\H(T)) N H = ]
and '(xy) = ¥ (@) (y) whenever x,y, xy € V, then ' can be extended
to a homomorphism + on all of T by defining (0) = 0 and (2") =
(@) for each xe V and positive integer n.

The definition of independent family which follows agrees with
the algebraic independence used in [1] when H is trivial and W = S\0,
and that notion is due to Clark [2]. We include H in our definition
so that we do not have to handle the case of S with trivial H sepa-
rately first, and we define independence in neighborhoods of H rather
than in S in order to apply the concept effectively to a clan with
nonunique roots.

An independent family in S is a finite family {R,, ---, R,} of
closed one parameter semigroups in S such that there exists a neigh-
borhood W of H with the property that for every partition of the
set {1, .-+, n} into two nonnull disjoint sets A and B, this is true:

P{R}N(P(R)HN WC H.

We will also describe this situation by saying that {R, ---, R,) is
independent in W. We adopt the convention that if X =[], then
P; o {x;} =1, for ;s which are elements or subsets of S. S will be
called cancellative if z, y, z€ S and zy = xz + 0 implies ¥ ==z.

We will make frequent use of the following facts. F(V') denotes
boundary of V. Any neighborhood of H in compact S contains a
neighborhood V of H such that S\V is an ideal (A-3.1, (5)), and if V
is a set such that S\V is an ideal, then

0¢V,V=VH F(V)=F(V)H,

S\V*is an ideal if nonempty, and zyc V implies z, ye V. If J is a
closed ideal in compact S, shrinking J to a point gives a new compact
semi-group denoted S/J and called the Rees quotient of S by J, and
the natural map S— S/J is a homomorphism.

Part (i) of the lemma below is analogous to 1.4 of (1); part (ii)
shows that the homomorphisms ¢: S\0 — E™ and 8: S\0 — H constructed
in (1) can still be constructed here on a sufficiently small neighborhood
of H. Dim S means inductive dimension of S.
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LEMMA. Let S be a cancellative commutative clan with E = {0, 1}
and let W be a closed meighborhood of 1 such that S\W s an ideal.

(i) If {R, +-+, R} 1s an independent family in W, and if
By o m e h = XXy » o~ LW € W, where x;, x; € R; for each 1 and h, k' ¢ H,
then x; = x! for each © and h = h'; consequently dim S = n.

(ii) Suppose dimS < N or dim S/H < N and that S/H has square
roots. Then there exists a maximal independent family {R,, «-+, R,}
of closed one parameter semigroups in S, and a closed neighborhood
U of H may be chosen so that S\U is an ideal and if xe U, x satisfies
this condition.

(1) There exists a unique partition (4, B) of {1, ---, n} and
unique elements x;,€¢ R; and he H such that ¢e B whenever x;, =1
and o(P;c (@) = (Picg{z:hh e W.

Proof. (i) Since R; is a closed one parameter semigroup and
2; #+ 0, we may factor x; or 2} for each 7 and then commute and
cancel in the equality given to get 0 = P, {7} = (P {r:hh'h™" for
some partition (4, B) of {1, -+, n}. These points lie in W so by in-
dependence, r; = 1, hence x; = x!, for each 4, and thus A = b’ also.
There is a closed neighborhood V of 1 such that V* < W, and then
the multiplication function (B, N V) X «-« x (R, N V)— S is a homeo-
morphism so S contains an n-cell.

(ii) If dim S < N, then a maximal independent family exists by
(i). If dim S/H < N instead, S/H is cancellative since S is, so (i) can
be applied to S/H to get a maximal independent family in S/H; a
closed one parameter semigroup in S projects to a closed one parameter
semigroup in S/H by (I), and it is easy to see that an independent
family in S projects to one in S/H, so S can have no larger independ-
ent family than S/H does.

Now choose a maximal independent family {R,, -+, R,} in S, and
choose W smaller if necessary so that the R,’s are actually independent
in a neighborhood of H containing W3,

To prove the uniqueness assertion of (}), suppose that

o Plzd) = (Plohhe W and o P {oi}) = ( P {zhh'e W,

as described in (}). Then
(l_el: {xi})(ij; (k' = (i ePA'{x;})(i jePB (z)he We

for each i, collect into one term the x,’s with k& = 4, on each side,
and suppose there exists je AN B’;je A implies that the factor on
the left which is an element of R; is not 1, and it has to equal one
of the factors on the right by (i); therefore 5 has to be in A’ or in
B, because by independence an element of (R; N W?\1 cannot arise
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from multiples of elements of R;’s for i« 35. But je B implies j¢ A

and j ¢ A’ implies j ¢ B’, both contradictions. So AN B’ must be emp-

ty, similarly A’ N B is empty, hence (4, B) = (4’, B’). Now apply (i).
Now let R be any closed one parameter semigroup in S.

{R, Ry, -+, R}

is not independent in any neighborhood of H (where R and R, are
each counted if R = R, for some %), so there is a particular partition
(Ag, Bg) of {1, ---,n} such that T = RPN QH contains points arbitra-
rily near H in S\H, where P = P,.,{R;} and Q@ = P;.;,{R;}. T is
also a compact semigroup, so it contains a connected subsemigroup
from 1 to 0 (B-4.9, (5)). F(W) separates 0 and 1 in S, hence we
may select x,e R such that PN QHN F(W) == []. Every x = 2z,
in R satisfies ( /) since the complement of an ideal in R is connected
and {xe RlzPN QH < S\W} is an ideal of R. It follows that every
¥ = xp in RH satisfies (t) also.

If we can find a closed neighborhood U of H such that z,¢ U
for each closed one parameter semigroup R in S, then every ye U
lies in some RH by (II), U may be chosen smaller so that S\U is an
ideal, and then every yc U satisfies (t) by the preceding remark.
Suppose no such U exists, so there is a net (x;) of the x;’s clustering
at some element of H; since there exist only a finite number of par-
titions of {1, -.-, n}, we may suppose that for one particular partition
(4, B) and for each z, in the net, (A, Bz) = (4, B). Then, since
F(W) = F(W)H, any cluster point of (az) is an element of

PARIN (PARNHN F(W) ;

but this set is empty (by definition if A =[], and if 4 == [], by in-
dependence in W).

Euclidean n-space, denoted E", is a semigroup under vector ad-
dition with the origin as identity. If P* is the set of nonnegative
real numbers, N the set of negative real numbers, and juxtaposition
denotes scalar multiplication, a closed positive cone in E" is defined
to be a closed subsemigroup T of E* such that P* T T and NT N
T =10, ---,0). The one point compactification T U - of a nontrivial
closed positive cone T is a continuum and becomes a clan with exactly
two idempotents, a zero and an identity, when addition is extended
by defining 2z + c© = o + 2z = oo for each ze T U c, and such clans
are uniquely divisible (where the “nth root” of z would be (1/n)z since
the operation is addition).

THEOREM. Suppose that S is a commutative cancellative clan with
E = {0, 1}, such that every element of S/H has a square root in S/H.
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If dimS < N or dim S/H < N, then there is a closed positive cone T
wm K" and an onto homomorphism f:(T U ) X H— S which is a
homeomorphism of some meighborhood of the identity onto a meighbor-
hood of the identity in S. f maps (T U o) X 1 to a subclan T which

28 a local cross section at 1 for the natural projection homomorphism
S— S/H.

Proof. Let W, U and {R, -+, R,} be as in (ii) of the Lemma
and let x; ¢ R; N F(U) for each ¢. These x;’s will remain fixed through-
out the proof, and since x; # 0, 1, by (I) each element of R;\0 equals
x; for a unique nonnegative real number ¢. This together with (ii)
of the Lemma implies that for each x ¢ U, there are a unique parti-
tion (A, B) of {1, ---, n}, unique real numbers ¢, ---,¢,, and unique
he H such that x(P;., {xf}) = (Pi.s{xkihhe W and ie B if t; = 0; fol-
lowing the notation of (1), let ¢; =1 if e B and ¢; = —1 if 1€ A4,
let ¢(x) = (&t,, +++,&,t,), and let B(x) = h. Arguments just like those
in (1) show that ¢ x @ is a homeomorphism, if one uses at judicious
spots the facts that W is compact and that S\W is an ideal. Since
S is commutative, ¢ and g are homomorphisms as far as they go.

Let T = P*¢(U). We show next that ¢(U) contains a neigh-
borhood of the origin in 7 and that T is a closed positive cone in
Er. First, T = P*¢(F(U)) because each closed one parameter semi-
group in S intersects F(U), so T is closed in E"™ because in general
if A is closed in P* and S is compact in £ and does not contain the
origin, then AB is closed. For this same reason, [1, «o)¢(F(U)) is
closed, hence its complement in 7T is a neighborhood of the origin in
T and also is a subset of ¢(U) because ké(x) = ¢(2*) and x e U implies
x* e U, for k{0, 1). Since ¢(U) contains a neighborhood of the origin
in T and ¢ preserves multiplication on U, T is a subsemigroup of E".
To see that NT N T is the origin it suffices to prove that (—1)¢(U) N
#(U) is, so suppose z, 2" ¢ U and ¢(x) = (—1)e(x') = (¢, ++-, t,). Then
for some h, W € H, o(P;.,{xii}) = (P;ep{ziihhe W and 2'(P;.5{xli}) =
(P;e i {xhh’ € W. Substituting from the first equation into the second
and cancelling gives a'zh™ = k', hence =z, #' ¢ H, hence ¢(x) is the
origin as required.

Now define +: ¢(U) — S by +(z) = (¢ X 8)7'(#,1). « is a homeo-
morphism into and, if U is chosen small enough that ¢ is actually
defined on U? + preserves multiplication on ¢(U) also. T is uniquely
divisible so by (III), 4+ may be extended to a homomorphism of T
into S. Now define f: (T U «) x H—S by f(z,h) = y(2)h. f is a
homomorphism because - is and S is commutative, and it is a homeo-
morphism of ¢(U) x H onto U because there it equals (¢ x 8)~. (We
cannot use (III) to define f directly as an extension of (¢ x B)~', be-
cause H need not be uniquely divisible.) Since the image of f is a
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subclan of S which contains a neighborhood of H and since S is
divisible, f is onto. Therefore T"H = S so 7" — S/H is onto and the
rest is clear.

In a semigroup with zero, a nilpotent is a nonzero element some
finite power of which is zero.

COROLLARY. Let everything be as in the theorem.

(i) If square roots are unique in (S/H)\0 (but there could be
nilpotents) then f 1is one-to-one on the complement of f~'(0), hence f
induces an isomorphism from the Rees quotient (T U <o) x H)/f~(0)
onto S and also T' is a full cross section for H X S— S. If square
roots are unique in all of S/H (so there are no nilpotents) then
S70) = o x H, so S s tsomorphic to (T U =) X H)/(eo x H) {Theo-
rem 2.2 of (1)).

(ii) Square roots exist (uniquely) in S if and only if they exist
(uniquely) in H and S/H.

Proof. Let p: S— S/H be the natural map. If f(¢, h) = f(s, g) = 0,
then f(¢, 1)k = f(s, 1)g hence pf(¢, 1) = pf(s, 1). Uniqueness of roots in
(S/EH\0 implies pf(kt, 1) = pf(ks, 1) for all k=1 at least, and pf is
one-to-one near the identity by the theorem, hence kt = ks must be
true for %k sufficiently small. Therefore ¢t = s and cancelling f{¢, 1)
now gives h = ¢ also. The rest is clear.

ExampPLE 1. This was also discovered by D. Brown and M. Fried-
berg (and communicated orally to this author). It is a cancellative
commutative clan S with E = {0, 1} and trivial group of units, which
has no nilpotents and is divisible but not uniquely divisible; in fact,
any two distinct one parameter semigroups in S are independent near
1 and have no nondegenerate arc in common, but can intersect infi-
nitely. Thus S is not a Rees quotient of any compactified cone. The
author is indebted to Kermit Sigmon for the elegance of this descrip-
tion of the example.

Let T be the closed first quadrant of E2, let D be the closed
unit dise in the complex plane with usual complex multiplication, and
define g: TU o — D by g(z, y) = e "0+ and g(») =0. ¢ is a
homomorphism by (III), so S = g(T U o) is a clan, it has F = {0, 1},
is topologically a 2-cell, and is an egg-shaped subset of D with large
end at 1 and small end at —1/e. S is commutative, cancellative and
free of nilpotents since D is, has roots of all orders since 7' U <= does,
and square roots are not unique since ¢(1, 0) = #(0, 1) but #(1/2, 0) ==
$(0, 1/2).

S can also be visualized without the aid of D: there is a con-
gruence ~ on T U o such that S is isomorphic to (7'U =o)/~: it is
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the smallest congruence which identifies (0, 1) and (1, 0), and dividing
by it has the effect geometrically of rolling up 7 U o into a cone
with pointed end at <.

ExaMPLE 2. This will show that the subclan 7" of the theorem
need not be a full cross section for H orbits, i.e., 5# classes. Let
T U o be as in the previous example, let G be the circle group with
usual ecomplex number notation, and let @ be the product semigroup
(TU ) x G. We will twist the 57 class of (0,1, 1) and then identity
it with the 57 class of (1,0,1). Formally, let ~ be the smallest
closed congruence on @ which identifies (0,1,1) and (1,0, —1), let
S=@Q/~, and let f: @ — S be the natural projection. Thus if 4 is
the diagonal of @ x @, »p =[(0,1,1),(1,0, -1}, and ¢ = [(1,0, —1),
(0,1, 1)], then ~ is the smallest closed symmetric subsemigroup of
@ X @ containing p U 4, and pg ¢ 4 so this equals 4(I'(p) U I'(9) U 4).
Clearly [(0,1,1),(1,0,1)] is not in the semigroup generated by p U
g U 4, and I'(p) and I'(¢) have only one limit point, -, so this point
is not in ~, i.e., f(0,1,1) = f(1,0,1). On the other hand, the 5#
classes in S of these points are equal, because H = f(0 x 0 x G) is
the group of units of S and f(0, 1, 1) = f(1, 0, 1)/(0, 0, —1).

f is a homeomorphism on [0,1) x [0,1) X G, which is a neighbor-
hood of the identity, and we will show below that S is cancellative,
so this is exactly the situation of the theorem. However, if 7” denotes
JUT U ) x 1), T'— S/H is not one-to-one.

Interestingly, there actually is a full cross section semigroup for
the H orbits of this clan S; the problem in the above lies in the de-
finition of f—that is, in the choice of the independent closed one
parameter semigroups in S:

R, = f([0, »] x 0 x 1) and R, =f0 x [0, o] x 1)

are independent but do not themselves intersect in some of the H
orbits which they both go through. Rechoosing f so that R, actually
does intersect R, at the levels where @ — S collapses two H orbits
to one yields a subclan 7" of S which is isomorphic to S/H. In detail,
define ¢: @ — Q by g(x, ¥, 6¥) = (x, y, ¢’+*), let f' = fg, and let T =
J'((T U o) x1). To see that 7”7 — S/H is one-to-one, suppose

fg(xy Y, 1) = fg(x'9 y,y 1)fg(0y 07 6M) #0.

We will prove ¢ = 1. In g(z, y, 1) = g(2', ¥, ¢’) then we are done
because ¢ is one-to-one, so suppose g(x, ¥, 1) = g(«’, ¥’, €). f identifies
these points and not to 0 so for some =, ((¢(z, v, 1), g(«', ¥, €")) € 4p".
An arbitrary point of 4p” is of the form ((s, n +¢, "), (n + s, t, €?7"7))
for some s,t and ¢, so we conclude o' = 2 + n, ¥y = ¥y + n, ¢ = %,
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and ¢+ = givtnm | These imply €'Y+ = ¢, 50 ¢ = 1 as asserted.
From this it follows at once that 7" — S/H is one-to-one and in fact
that S is isomorphic to (T” x H)/{(e X H).

Now it is easy to show S cancellative, for it suffices to prove
that 7" is, so suppose fo(z,y, 1)f9(s, t, 1) = fo(z’, ¥', )fg(s, ¢, 1). It
follows that « + s+ n=a"+s and y-+t =9 +¢-+ n for some =,
hence © + n =o' and y = ¥’ + n. fo(x,¥y,1) = fg(@,¥’, 1) now is clear.

It seems at least possible that the technique used here for re-
choosing f might work in general, so that there is always a full cross
section semigroup for S— S/H when S is a homomorph of the direct
product of H and a closed positive cone.

It also seems reasonable to conjecture that the theorem is still
true with only H normal and S/H commutative, instead of S com-
mutative. Under these weaker conditions ¢ and @ still exist, but @
need not be a homomorphism unless the R;’s commute with one another
and with H; using Theorem VI of (5), it is possible to choose a maxi-
mal independent set in the centralizer of H, but the problem of choos-
ing the R;’s to commute with one another also remains unsolved.
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