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EXPANSIVE AUTOMORPHISMS OF
BANACH SPACES, II

JAMES H. HEDLUND

An automorphism of a complex Banach space is shown
to be uniformly expansive if and only if its approximate
point spectrum is disjoint from the unit circle,

The problem of giving a spectral characterization of the property
that an operator be uniformly expansive was investigated in [2], but
the theorem stated above was obtained only for automorphisms of a
Hilbert space. The proof given in this note is both more general and
more transparent than the special version. We also note some
topological properties of the various classes of expansive operators in
the space of all invertible operators.

1. Uniformly expansive automorphisms. If T is an auto-
morphism (a bounded, invertible, linear operator) on a complex Banach
space X denote its spectrum by A(T), its compression spectrum by
I'(T), its approximate point spectrum by /I(T), and its point spectrum
by /1(T). Denote the unit circle {\: |A| = 1} in the complex plane
by C. The automorphism 7 is said to be

(1) expansive if for each x e X with ||#|| = 1 there exists some
non-zero integer n with {|T"x|| = 2;

(2) wuniformly expansive if there exists some positive integer =
such that if x ¢ X with ||@|| = 1 then either ||T"xz|| = 2 or || T "z || = 2;

(3) hyperbolic if there exists a splitting X=X P X,, T =
T, T,, where X, and X, are closed 7T-invariant linear subspaces of
X,T,=T|X, is a proper contraction, and 7T, = T|X, is a proper
dilation.

A discussion of these classes of automorphisms may be found in [2].

It is well-known [2, Lemma 1] that an automorphism 7 is hyper-
bolic if and only if 4 (T) N C = @. The principal result weakens both
conditions.

THEOREM 1. Let T be an automorphism of a complex Banach
space X. Then T is uniformly expansive if and only if II (T) N
C = 4.

The proof requires the Banach space version of an interesting
numerical lemma.
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LEMMA 1. Given any complex numbers ¢,, «+-, ¢, there exists e C
such that >,i-Ne; > 0.

Proof. [2, Lemma 2]

LEMMA 2. Given any complex numbers c¢_,, »=+, ¢, with ¢, # 0
there exists M e C such that |Dj-—, Ne;| > ¢,

Proof. We may assume that ¢,>0: otherwise set d; = (¢,/|¢]) ¢;
and proceed. Let fF(\) = 3. Ne;, g(\) = D71, NMe;, and A(N) =
N C_;. Since M7 = (A) for A e C it follows that Re g(\) = Re h(\),
and therefore Re [F(M) + g(V)] = Re [f(N) + A(N)]. Now f(\) + h(\) is
a polynomial in »; by Lemma 1 there exists neC such that f(\) +
h(A) >0. Thus f(A) + A(N) + ¢, = ¢, and

> Re (Es] ch> = Re [f(N) + h(N) + ¢] = ¢,

j=—r

S Ne;

Jj==r

LEMMA 3. Given any wvectors %_,, +++, %, in a Banach space X
with x, = 0 there exvists » e C such that

| & vz a0

Proof. By the Hahn-Banach Theorem choose x* ¢ X* with |[|z* || = 1
and x*(x,) = || %, ||. It suffices to find A e C with

(3 V)12 0@ -
J=—7
Set ¢; = x*(x;) and apply Lemma 2: there exists A e C such that

= el = la*(w)| .

(2, ve) =] &, v

Proof of Theorem 1. Necessity is proved in [2, Theorem 1].
To prove sufficiency, suppose that T is not uniformly expansive. Then
for each positive integer n there exists z,€ X with ||2,|| =1 and
max {|| Tz, ||, || T"x,{|} < 2. For infinitely many » we produce a
vector ¥, € X and a number A, € C such that || (T — 2.9 v, [[/l| 4. || — 0.
This will suffice. In fact, if e C is a limit point of {\;'} choose a
subsequence {\;} of {\;} with A;'— . Then

1T = 2 9 1 0 1= 1T = 239 i Wl ]+ D25 — 2]

The right-hand side approaches 0 as m — o« , so that pell (T).
To construct v, we must consider two cases. Define
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k+n—1 .
>, ATz,
&

é(n) = max sup >

k=—mn,0 2eC

Case 1. ¢(n) is unbounded. Fix #, choose k& where the maximum
in the definition of ¢ is attained, and let )\, be the M e C where the
supremum is attained. Define

k+mn—1

Yo = >, MT,
=k
so that || .|| = ¢(n). Now
(T - N Y= T, — NG, if k=0,
and
(T — A7) ¥ = No'@y — A" T, if b= —m .
In either event,

(T =2 wall =3. Thus || (T — X)) v [/l 9 || = 3/6(n)

Since ¢(n) is unbounded, 3/¢(n;) — 0 for some subsequence n; — co.

Case 2. ¢(n) is bounded. Assume that ¢(n) < A for all » and
define

U= 3 (0 + 1+ ) NTz, + 3 (n — 7) T, ,
.

i=—n

where we choose ), eC by Lemma 3 to insure that ||y, || = n, the
norm of the term with index 0.

HT = wll= || = & M P, + 3 T, |
= |2 x| 2 ar)
< AL+ (T -

Hence
(T =N v llllwall = AQ + (| T|)/m— 0 .

Note that the hypothesis that 7' is not uniformly expansive is
not used in Case 2. But it is easy to see directly (by Lemma 3) that
T is not uniformly expansive if ¢(n) is bounded. Note also that it
follows immediately from Theorem 1 that a hyperbolic automorphism
is uniformly expansive.

2. Density. Denote the class of all hyperbolic automorphisms
of a fixed Banach space X by 2% of uniformly expansive by ¥ &, of
expansive by &, of all automorphisms by .# and of all bounded linear
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operators by <z. If dim X < o then 57 = % & = & and is precisely
the class of all automorphisms whose spectrum is disjoint from C. In
general the situation is much different.

THEOREM 2. Let X be separable infinite dimensional Hilbert
space. Then:

(1) sFPCcwE cE c ”CZ;

(2) 27 and Z'E are open (in <, in the uniform operator
topology) but & is not;

(8) mo class is dense 1n the next larger.

The tools necessary for the proof are two results on semicontinuity
of pieces of the spectrum due to Halmos and Lumer.

THEOREM A. [4, Theorem 2] /I(T) and A(T) are upper semicon-
tinuous: to every Te B and every open set G containing I1(T)
[respectively, A(T)] there corresponds a positive number ¢ such that
II(S) cG [A(S)cG] whenever ||S-T|| < e.

THEOREM B. [4, Theorem 3] A(T)\/I(T) is lower semicontinuous:
to every Te <% and every compact set K contained in A(T)\I(T)
there corresponds a positive number € such that K c A(S\I(S) when-
ever ||S— T <e.

Proof of Theorem 2. (2) If Te 57 then A(T) NC = @. By semi-
continuity, 4(S)NC = @ for S sufficiently near T. Since _# is open,
Se 57 The proof for Z & is identical. To see that & is not open
fix an orthonormal base {e,}” and let T be the diagonal operator
Te, = nf(n + 1) e,. T is expansive [2, Example 2]. Given ¢ > 0 let
Se, = Te, for [1 —mn/(n +1))=¢ and Se,=e, otherwise. Then
[|S— TJ < e but S is not expansive since 1€ II(S).

(8) _# is not dense in <#: [3, Problem 109].

% is not dense in ._7: let {¢,}>. be an orthonormal base and let
T be the backward bilaterial weighted shift defined by Te, = 2¢,_, for
n=1, Te, = 1/2 ¢,_, for n < 0. Then [2, Example 4]

I(T)={12 < [ x| <2}

so that T¢ . Now A(T*\I(T*) = {1/2 < | 7| < 2}; by Theorem B
if || S* — T* || is small then C c A(S*)\II(S*) < I'(S*). Hence C < I1,(S)
and S¢ &.

57 is not dense in ZZ & : in fact ZZ&\ o7 is open. If Te & \oF
then II(T)NC = @ but A(T)NC+@. So there exists a compact set
KcCN[A(T\I(T)]. By Theorem B, KcA(S) for || S — T|| small, so
that S¢ 2%
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Z& is not dense in &: let X be represented as H? (of the unit
circle) and let T be the multiplication operator 7Tf (¢%*) = (¢* + 3/2)
fle). Let A, ={|»—8/2| <r}. Either direct calculation or appeal
to the spectral properties of Toeplitz operators ([1], for instance) shows
that A(T) = A, I(T) = @, II(T) = bdy A,, and I'(T) = int A,. By
Theorems A and B there exists ¢ > 0 such that if || S — T'|| < € then
Ay, < I°(S) and A(S) < A;,. Now the arc a(t) =€, 0=t < 7/2, on
the unit circle has a(0)e 4;, and a(n/2) ¢ A;,. Thus a(t) e bdy A(S)
for some ¢; hence /(S)NC = @ and S¢ Zr&. To verify that T is
expansive let a € [0, 7] with | ¢** + 8/2| = 1. Fix fe H* with || f]|, = 1.
Then either

1/2ng“_ | fle) | di = 1/2 or 1/277:8 e de = 1/2 .
If the former holds choose — a < b < ¢ < a with
1/2ng“ | Fle) | dt = 1/4,
b

let K = min {|e®* + 8/2], | ¢® + 3/2|} > 1, and choose an integer n with
Kr=4., fm=n

1T Ns = 12| fe + 321 S dt
= 1j2n| (" + 3/2*" | ) dt

> szl/ZnS: | F(e") [ di

v

4.

If the other alternative holds then || T7"f||. = 2 for large m. Hence
T is expansive.
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