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Let π be an affine plane of order q2 that is coordinatized
by a "derivable" semifield S? = (S^, + , •). If (&*, + ) is a
right vector space over F = GF(q) then a plane πf may be
constructed from π using Ostrom's method of "derivation."

The purpose of this article is to examine the planes π'
and their coordinate structures (<&", + , *). It is shown, in
particular, that (£f\ + , *) is a (right) quasifield which is
neither a nearfield nor a semifield. Furthermore, it is shown
that π' is always of Lenz-Barlotti class IVa. 1.

The automorphism groups of semifields of square order
are also briefly investigated.

1* The Construction of Quasiίields from Derivable Semifields*
We will assume that the reader is familiar with the concept of "deri-
vation." For background material the reader is referred to [2], [4],
[6], and [7].

DEFINITION 1.1. A semifield Sf — (£f, + , •) of order q2, q = pr, p
a prime, will be said to be derivable if and only if (S^ + ) is a vector
space over GF(q) — F where F gΞ £f and x a — xa (or a x = ax)
is scalar product.

If a semifield £f is derivable then either Sf or dual £f (i.e.,
right multiplication becomes left multiplication, and conversely) is a
right vector space over GF(q) and hence either the affine plane π co-
ordinatized by S^ or an affine restriction of the dual of the projective
extension of π is derivable (see sections 3 and 4, [7]).

A projective plane is a semifield plane if and only if it can be
coordinatized by a semifield or if and only if the plane is (P, l)-
transitive V points Pel, and (Q, Z)-transitive V lines ZeQ and Q_el.

If Q, I are chosen to be (oo) and Zoo, respectively, then the coor-
dinate structure obtained is a semifield. In dualizing the semifield
plane π we shall let (°°)*->L and then delete L to obtain an affine
plane coordinatized by a semifield dual to a semifield which coordi-
natizes π.

DEFINITION 1.2. Let &* — {Sζ + , •) be a derivable semifield.
S^ is subcommutatίve if and only if aa — aa for all a e S^ and for
all a e GF(q).

DEFINITION 1.3. A semifield Sf of order q2 containing GF(q) is
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a weak nucleus semifield O^-semifield) if and only if (ab)c = a(bc)
whenever any two of α, δ, c are in GF(q).

Note that a tίm-semifield of order q2 is derivable and a derivable
subcommutative semifield is a 'wm-semifield.

Let y be a derivable semifield which is a right 2-dimensional
vector space over GF(q). Let {1, t}, t e £S — GF(q) be a basis for S?
over GF(q).

Then let β{ta) = th{β, a) + &(/9, α) and (ta)(tβ) = ί/(α, /S) + #(α, /5)
for α, β e GF(q) where h, k, /, g are bilinear functions: GF(q) x G-F(g) —>
GF(q) which introduce no zero divisors into the multiplication.

Then multiplication in the semifield is given by:

(ta + δ)(tβ + Ύ) = t(f(a, β) + h(δ, β) + ay)

+ (0(α, /8) + fc(3, £) + δy) .

Thus, if S^ is any derivable semifield then either the multiplica-
tion of &* or dual S? is of the above form.

THEOREM 1.4. Let & — {&, +, •) be a derivable semifield which
is a right vector space of dimension 2 over F = GF(q), q — pr, p a
prime. Let the multiplication in S^ be given by:

{ta + δ) - (tβ + 7) - t(f(a, β) + h(δ, β) + ay)

+ (g(a, β) + k(δ, β) + δy) V a, β, δ, y e F

where /, h, g, k are bilinear functions: F x F-+ F.
Define a system ^ * = ( ^ +, *) when the * -multiplication is

given by

t * a = ta, (ta + β) * y = ί(α:γ) + /9τ and if δ ^ 0

(to + /3) * (ίδ + T) = tp + Z where
(1) h(δ,μi) = l,
(2) k(δfμ1) + δμ2 = y9

( 3 ) /(α, /iθ + h(p, μj + aμ2 = β,
( 4) g(a, μt) + Λ(̂ , ^0 + pμ2 = I
Va, β, δ Φ 0, 7 G ί 7 where μx, /̂ 2 and thus p,Xe F are determined

from the above equations.

Then ^ * = ( ^ + , *) is a (right) quasifield.

Proof. The affine plane π coordinatized by £f is derivable (see
[2]? [6], [7]). Ostrom [6] has shown that the plane πf derived from
π is a translation plane and may be coordinatized by a system

, *) 3 ta = ί * α, (to + /3) * (ίδ + 7) = ί/O + Z
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if and only if (to + p){tμt + μ2) = tβ + 1 where δ(tμ, + μ2) = t + 7
for δ Φ0, and (to + /9) * 7 = (to + /9)7 for all α, /?, δ, 7 6 G.F(g). Our
equations are obtained by merely equating vector components.

We shall now specialize (1.4) to the case where £f is a 'wm-semi-
field.

Knuth [4] has shown that if Sf is a ttm-semifield then a basis
{1, t} can be chosen so that at — taσVa e GF(q) where σ is some auto-
morphism of GF(q). In this case, h(δ, β) = δσβ and k(δ, β) = 0 for
all δ,βe GF(q).

Thus h(δ, μj = δaμ1 = 1 implies ^ = δ~σ and fc(δ, ^x) + δμ2 = 7
implies that μ2 = δ " ^ for S ̂  0. Thus /(α, ̂ ) + h(ρ, μj + aμ2 = ^
implies that /(α, δ~σ) + ρσδ~σ = aδ^y = /3. Hence

p = ((β- f(a, δ~°) - αδ-^δ ') ' - 1 = (/5 - f(a, δ~<>) - aδ^yY^δ .

Also, g(a, μt) + Λ(|O, μλ) + ^ 2 = ^ implies that g(a, δ~°) + pδ~lnr = Z.
Thus, we have the following theorem.

THEOREM 1.5. If S^ = (^i +, •) is α ^eαfc nucleus semifield of
order q2 3 multiplication in £f is given by

(to + δ)(tβ + 7) = t(f(a, β) + δσβ + en) + (g(a, β) + δy) .

Define a system ^ * = (S^, +, *) by defining a *-multiplication
as follows:

t * a = to, (to + δ) * (ί/5 + 7) - ί(δ - f(a, β~σ) -

+ g(a, β~σ) + (δ - f(a, β~σ) - α/9~17)σ"17

for δ Φ 0 and σ an automorphism of GF(q), and

(to + δ) * 7 - (to + <?)7Vtf, β, δ, 7 6

Then ^ * is a (right) quasifield.

REMARKS 1.6. Under the assumptions of (1.5)
( i ) a*a = a* cf^Va e GF(q) and Vα e ^ -
(ii) (α * b) * £ = a * (6 * c) whenever any two of α, 6, c are in

Proof. The proof of (1.6) is routine and is left to the reader.

2* Automorphisms of derivable semifields which fix GF(q)
element wise* The semifields of order 16 have been tabulated, [3],
and are all isotopic (Sec. 3, [4]) to one of two weak nucleus semi-
fields, each of which admits a group of automorphisms of order 3
which fixes GF(q) elementwise (see [4]). The multiplications for the
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two systems are given by (ta)(tδ) = taΨ + a2δ, βt = tβ2Va, δ, β e GF(4)
and (ta)(tδ) = ωa2δ, βt = tβ2 where ω is a primitive root of GF{4).

The semiίields of order 16 are exceptions among derivable semi-
fields of order q2 in that no derivable semifield of order q2, q > 4 can
admit such automorphism groups.

THEOREM 2.1 Let (£f +, •) be a derivable proper semifield of
order q2. Then 6^ is of order 16 if and only if a derivable isotopic
image of £f admits a group of automorphisms of order q — 1 which
fixes GF(q) elementwise.

Proof. Suppose the indicated automorphisms τp that the form
tτp = tpVp e GF(q) - {0}. (Note: This would be true by (2.2) if &
is a ww-semifield and σ Φ 1, but we are not necessarily assuming this
property.) If Sf is a left vector space over GF(q), consider dual £f.
Let {1, ί} be a basis for &* or dual SK

((ta)(tβ))τp — (tf(a, β) + g(a, β))Tρ where /, g are bilinear functions:
GF(q) x GF(q) — GF(q). Thus,

(t(pa))(t(pβ)) = t(pf(a, β)) + g(a, β)

which implies that pf(a, β) = f(ρa, pβ) and g(a, β) = g(ρa, pβ). Since
we have q — 1 automorphisms τp these previous equations are true for
all a,β,ρe GF{q) - {0}. If characteristic F Φ 2 then g(2ρ, 2ρ) = g(2,2).
But g is bilinear so g(2, 2) = 4#(1, 1). Also g(a, a) = g(l, 1) so that
40(1, 1) = f/(l, 1). Moreover g(l, 1) Φ 0 since ί2 - ί/(l, 1) + ^(1,1) and
multiplication of nonzero elements is a loop.

Hence 4 = 1 so that characteristic F = 3.
Since g(pa, pβ) = #(#, /S)Vα, ftpe GF(g) - {0} then

0(1, (α: + 7)-1) - 0(α + 7, 1) = 0(α, 1) + g(Ύ, 1)

for a + 7 ^ 0.
Thus, 0(1, (a + 7)"1) - (0(αr, 1) + 0(7, 1)) = 0, which implies that

0(1, (a + 7)-1) + 2(0(α, 1) + 0(7, 1)) - 0.
Clearly, 2^/9, 1) = g(2β, l)VβeGF(q), and g(2βf 1) = 0(1, 2/9"1), so

0(1, (a + 7)-1) + 0(2α, 1) + 0(27, 1)

= 0(1, (α + 7)-1) + 0(1, 2a-1) + 0(1, 27"1)

= 0(1, (a + 7)-1 + 2a-1 + 27-1)

= 0(1, (a + 7)-1 - (α-1 + 7-1)) .

If {a + 7)-1 Φ a~ι + 7"1, then

t{t((a + 7)-1 - (a-1 + 7-1)) = tf(l, (a + 7)-1 - (α^1 + 7"1))
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which cannot be the case. Hence (a + T)" 1 — a*1 + 7"1. It is easy
to see that in this situation GF(q) = GF(3).

But then S? would be a field ([4], p. 208) contrary to our as-
sumption.

Hence, characteristic F = 2. Then, using the bilinearity of g we
may argue as before (except that — 1 = +1) to obtain (a + y)~ι =
a~ι + 7-1 from which it follows that GF(q) = GF(4).

To complete the proof of (2.1) we must show that the automor-
phisms τp have the form tτp = tp.

Let 7Γ be the affine plane coordinatized by S^ and let π0 be the
subplane of π coordinatized by GF(q).

The automorphism group of S* induces a collineation group of
π which fixes π0 pointwise. In the derived plane there is a collinea-
tion group of order q — 1 fixing the line {(x, y)\χ = 0} pointwise.
(The validity of this last statement may be seen by choosing coordi-
nates for the derived plane so that π0 in π is the point set {(x, y) \ x = 0}
in the derived plane. See e.g. [6], Theorem 10.)

Thus, the derived plane πf admits a (P, x = 0)-homology group of
order q — 1 (see [2], remarks following (2.6)). Moreover, this group
must fix the set points of π'Q on the line at infinity of the derived
plane where π'o is the line x = 0 in π (see [6], Theorem 7). Hence,
P — (a) where a e GF(q). If a Φ 0 we can rechoose t in S^ so that
P is represented by (0).

Now {(tδ + aδ, tβ + aβ)} in π is the same as {(tδ + β, taδ + aβ)} in
π' ([6], Theorem 10). If we let t - t + a then {(tδ, tβ)} is {(tδ + β, 0)}
in τr\ Hence, we have relabeled {(x, y)\y — xoc) in πr by {(a?, y)\y = 0}.
Thus, P = (a) is relabeled by (0).

Now a group of ((0), x = 0)-collineations which fix πJ induce auto-
morphisms of the form τp 3 (ta + β)τp — t(pa) + β in £f (see [2],
(2.10), and the proof of (3.10)).

Hence (2.1) is proved.

PROPOSITION 2.2. Let (£f, + , )be a wn-semifield of order q2 with
multiplication defined by (ta)(tβ) = tf(a, β) + g(a, β), δt — tδ% σ an
automorphism of GF(q), Va, β, δeGF(q). If σ Φ 1, and if τ is any
automorphism of -(S^ + , •) fixing GF(q) elementwise then (ta + β)τ —
t(pa) + β for some p e GF(q).

Proof. (at)τ = aτtτ = at\ Let V = tp + θ for some ^, θ e
Then αίΓ = ta7> + α^ and (at)τ = (taσ)Γ, ί τασ = fyλxσ + ^α 0 . Hence,
α^ = θaa which implies θ — 0.

THEOREM 2.3. 1/ a derivable semifield S^ = (£f + , •) of order
q2, q > 2 admits a nontrivial automorphism group & which fixes
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GF(q) — F elementwise and \*S?\\q then 5f is an elementary abelian
2-group whose order is strictly less than q.

Proof. Without loss of generality, suppose that ( ^ + ) is a right
vector space over F. Then it follows directly from [5], Theorem 1,
that if τ e 2? and {1, t} is a basis for ( ^ +) over F then P = t + 7
for some γ e ί 7 .

Let δ(tβ) = th(δ, β) + k(δ, β),

(ta)(tβ) = tf(a, β) + g(a, β)Va, β, δ e GF(q)

where /, g, h, k are bilinear functions: GF(q) x GF(q) —» GF{q).
Then, (ta)(tβ)r = (tf(a, β) + g(a, β))τ if and only if

(ta)(tβ) + t(h(7a, β) + arγβ)

, β) + Ί2aβ = (ta)(tβ) + τ/(α, β) .

Equating vector components:
(1) h(ya, β) = -ayβVa, β and
(2) fc(τα, /3) + Ί2aβ = yf(a, β).
If a = 7"1 in (1), then λ(l, /9) = -/3. But, λ(l, /S) = /3. Λ î 7 is

of characteristic 2. Thus, ^ is an elementary abelian 2-group.
Now assume \& \ = q. Then, by (2), k(l, β) + Ύβ = Ύf(Ύ~\ β) =

yβ so that /(T" 1, β) = β for all yeF. But
1, β) = o

since / is bilinear and .F is of characteristic 2.
Hence, (2.3) is proved.

COROLLARY 2.4. If s^ = ( ^ +, •) is α wn-semifield of order q2

which admits a nontrivial automorphism group & such that \ gf | | q
then \&\ = 2.

Proof. By (2.3)(2), k(ya, β) + Ί2aβ - 7/(α, β).

We may choose te<9* — Fa k(yα, β) = 0 Vα, β,yεF so 72αβ =
'X/l̂ j /3) =* ̂ /̂5 = /(α, /3). Clearly | S? \ = 2 for otherwise it would
follow that 7α/9 = ^tf/5 for 7 =£ ̂ Y"iα, βeF.

COROLLARY 2.5. If Sf = {£ζ +, *) is α wn-semifield which admits
a group & of (2.4) then there is a teS^ — F such that

(to + δ)(tβ + 7) - t{aβf + δβ + on) + {g{a, β) + δy)

where g is a bilinear function F x F-^ F and f is a nonzero con-
stant in F.
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Proof. ^teS^ — Fs at = taσVa e F, σ an automorphism of F. By
(2.2), σ = l. By (2.4), | ^ | = 2and if res'st* = t + ff(a, β) = aβf.

COROLLARY 2.6. Le£ (S^ +, .) satisfy the hypothesis of (2.3)
, +, *) ίΛe quasifield of (1.4). Consider the following distributive

law:

/or αM c, 6G ^ αm£ /or some ae F.
Then
( i ) if char i*7 ̂  2 this distributive law cannot hold for any non-

zero ae Fy

(ii) if char i^= 2 and ( ^ +, •) is a ttm-semifield then the dis-
tributive law holds for at most a single nonzero element of F,

(in) if char F = 2 this distributive law cannot hold for all ae F.
Thus, in particular, ( ^ +, *) is not a semifield.

Proof. The given distributive law induces a ((<*>), # = 0, 7Γ0)-col-
lineation in the affine plane coordinatized by ( ^ + , *) and hence
([2], see the proof of (3.10)) an automorphism group in (S^, + , •) as
in (2.3).

We have seen that (S* +, *), if S? is a w^-semiίield, admits
some associative properties ((1.6) (ii)). In general, however, we note
that (£f, +*) cannot be associative.

THEOREM 2.7. If £f = ( ^ +, •) is a derivable semifield 3 (S* +)
is a right vector space over GF(q) then (S^ +, *) is neither associative
nor distributive.

Proof. The affine plane coordinatizing (£^ +, •) is ((oo), # = 0,
πo)-transitive ([2], [6]) and thus (£f, +, *) admits a group of auto-
morphisms of order q which fix GF(q) element wise. But regular
near fields clearly cannot admit such automorphisms. The irregular
near fields all have order p2 where p is a prime. If Sf has order p2

then S* is a field ([4]) in which case (S^, +, *) is a quasifield which
coordinatizes a Hall plane.

3. The Knuth multiplication. Let ( ^ +) = {GF(q2), +). Let
t e 6^ — GF(q) and define at = taσ where σ is an automorphism of
GF(q). The functions f(a, β) = a^β*f g(a, β) = apβδg where ^ Z, p, δ
are automorphisms of GF(q), a, βeGF{q),f, g constants in GF(q) are
bilinear functions: GF{q) x GF(q)^GF(q).

at = taσ, (ta)(tβ) =
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will define multiplication of a semifield £f — (S^, + , •) provided no
zero divisors are introduced by the choices of σ, <yV", X, p, <5, f and g.
If no zero divisors occur, we shall say that the semifield so defined
is a Knuth Semifield.

THEOREM 3.1. (Knuth [4]). Let

and
(ta + δ)(tβ + 7) = t[a^βχf + an + <5"/3]

+ [a'β'g + <5τ]Vα, β,δ,ye GF{q)

where <yy] X, σ, p, δ are automorphisms of GF(q) and f, g elements of
GF(q).

(a) Iff—Q and g is a nonsquare in GF(q) then the above mul-
tiplication defines a Knuth Semifield for an arbitrary choice of auto-
morphisms σ, p} δ.

That is, at = taa, (ta)(tβ) — apβ°g for arbitrary automorphisms
p, δ of GF(q) and g a nonsquare in GF(q) define a semifield.

(b) IffΦb and σ, /, g are chosen so that yσ+1 + fy — g = 0 has
no solutions in GF(q) and (^4^X9 p, δ) = (σ, σ~~\ σ, σ~2), (σ, 1, σ, 1),
(1, σ~\ σ~ι, σ~2) or (1, 1, σ~\ 1) then the above multiplication defines a
Knuth Semifield. That is, each of the following multiplications define
a class of semifields:

I. at = ta% (ta)(tβ) = taaβa-ιf+ aσβσ'2g
II. at = ta% (ta)(tβ) = ta°βf + aσβg

III. at = ta\ (ta)(tβ) = taβ^f + aσ^βσ~2g
IV. at = taσ, (ta)(tβ) = taβf + aa~λβg.
Furthermore, Knuth [4] has characterized types II, III and IV in

terms of the nuclei.

DEFINITION 3.2. Let (Q, +, •) be a ternary system. Let

{x e QI (ab)x = α(δaj)Vα, beQ} =

{x G QI (ax)b = α(cc6)Vα, & e Q} =

{£ G QI (xa)b = x(αδ)Vα, 6 G Q} =

will be called the right, middle, and ϊβ/ί [nucleus
of Q, respectively.

THEOREM 3.3. {Knuth [4]). Lβέ ( ^ + , •) be a Knuth Semifield
of order q2. Then GF(q) = ^V&sr = - ^ O ^ i/ α^ώ onϊτ/ i/ ^ is of
type II. GF(q) = ^ f < ^ — ̂ 4r^^ if and only if &* is of type III,
and GF(q) = <yK^#> = <sK&^ if and only if S^ of type IV.
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By applying (1.4) to (3.1), we obtain the following result:

THEOREM 3.4. Each of the following multiplications * (with field
addition) defines a (right) quasifield which is neither a semifield or
near field. If β Φ 0,

( 1 ) (ta + 8) * (tβ + 7) = t(δ - aβ-ιy)σ~ιβ + (δ - aβ-ιΊ)σ~ιΊ
+ a^rβ~σχg, g a nonsequare in F

( 2 ) (ta + δ) * (tβ + 7) = t(δ - aσβ~ιf - aβ~ιΊ)°~ιβ

+ (δ - aσβ~ιf - aβ-ιΊ)a~xΊ + ασ/3~σ~V, σ Φ 1, / Φ 0

( 3 ) (ta + δ) * (tβ + 7) - £(<5 - aσβ~σf - aβ-'ΊY^β

+ (δ - aσβ~σf - aβ-'ΎY^Ύ + a°β~σg, σ Φ 1, / Φ 0

( 4 ) (to + δ) * (ί£ + 7) - ί(δ - ^/S"1/ - aβ~ιΊY~ιβ

+ (δ - α/S"1/ - α/3-17)σ~17 + a^β^g, σ Φl,f Φθ

(β ) (ta + δ) * (ί£ + 7) - ί(δ - aβ~σf - aβ-^y-'β
+ (δ - aβ-°f - aβ-^y^Ί + aσ~ιβ~ag, σ Φ 1, / Φ 0.

, (to + <5) * 7 = t(ay) + δ7 where σ is an automorphism of F and
in cases (2) through (5) yσ+1 + fy — g Φ OVy e GF(q) and ^ ^ X auto-
morphisms of F in case (1).

Proof. See (1.4), (2.7) and (3.1).

4* The planes coordinatized by the ( ^ + , *) quasifϊelds* A
plane Σ is of Lenz-Barlotti Class IV.a.2 or IV.a.3 if Σ can be coordi-
natized by a (right) nearfield, and of Class V.I if Σ can be coordi-
natized by a semifield. Σ is of Class IV.a.l if Σ is coordinatized by
(right) quasifield but no coordinate system for Σ is a (right) nearfield
or semifield.

The planes coordinatized by the (£f, + , *) quasifields are there-
fore of L-B Classes IV.a.l, a.2, a.3, or V.

THEOREM 4.1. Let S? — (<9*, +, )be a derivable semifield3 (S^> + )
is a right vector space over GF(q). Let π be the semifield plane co-
ordinatized by S^. Ίt is derivable, so let π' be the plane derived from
π. Then π' is of Lenz-Barlotti Class IV.a.l.

Proof. We must show that π' cannot be of type IV.a.2, a.3, or
V.I.

Suppose π' is of type V.I, then πr is ((m), ̂ -transitive for all lines I
incident with (m) where m I L . By (2.7), (m) Φ (oo) since £?* = (£?, + , *)
is not a semifield. Clearly (m) is fixed by the full collineation group
of πf (otherwise πf is Desarguesian and every coordinatizing structure
is a field). Recall (see proof of (2.7)), ^ * admits an automorphism
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group of order q fixing F pointwise such that t —•» t + a for all ae F
(see (2.3) and (2.7)). Hence, m e F if π' is ((m), Z)-transitive.

We consider two cases:

( 1 ) (m) = (0), ( 2 ) m * ( 0 ) .

Case (1). If (m) = (0), consider changing coordinates as follows
in Sf (in π):

coordinate

(to,. + xz, tyι + 2/2)_^ϋ^_> (to2 + ^ ί̂ 2 + Vl)Vχl9 χ2i yu y2eF.

£fσ is a derivable semifield (see [2], the proofs of (3.6) and (3.7)).
The coordinate change appears as (xfy)~-+(y, x) in πf (see [2],

(3.7)) and thus induces a Hall coordinate system St£ B π' is ((°°), α; =
0)-transitive. Λ ^ , * is a (derivable) semifield. However, ^ > * is con-
structed from <9% = <5^σ in the same manner that ^ * is constructed
from S^ .*. we have a contradiction by (2.7).
(2) (m)Φ(0).

Choose t =t + m (recall meF) in ( ^ +, •). Then in π'

= {(a?, 2/) I x = to + /3,2/ = ί(αm) + (/3m)}

is the same as {(to + am, tβ + /9m) = (ta, tβ)} = y = 0 in π'. Hence,
by case (1) we have a contradiction.

Assume that π' is of type IV.a.2 or a.3. Then π' is ((P), (Q))-
transitive for some pair of points (P), (Q), P Φ Q.

Moreover, every collineation of π' must fix {(P), (Q)}. Therefore,
since ^ * admits an automorphism group of order q it must be that
P, Q e ί 7 or P, Q = <χ>.

Now if we can change coordinates so that S^J" is a nearfield and
&%* admits an automorphism group of order q, then we have a con-
tradiction since the order of an automorphism group of a nearfield of
order q\q = pr, r > 1) is never this large.

Let (P) = (a) and (Q) = (/9), α, β e F or α, β = oo.

Case (1). (a) = (oo). Since ^ * is not a nearfield (see (2.7)),
(β) φ (0). We can rechoose t in ^ (in π) so that ?/ = xβ is 7/ = 0
in π' (i.e., if t = t + β) and (oo) in π' is left fixed, Λ ^ * with the
basis {1, t} is a nearfield and admits q automorphisms.

Case (2). (a) Φ (oo), (β) ^ (oo), (a) = (0). We can move (0) to
(oo) by the (x,y)—+(y,x) coordinate change of ^ * of the previous
argument. Therefore, π' is ((oo), (7))-transitive for (7) Φ (0). Then,
we may rechoose t in «_9i> so that (7) is (0) in S^J" (or in π'). Since
S^& is a (derivable) semifield, S^J" admits an automorphism group of
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order q which is a contradiction.

Case (3). (a), (β) Φ (oo) or (0). First rechoose t in £s so that
(a) is (0), then repeat Case 2.

REMARKS. If (S^ +, •) is a derivable subcommutative semiίield
then a "derivable chain" (see [1]) can be constructed based on the
affine plane coordinatized by {S^, +, •)•

( ^ +, •) actually need not be finite to construct ( ^ +, *). That
is, Ostrom's "derivation process" extends for infinite translation planes.
We shall explore this in a later paper.
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