Pacific Journal of
Mathematics

SOME NUMBER THEORETIC RESULTS

PAUL ERDOS AND ERNST GABOR STRAUS




PACIFIC JOURNAL OF MATHEMATICS
Vol. 36, No. 3, 1971

SOME NUMBER THEORETIC RESULTS

(In memory of our good friend Leo Moser)

P. ErDOs AND E. G. STRAUS

The paper first establishes the order of magnitude of
maximal sets, S, of residues (mod p) so that the sums of
different numbers of elements are distinct,

In the second part irrationalities of Lambert Series of
the form 3 f(n)/a; --- a, are obtained where f(n) = d(n), ¢(n)
or ¢o(n) and the a; are integers, a; = 2, which satisfy suitable
growth conditions,

This note consists of two rather separate topics. In §1 we
generalize a topic from combinatorial number theory to get an order
of magnitude for the number of elements in a8 maximal set of residues
(mod p) such that sums of different numbers of elements from this
set are distinct. We show that the correct order is ¢p/® although we
are unable to establish the correct value for the constant c.

Section 2 consists of irrationality results on series of the form
2f(m)/aa,-+a, where f(n) is one of the number theoretic functions
d(n), o(n) or ®(n) and a, are integers = 2. For f(n) = d(n) it suffices
that the a, are monotonic while for o(n) and @(n) we needed additional
conditions on their rates of growth.

1. Maximal sets in a cyclic group of prime order for which
subsets of different orders have different sums. In an earlier paper
[4] one of us has given a partial answer to the question:

What is the maximal number » = f(x) of integers a,, +--, @, S0
that 0 < a, < a, < ++» < a, <2 and so that

@iy + oo+ @, = ay, + oo+ a;, for some 1<4;, < -0 < 4
1§.71< cc <jt

n

A A

n

implies s = ¢? it is conjectured that the maximal set is obtained
(loosely speaking) by taking the top 21/« integers of the interval (1, ).
We were indeed able to prove that f(z) < ¢z for suitable ¢ (for
example 4/1/3) by using the fact that a set of n positive integers
has a minimal set of distinct sums of ¢-tuples (1 < ¢ < ») if it is in
arithmetic progression.

It is natural to pose the analogous question for elements of cyclic
groups of prime order, as was done at the Number Theory Symposium
in Stony Brook [ 5]. Here again we may conjecture that a maximal
set of residues (mod p) is attained by taking a set of consecutive
residues, this time not at the upper end but near p*°.
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636 P. ERDOS AND E. G. STRAUS

Conjecture 1.1, Let f(p) be the maximal cardinality of a set
of residues mod p so that sums of different numbers of residues in
this set are different, then f(p) = (4p)"® + o(p'®) where the maximum
is attained, for example, by taking consecutive residues in an interval
of length (4p)'”® + o(p'®) containing the residue [(p/2)'"].

It is easy to see that we can indeed get a set of about (4p)®
residues by taking the residues in the interval ([(»/2)® — (4p)"?],
[(p/2)*®]). Here sums of distinct numbers of elements are distinct
integers, and since all sums are < p it follows that they are distinct
residues.

The observation which let to the upper bound in [4] is much less
obvious (mod p):

Conjecture 1.2, A set A = {a, a,, -+, a;} of residues (mod p)
has a minimal number of distinct sums of subsets of ¢ elements if A
is in arithmetic progression.

Conjecture 1.2 would give us a simple upper bound for f(p):

COROLLARY 1.3. If Conjecture 1.2 holds then

f(p) < (6p)'"° + o(p'") .

Proof. The sums of ¢ elements from the set of residues
{11 2) "'ylk - 11 k}

fill the interval ((*§!), tk — (f)) that is to say there are tk — t* + O(¢)
such sums. Since for different ¢ we get different sums we must have

Pz Xtk — £+ 0@) = £ + o)

and hence k& < (6p)'° + o(p'?) .

Using methods employed by Erdos and Heilbronn [2] we can show
that f(p) = O(p'®). We use the following lemma from [2].

LEMMA 1.4. Let 1<m <1< p/2 and let B=1{b, -, b}, A=
{a, ++-, a,} be sets of residues (mod p). Then there exists an a;€ A
such that the number of solutions of a; = b; — by; b, b€ B is less
than 1 — m/6.

We now can get a lower bound for the number of distinct sums
of t elements from a set of residues.

LEMMA 1.5. Let A= {a, ---,a;} be a set of residues (mod p)
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and let A, = {a; + +++ + ;|1 =4, < «++ <4, =k} then for L=t <k/4
we have

(1.6) |A|=14 E=Lm _ tt—1)

6 6

=[E 2 ) m=[5]-

2 2

Proof. We divide the set A into two disjoint sets
A= {aly Agy ¢, a/l}y B = {bly b2y ey bm}

where

and prove the inequality (1.6) for the subset of A, consisting of the
sums

At = {a/i -+ 1)2__el -+ b4._52 + e + bZt—-z—et_llsj =0 or 1} ’

where the b; are a suitable ordering of the elements of B.
The inequality holds for ¢ = 1 since

A* ={a;} = A and |A|=1.

Now assume that (1.6) holds for A,* with ¢ < (m/2) — 1. Then the
set A,* + b, A*,., and according to Lemma 1.3 there exists |a
b; € {bysy, bogryy + 2, by}, say b; = by, so that the equation

byrs — by = af — af, af, af € Af
has no more than|A}| — §(m — 2t) solutions. Hence the set
((Ba+1 — bae) + (AF + b)) N (AT + bse)
contains no more than A} — }(m — 2t) elements and

IA;k+1‘ = [(Af + b,4,) U (Af + b,)|
= [AF| + #(m — 2¢)

S G=m t¢t-1 , 1~ t
=0+ 6 8 +6m 3
tm (t + 1)t
=1 — .
i 6 6

This completes the proof.

THEOREM 1.7. The maximal number f(p) of a set A of residues
(mod p) so that sums of different numbers of distinct elements of A
are distinct satisfies

(1.8) (4p)"" + o(p'") < f(p) < (288p)'”* + o(p'") .
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Proof. According to Lemma 1.5 there are at least
E/2 + k(t — 1)/12 — £3/6 + O(t)

distinct sums of ¢ elements (and hence, by symmetry, sums of k — ¢
elements) for ¢ < [k/4] out of a set A with % elements. Thus if A
has the desired property we must have

p=2 5; (/2 + k(t — 1)/12 — £/6) + O(k?)

1 1 1
= 2[{;3 —_—— e — ——— 2) = k° 2 .
<384 3 384)+O(k) k1288 + O(k?)
Thus

f(p) < (288 p)'** + o(p'?) .

The lower bound for f(p) was established above.

2, On some irrational series. One of us [1] proved that the
series >\, d(n)t—™ is irrational for every integer ¢, |¢| > 1. In this

n=

section we generalize this result to series of the form

@.1) g= 30
=l Q00 oy
where the a, are positive integers with2 < a, < a, <--- . It is clear
that we need some restriction, such as monotonicity, on the a, since
the choice a, = d(n) -+ 1 would lead to & = 1.
We divide the proof into two cases depending on the rate of
increase of a,. The first case is very similar to [1].

LEMMA 2.2. The series (2.1) is irrational if there exists a 6 > 0
so that the inequality a, < (log n)~* holds for infinitely many values

of m.

Proof. Let n be a large integer so that a, < (logn)"°. Then
by the monotonicity of a; there exists an interval I of length n/logn
in (1, n) so that for all integers te€l we have a; =t where t is a
fixed integer, ¢t < (log n)" .

Now put k = [(log »)**°] and let p, ., ---be the consecutive
primes greater than (log n)*. Let

A=(_ 1II p)f
k(k

198k (k+1)/2
then

P 614
A < (2(log ,}Z)Z)t k(k+1)/2 < gllog m1™9tlog n) /
< e(logn)l_alz .

(2.3)
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By the Chinese remainder theorem the congruences

z=p,*"(mod p,")
(2.4) x4+ 1 .E (p05)"~ (mOd (pzps) )

T+ k— 1= (Dulur1** Puss—r)’™ (MOd (P, Dus1** * Duimr)’)

where u = 1 + k(k — 1)/2, have solutions determined (mod A). The
interval I contains at least [n/(4 log n)] solutions of (2.4).

Now assume that £ = a/b and choose eI to be a solution of
(2.4) so that (x,x + k) I. Then

k-1
ba,--a, &= integer -+ b w
=0 tl+1

(2-5) b Atk s)

— %
370 Lyt * * Aprits

But (2.4) implies that d{z + 1) = 0 (mod #**') for [ =10,1, -+, k — 1.
Thus (2.5) implies that

b > d(x +k + s) )

EZa

(2.6) ba,---a, & = integer +
550 Qgip*** Aptiots

We now wish to show that for suitable choice of x the sum on
the right side of (2.6) is less than 1 and hence b¢ cannot be an integer.
We first consider the sum

b d@ +k + s)
tF e>ilosn Qg e Qupprs

(2.7) <Lk s EhEYS pegn 3 S
t* s>iologn [ ARR s>10log # L°
2bm

<

< —é— for large = .

e
Next we wish to show that it is possible to choose & so that
(2.8) dz+k+s)< 2 for 0 <s<10logn.
We first observe that
(2.9) (x+k+s, A =1forall 0 <s<10logn
since otherwise

(2.10) 4+ k+ s=0(mod p,;) for some 1 <j5 = kk + 1)/2
and

(2.11) 2+ 1= 0(mod p;) for some 0 <1< k.
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But
0<k+s—1i<1l logn < (logn) < p;

so that (2.10) and (2.11) are incompatible.
Let v =z, %, + A, --+, %, + 24 be the solutions of (2.4) for which
(v, + k) < I. From (2.9) we get

S d(w, + k A 2§;(“ 1
2 (@ +Ek+s+y4) < zzlﬂJr)

(2.12)
n logn .

<c 2

Thus the number of y’s for which d(x, + k& + s + yA) > 2*is less
than ¢n log n/(A.2"%), and the number of %’s so that for some
0=<s<10logn we have d(x, + k + s + yA) > 2**is less than

10c n log? n/(A.2"*) < 1/2n/(Alog n) < z .

It is therefore possible to choose © = x, + yd eI so that (2.8) holds.
For such a choice we get

iwlogn dx + k + s) <£‘2kl4ii

t° S0 Gpprt et Oprrts t* s=0 ¢°

(2.13) L
< b2~ < 5

Combining (2.7) and (2.13) we see that & is irrational.

LEMMA 2.14. If there exists a positive constant ¢ so that |a,| >
c(log n)** for all n then the series (2.1) is irrational.

Note that in this lemma we need not assume the monotonicity
of a, (or even that they are positive, however for simplicity we give
the proof for positive a, only).

Proof. We use two results. The Dirichlet divisor theorem
(2.15) Syd(n) ~ Nlog N

and the average order of d(n), [3]
(2.16) d(n) < (log n)*=*** for almost all » .

From (2.15) we get the following.

LEMMA 2.17. Given constamts b, c > 0, then for almost all in-
tegers «
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(2.18) dx + y) < b7 (2c)"(log @)y = 3, 4, -+

Proof. If we choose « large enough so that logax > (2bce)*?
then the right side of (2.18) is greater than ¢’ which exceeds x + y,
and hence d(x + y), whenever y > 2 log . Thus, if (2.18) fails to
hold for sufficiently large x then it must fail to hold for some y with
3y < 2loga.

Now if there are ¢,N integers  below N so that (2.18) fails to hold
then we have more than ¢, N integers x with VN <2 < N — 2 log N

and
(2.19) d(z + y) > b7'(2¢)*(log 2)*"* = b~'(2¢)7¥(% log N )*!*
' > b (4¢)(log N)** = ¢,(log N)** .

Thus

x 1
dn) = ¢, N « ————— ¢, (log N)**
ﬂgx (m) =z ¢ Zloch(Og )

= ¢, N(log N)**

which contradicts (2.15) for large N.
Combining Lemma 2.17 with (2.16) we find that there exists an
infinite set S of integers x so that

(log x)**

2.21)  d@+1) <% (log @)"*, d(x + 2) < b~4102

and (2.18) both hold.
Now assume that & = a/b is a rational value of (2.1) and choose
neS. Then

(2.22) a,---a, b = integer + b i _dm +y)
y=i an+1 oo an_}_y
where

= e —y 3y /4
0<s, d(n + y) <5 (20)(log m)*"* _ 4
=1 Qypg* 2 Qypy y=1 (C(log n)3/4)y

’

in contradiction to the fact that the left side of (2.22) is an integer.
Summing up we have

THEOREM 2.23. The series (2.1) is irrational whenever

20,0 <q,=

With considerable additional effort one can weaken the monotonicity
condition on the a, to a,/a, = ¢>0 for all m > «.
We have not been able to prove the following
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Conjecture 2.24. The series (2.1) is irrational whenever a,— <.
If we consider series of the form

(2.25) i (n) or i _om)

n=1 a, =1 Qe+,
then we cannot make conjectures analogous to 2.24 since the choice
a, = P(n) + 1 or o(n) + 1 would make these series converge to 1. It
is reasonable to conjecture that the series (2.25) must be irrational if
the a, increase monotonically, however we can prove this only under
more restrictive conditions.

THEOREM 2.26. If {a,} is a monotonic sequence of integers with
a, = n* for all large n then the series in (2.25) are irrational.

For the proof we need the following simple lemmas.

LemmA 2.27. Let {a,} be a sequence of positive tntegers with
a, = 2 and {b,} a sequence of positive integers so that b,., = 0(A,Gy.,)-

If
(2.28) L

=1 ll"'(l

18 rational then a, = O(b,).

Proof. Assume & = a/b and choose N so that for all »> N we
have bb, < a,_,a,/4. If there existed an n > N so that «, > 2bb, then
we would have

. ) =
by Ay & = aay+~+a,_, = integer + > &’C_
B=0 Uy v ¢ s Qyyy

but

E=0 Cly *»» an+k Qy,

B

Tyt Ay Wy ot s
< +iZer-=1,
a contradiction. Thus a, < 2bb, for all large .

LEMMA 2.29. If the series (2.28) is rational, say & = a/b, and
b,iy = 0(0,a,4), then there exists a sequence of positive integers {c,} so
that for all large m we have

(2.30) bb, = €, 0y, — Cpy s 0 < cCpyy < @y and ¢,y = 0(a,) .

Conversely, if these conditions hold then the series (2.28) is rational.
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Proof. Choose N so that for all » > N we have bb, < a,a,.,/4.
Now for n = N choose ¢,, ¢,., so that

bbn = Cp®y, — Cnt1 s Cn > 0
0 <epiy <
and ¢, €l
bb,:y = Crsi @iy — Chis s Chin > 0
0 < Chiye < Quay -
Then
ba,++-a, &= aa, - -0a,,
. bb e b
— 1nteger + bbn w41 + 2 b n+k
Ay, (1 29 Py k=2 Oy Qyip
’ ’
. c 4
= integer — Crnt1 4 o n+te
an a’n a’nan+l
1 & bb,, .1
(2.31) < DL
Ay *=2 Qpyy*** Ay,
. ’ : 7
— lnteger _ cn-}—l + cn+1 - cn+2 ,
Ay @, a’na"rH-l an
0<0<3.
Thus
1 ’ Chre :
— Cpt1 + Chyy — + ¢ ) = integer
a, n+1

and since 0 <e¢, < @a,, 0<ch, < [a. /4] + 1 0< s/, <1,

0 < 6 <3, this is possible only if ¢,., = ¢hsy.
Now choose N so large that bb,., <<¢a, a,,, for all n> N, then
from (2.31) we have

integer = — %1 4 3 bbnsi < Lg%
k=t =1 a

1
a’n anan-}-l e an+k an ¢

" Qptp—s

< — Gen 4 oge,
Ay
Thus ¢,., < 2¢a, for all n> N.
If condition (2.30) holds for all » = N then

o bbn o Conln — Cont
S0 S Cala— Can
n=N @y Q, a=N Qe Q,
— Cy —_ i c ( 1 Q41 >
R — n+1 -
Aoy, n=y Ao Qy Ay oo Uy
— Cx

al’.‘aN'—l
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is clearly rational.
Finally we need a fact from sieve theory. We are grateful to

R. Miech for supplying the correct constants.

LEMMA 2.32. Given an integer a and €>0 then for large y the
number of integers m satisfying

m # 0, m # a (mod p)
for all primes p, with 2 < p <y'® exceeds y'—.

Proof of Theorem 2.26. Let f(n) stand for either o(n) or @(n)
and assume that

s f(n)

n=1 al..'a”n

2.
b
Since a, > n'*/** for large n the hypothesis of Lemma 2.29 is satisfied
and we get
(2.33) bf(n) = ¢,a, — c,y, for large n .
Since f(n) = o(n'*c) for all ¢ > 0 we get
(2.34) ¢, < n''*+e for large n .
From Lemma 2.28 we get
(2.35) a, = O(f(n)) = O(n'*?)

and hence the number of integers n < x for which

Q1 > 1 4 g
(2%

is O(2**), since otherwise we would have

a 23/t
a, = [[ == >0 + a7 >a?

n<lz an

for large x, in contradiction to (2.35). From now on we restrict our
attention to integers m for which

(2.36) Gnir 1 4 g2,

n

For such integers we get from (2.33) and (2.35) that
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f(r+1) _ s Cusy (1 —_ Cuso )/(1 _m)

f(n) Con Uy, Crnt1 Anty Cp Uy,

(2.37) = Snti(1 4+ O(n~2) (1 + O(n~4*+))

n

= Ontr | OQ(n—tz+e)

k2

Now consider a prime ¢, $ 2" < ¢ < ¢, then according to Lemma
2.32 there exist more than y'~—* integers m < y = &' so that

{2.38) m# 0, m % — 2q (mod p)

for all primes p with 2 < p < #*°. We may even assume that m is
odd. The number of integers n = 2qm where m satisfies (2.38) exceeds
M= > x¥* and hence we can pick such an #» that satisfies (2.37)
with 2/2 < n < .

Now
f(n) = f(29)f(m)
where
394D jrr-y
f(2g) _ 2q
2q

in either case
{2.39) f(2q9) = AJq, A an integer not divisible by q.

Since m has at most 5 prime factors all exceeding %'° we have

(= gy < LU < (1 4 oy
m
(2.40) f(m) = m(l + O(y™F) = m (L + O@@™*")) .
By the same reasoning we get
(2.41) S(m + 1) = n(l + O(x™)) .
Substituting (2.39), (2.40) and (2.41) in (2.37) we get

] S(n +1) :_4 —2/11}) — Cntr —2+e)
a2 LBZD -2+ 0p) = i 4 0@

But since ¢ > 2 and ¢, < x'** we get

n

< p2ite

(2.43) 1 g‘:‘l _ Lat1
g, g e
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Since qe, < xM*+11% < x¥Y— this leads to a contradiction.

We could get similar irrationality results if the functions o(n) or
®(n) are replaced by oy n)(k = 1) or products of powers of o,(n) and
@(n). In each case we would need the assumption that the a, are
monotonic, increasing faster than a certain fractional power of the
numerators.

From Lemma 2.29 it is clear that there is a set of power 2%° of
series (2.25) which are rational even if we restrict the integers ¢, to
the values 1 or 2 since for ¢, =1 we can choose @, = d(n) — 1 or
o(n) — 2 to get ¢,., =1 or 2 respectively and for ¢, = 2 we choose
a, = [(6(n)-1)/2] to get ¢,,, = 1 if o(n) is odd and ¢,., = 2 if o(n) is
even. For the series with numerators ®(n) we would have to use
¢, = 1,2 or 3 since all ¢(n) are even for n > 2.
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