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DIFFERENTIAL SIMPLICITY AND COMPLETE
INTEGRAL CLOSURE

YVES LEQUAIN

Let R be an integral domain containing the rational num-
bers, and let R’ denote the complete integral closure of R,
It is shown that if R is differentiably simple, then F need
not be equal to R’, even when R is Noetherian, and then
the relationship between R and R’ is studied.

Let &7 be any set of derivations of R. Seidenberg has shown
that the conductor C = {xc R|zR'C R} is a “-ideal of R, so that
when R is <r-simple and C = 0, then R = R'. We investigate here
the situation when C = 0.

The first observation that one must make is that it is no longer
true that B = R’ when R is differentiably simple, even when R is
Noetherian. We show this in Example 2.2 where we construct a 1-
dimensional local domain containing the rational numbers which is
differentiably simple but not integrally closed. This counterexamples
a conjecture of Posner [4, p.1421] and also answers affirmatively a
question of Vasconcelos [6, p. 230].

Thus, it is not a redundant task to study the relationship between
a differentiably simple ring R and its complete integral closure. An
important tool in this study is the technique of § 3 which associates
to any prime ideal P of R containing no D-ideal a rank-1, discrete
valuation ring centered on P; by means of this, we show in Theorem
3.2 that over such a prime ideal P of R there lies a unique prime
ideal of R’. When R is a Noetherian < -simple ring with {P.}... as
set of minimal prime ideals, Theorem 3.3 asserts that R’ = V... {E.| R.
igs the valuation ring associated with the minimal prime ideal P,};
Corollary 3.5 asserts that R’ is the largest <7-simple overring of R
having a prime ideal lying over every minimal prime ideal of R.

1. Preliminaries. Our notation and terminology adhere to that
of Zariski-Samuel [7] and [8]. Throughout the paper we use R to
denote a commutative ring with 1, K to denote the total quotient
ring of R, and A to denote an ideal of R; A is proper if A= R. A
derivation D of R is a map of R into R such that

D(a + b) = D(a) + D) and D(ab) = aD() + bD(a)

for all a, be R.
Such a derivation can be uniquely extended to K, and we shall
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also denote the extended derivation by D. D is said to be regular
on a subring S of K if D(S)c S. If & is a family of derivations
of R, A is called a <r-ideal if D(A) < A for every De &; when & =
{D}, we merely say D-ideal. If R has no Zz-ideal different from (0)
and (1), R is said to be & -simple. We use D®’(z) to denote z, and
for n =1 D™ (x) to denote D(D" " (x)), i.e. the »n* derivative of =x;
by induction one proves Leibnitz’s rule:

D®(ab) = 3, CiD"~9(@)D¥(b)

We assume henceforth that < is a family of derivations of R
and that De &. Let ¢: R— S be a homomorphism onto; then

D'(p(r)) = P(D(r))

defines a derivation D’ on S if and only if the kernel I of @ is a D-
ideal. Suppose that I is a <r-ideal, and write =’ to denote the set
of derivations of S thus induced by <7; if A is a <-ideal of R, then
P(A) is a o'-ideal of S, and conversely if B is a &'-ideal of S, then
@ (B) is a —r-ideal of R containing I. Thus, in particular, if A is
a maximal proper <r-ideal of R, then R/A is <’-simple.

LeEMMA 1.1. Let D be a derivation of R, M a wmultiplicative
system of R, and h: R-— R, the canonical homomorphism. Then,
we can define a derivation on R, which we also call D, by

D(h(r)(h(m))~) = [R(m)h(D(r)) — h(r)R(D(m))](h(m?)™ .
Furthermore, if A is a D-ideal of R, then h(A)R, ts a D-ideal of
Ry, and if B is a D-ideal of R,, then h™'(B) is a D-ideal of R.

Proof. ker h = {xe R|axm = 0 for some me M} is a D-ideal of
R since 0 = D(xm) = xD(m) + mD(x) = amD(m) + m*D(x) = m*D(x).
Hence D induces a derivation on R/ker h, a derivation which can be
then extended to R,. The remainder of the lemma is straightforward.

LemMMA 1.2. Let <& be a family of derivations of R, and sup-
pose that R contains the rational numbers. Then, the radical of a
-ideal of R is a Z-ideal.

Proof. See [2, Lemma 1.8, p. 12].

COROLLARY 1.3. If P is a minimal prime divisor of a & -ideal
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A, and P does not contain an integer #0, then P is a =-ideal.
Proof. Localize at P and apply 1.1 and 1.2,

THEOREM 1.4. Let A be a maximal proper <r-ideal of R, then

(i) A s primary.

(ii) If R/A has characteristic p = 0, then VA is a maximal
ideal.

(iii) If R/A has characteristic 0, then A is prime.

Proof. (i) Suppose =, ycR,x¢ A and aye A; then, Uy, (4:
Yy )DA:y > A. But Up,(4:y") is a =-ideal; hence, by the maxi-
mality of A, U7, (4: ¥") = R and there exists n such that y" e A.

(ii) Let P be a maximal ideal of R containing A. Consider the
ideal B = (A, {#* |z e P}) c P; since R/A has characteristic p, B is a
—7-ideal; hence, by the maximality of 4, B= A and P = VA.

(iii) Since R/A has characteristic 0, A contains no integer other
than 0, hence the prime ideal P = 1A contains no integer either, and
by 1.3 P is a <r-ideal. Then, by the maximality of 4, P = A.

COROLLARY 1.5. Let R be of characteristic 0. Then R is -
simple if R contains the rational numbers and has no prime -
ideal different from (0) and (1). If R ts Z-simple, then R is a
domain.

One should note that a <r-simple ring R always contains a field,
namely F' = {xe R | D(x) = 0 for all De =}; moreover, if the charac-
teristic of R is p # 0, 1.4 shows that R is a primary ring and hence
is equal to its total quotient ring; so this case will not be of interest
in our further considerations, and throughout the remainder of this
section we shall be dealing with a <r-simple ring of characteristic 0,
which is then a domain containing the rational numbers.

DEFINITION 1.6. Let R be a domain with quotient field K. An
element xe K is said to be quasi-integral over R if there exists an
element de R, d # 0, such that dae*c R for all » = 1. The set R’ of
all elements of K that are quasi-integral over R is a ring, called the
complete integral closure of R. R is said to be completely integrally
closed if R = R’. Note that if R is Noetherian, the concepts of in-
tegral dependence and quasi-integral dependence over R for elements
of K become the same.

LEMMA 1.7. Let R be a domain with quotient field K, S a ring
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such that Rc Sc K, and <& o family of derivaiions of R regular
on S. Then S is =-simple if R is Z-simple.

Proof. If B is any <r-ideal of S, then BN R is a <r-ideal of
R, and if B is different from (0) then BN R is also different from
(0) since Sc K.

THEOREM 1.8. Let R be a domain of characteristic 0 and R’ its
complete integral closure. Then R' is <r-simple if R is <o-simple.

Proof. By [5, p. 168], any Dec &7 is regular on R’, hence the
theorem follows from 1.7.

2. Example of a 1-dimensional local ring which is D-simple
but not integrally closed. First, in this section, we modify an idea
of Akizuki in [1] to construct some 1-dimensional local ring R of
arbitrary characteristic such that the integral closure R is not a
finite R-module.

THEOREM 2.1. Let k be a field of arbitrary characteristic, Y
an indeterminate over k, T =, Y + @, Y? + «+e +a, Y  + co0 an
element of E[[ Y]] which is transcendental over k[Y]'. Set

01 = ﬂY_l) 01 = (07‘—1 - a'r—l) Y—ZT—l

for r = 2 (alternatively 0, = a, + @y, Y¥ + ooo + a, Y2 + ...); for
r=1, set

tr=(‘9r-ar)2 and ﬂT:ﬂ_(a1Y+"°+a,Y”“l).

Set also T = k[Y,m,t,ty o+, t, -] and P = (Y, m)T. Note that
TCE[Y]] and that P YE[[Y]]. Then,

(i) For r>1,¢, = Y¥ (a2 + t,) + 2a,Y7, and P is a maximal
ideal of T.

(ii) For r= 1,72 = Y "' tr and k(Y,x) is the quotient field
of T.

(iii) The ring R = Tp is a l-dimensional local domain.

(iv) The integral closure R of R is not a finite R-module.

Proof. (i) For » > 1, we have
tra = Oy — @) = (Y770, = Y¥(d} + t,) + 20, Y70, — a,) .
But
Y@, —a,)=Y[r— (Y + -0 + 0, Y] = Yz, ,

! Such an element exists; take for example 7 = a1 Y + a2 Y3+ -+ +a, Y27 -1 4 ...
with ar >0 for every r= 1.
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hence t,_, = Y*(a® + t,) + 2a,Y7w,. Since furthermore P c YEk[[Y]],
l¢ P, and P is a maximal ideal of T.

(ii)
T, =T — (alY 4 oo + aTYZT—I)
= Y?T—l(a7+1Y2T doeee ar+/Y2r+/_z.r + ..-)
oy YZT_.I(QT . a/,.) :

thus 72 = Y* "%, and k(Y, ) is the quotient field of T.

(iii) Let us show that Y belongs to every nonzero prime ideal
of R. Since k(Y, w) is the quotient field of R it suffices to show that
R[Y'] = k(Y, 7). Let Beck[Y,x]; then 8 = D7, s, with s;ek[Y].
For any integer » =1, set f, = S\tos8:(a, Y + +++ + @, Y*™); then

fro= 2 8@ Y + oo 4+ 0,V + a0, Y7) = £ 4 YT,
=0
with %,., ¢ k[Y], and since 2"** — 1 > r, we have f, =b, + b, Y + +--
+b,Y" 4 Y g, and
Sror =0 + b0, Y 4 eee b, Y" + b, Y+ Y7,

with by, +++,0,,b,.,¢k and ¢,,9,.€k[Y]. Now, since
T=7x,+ @Y+ -+ +a, Y1, B:isini:ﬂﬁ,—kﬁ
i=0

with d, ¢ T. Hence, there exists b, b,, «++, b,, +++ €k, 0,y =2+, 0,, -+ T
and g,, +++, g,, +++ € k[Y] such that

*) B = Z b, Y + md, + Yy, .

Note that z,.ec P and therefore that 7, is a nonunit in R.

If b, # 0, with r = 1, the relation (*) gives that 8 =b, + (b,Y +
7,0, + Y?,) is a unit in R and thus that f'e RcCc R[Y].

If b= b, = ++e =b,, =0 and b, = 0, the relation (*) gives 8 =
Y, + Yyg,) + 7,06, where w, = b, + Yg, is a unit in E; then

B(Y w, — 7,8,) = Y¥ruwd — w20 = Y (w: — Y¥ -2 5?)
where w? — Y¥ "2 5 is a unit in R, so that g~'e R[Y].
If b, = 0 for every » = 0, then by the relation (*) we have

Be fj (z,, Y*)T fj Y E[[ Y]] = (0) .

Thus, if geklY, n], either g c R[Y'] or 8 =0. Ifnek(Y,n),
then 7 = v\ with v, vek[Y,7],» %0, so that e R[Y']; hence
R[Y™'] = k(Y, 7).
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Now,
= (Y0) =[a,Y + (0, —a) Y] = ({, —a)) Y* + 20, Y=

so that Y'e R[z'], k(Y, ) = R[Y '] < R[z'], and 7 belongs also to
every nonzero prime ideal of R. Thus PR = (Y, n)R, which is the
unique maximal ideal of R and which is contained in every nonzero
prime ideal of R, is the only nonzero prime ideal of R. As further-
more PR is finitely generated, R is a 1-dimensional local ring.

(iv) First, let us show that 4, = #Y'¢ T. Suppose that ,¢ T =
kY, 7, t, <, ¢, ++-]; then 0, = f(n, t,, -+, t,) where f is a polynomial
in ~+ 1 indeterminates over k[Y]. For r <~ by (i), t, can be ex-
pressed as a linear combination of 1, ¢, and & with coefficients in k[ Y],
hence 0, = f(n, t,, -+-,t,) = F(r, t,) = F(Y0, (6, — a,)*) where F isa
polynomial in two indeterminates over k[Y]. Furthermore, by defini-
tion 0,_, = Y¥ 74, + a,_,, hence 0, = Yz/—20/+ B, with 5,ek[Y] and
we have

%) V0, = G(Y* 0, (0, — a,))

where G is a polynomial in two indeterminates over k[ Y]; but 7 being
transcendental over k[Y], 4, is transcendental over k[ Y] also, and the
relation (**) has to be an identity, which is absurd. Thus, 6,¢ T.
Now, let R* be the completion of R with the (PR)-adic topology;
{7}, 18 a Cauchy sequence in R. Suppose that z,e P*R for some
r = 1; since P? is a primary ideal of T, we haver, ¢ PP RN T = P*c YT,
and 7T =7, + (@, Y + «++ + @, Y¥) e YT which is absurd since 6, ¢ T.
Thus, for every r = 0,7, ¢ P’R and g = lim, 7, is 0. However, we
also have g° = lim, 72 = lim, Y*"'-%, = 0; hence R* has a nonzero
nilpotent element and R is not a finite R-module [1, p. 330].

ExampLE 2.2. Let @ be the rational numbers, (X, +++, X,, ++*)
a set of indeterminates over @ and k& = @(X,, --+, X,, +-+). Let

7=b0XY + s + 06X, Y" 4 ...

be transcendental over k[Y] with b,e @ — {0} for every ¢ = 1°. Con-
struct the rings T = k[Y, n, ¢, ++-, ¢, ---] and R = T, asin 2.1. On

the quotient field (Y, ) = Q(X,, -+, X,, +--; Y, ) define a derivation
D by

D(g) =0 for every qe@Q

DY) =1
D(x) = 3b,X,Y* + bX,
D(X) =0

2 There exists such a = since k is countable.
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D(X,) = —Tbb;' X, Y?
D(X) : (2 — )b, b Xy, Y32

Then,

(i) D is regular on R

(ii) R is a 1-dimensional local D-simple ring which is not inte-
grally closed.

Proof. (i) Since R = T,, it suffices to show that D(T)c R.
By definition of D we already have D(k)c R, D(Y)e R and D(x) € R;
hence it remains to show that D(t,) € R for every » = 1. Differentiat-
ing m = Y¥"'%,, we get 27, D(r,) = Y¥ 2 D(t,) + (27 — 2) Y0
but t,e YR by 2.1, hence D(t,) e R if and only if =, D(x,)e Y 'R,
Let us show that in fact we have D(rx,)e Y¥"'2R. From 7, =7 —
bX,Y we get D(r) = D(x) — b X, = 3b,X,Y? by induction, if we
suppose that D(z,_) = (2" — 1), X,Y** and if we differentiate the
relation 7, = 7,_, — b, X, V¥, we get D(z,) = (2" — 1)b, . X,.,. V¥ e
Y*"'2R. Hence D is regular on R.

(ii) The only prime ideal of R which is not (0) or (1) is PR =
(Y, 7)R; it is not a D-ideal since D(Y) = 1; thus by 1.5, R is D-simple.
Furthermore by 2.1. R is a l-dimensional local, not integrally closed,
domain.

3. On the complete integral closure of a Z-simple ring. We
have seen in the preliminaries that a <r-simple ring of characteristic
p # 0 is equal to it total quotient ring. In this section we are con-
cerned with rings of characteristic 0. Henceforth, R will denote a
ring containing the integers.

THEOREM 3.1. Let R be a ring, D a derivation on R, P a prime
ideal of R containing no D-ideal other than (0). Define v: R\{0} —
{nonnegative integers} by v(®@) =n if DY@)eP for 1 =10, 0, n —1
and D"(x) ¢ P. Then,

(i) R is domain.

(ii) v is rank-1-discrete valuation whose valuation ring R, con-
tains R and whose maximal ideal M, lies over P.

(iii) D s regular on R, and R, is D-simple.

Proof. (i) If m is any integer, D(n) = 0 and nR is a D-ideal
of R; hence 0 is the only integer contained in P. Now, (0) is a D-
ideal, hence by 1.3 any minimal prime divisor @ of (0) is a D-ideal

also; then, by the hypothesis made on P, we have (0) = @ and R is
a domain.
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(ii) Let z and y be two nonzero elements of R, and let v(z) = n,
v@y) = m,n = m. For every ¢ such that 0 <7 < n — 1, both D¥(z)
and D" (y) belong to P, hence D (x + y)e P and

v(@ + y) = n = inf {v(x), v(¥)} .

Let & be such that 0=k =n+m—1. For 0=i=inf{k,n —1}
we have D% (x)e P, hence also CiDW(@)D* ¥ (y)e P; for n <k and
n=i1=<k we have 0=k—i1<k—n=<m—1, hence D*?(y)ecP
and C;D®(x)D*?(y) € P; thus

D(k) (xy) — EI::I C;;'D(i) (x)D(k——i)(y) e P .
Now,

D(n+m) (xy) — ’ng C’f+mD(i)(x)D(n+m—i) (y); El Ci+mD(i)(x)D(n+m—i) (y)

+ 'S CiunD¥ (@)D" (y) € P

i=n-+1
whereas C7,,D™(x)D™ (y) ¢ P since Cp.., D™ (x), D™ (y) ¢ P; thus
Do+ (xy) ¢ P, v@y) = n + m = v@) + vy)

and v is a valuation, rank-1-discrete since its value group is the group
of integers. Furthermore, we obviously have Rc R,and M,N R = P.

(iii) Let ab™ be any element of R, with a,be R, b = 0, v(a) =
v(b); then D(ab™) = [bD(a) — aD®)]b* If v(a) > v(b), then v(D(a)) =
v(a@) — 1 = v(b) and v(D(b)) = v(b) — 1 so that

v(bD(a) — aD(b)) = inf {v(b) + v(D(a)), v(a) + v(D(b)} = 2v(b)

and D(ab?) e R,. If v(a) = v(b) = 0, then v(bD(a) — aD(b)) = 0 = 2v(b)
and D(abY)e R, If v(a) = v®) =mn >0, then v(bD(a)) = v(aD(®)) =
2n — 1, so that D*®(®bD(a) — aD(b)) € P for every k < 2n — 2; further-
more we have

D @D(@) = 3 Ciu DY HD™ (@) = @, + C1. D™ (B)D" @)

with @, ¢ P, and similarly D®**(aD(b)) = «, + Cz,_.D™(a)D"™(b) with
a,e P, so that D®"(bD(a) — aD(b)) = ¢, — a,€ P; hence, v(bD(a) —
aD(b)) = 2n and D(ab™') e R,. Thus D is regular on R,. Moreover,
R, is D-simple since if A == (0) were a D-ideal of R,, then A N R # (0)
would be a D-ideal of R contained in P, which would be absurd.

THEOREM 3.2. Let R be a domain with quotient field K, S «
ring such that Rc Sc K and D a derivation of R regular on S.
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Let P be a prime ideal of R such that R, is D-simple. Then,

(i) There is at most one prime ideal @ of S lying over P, Q
being a minimal prime ideal when P 1s.

(ii) If S is the complete integral closure R’ of R there is ex-
actly one prime ideal P’ of R’ lying over P.

Proof. (i) Let @ be a prime ideal of S such that @ N R = P.
Being regular on S, D is also regular on S,, and S, is D-simple since
S, D R,. Define v: R\{0} — {nonnegative integers} by v(x) = n if

DY (x), +++, D" P(@)e P and D™(x)¢P,
and w: S\{0} — {nonnegative integers} by
w(y) = m if DO(y), +++, D™V (y) e Q

and D™ (y)e Q. By 3.1, v and w extend to valuations of K; further-
more, for xe¢ R we have D*®(x)e P if and only if D" (x)e @ since
QN R = P; hence v = w, and @ = M, N S where M, is the maximal
ideal of the valuation ring R, of v.

If P is a minimal prime ideal of R, suppose that @ is a prime
ideal of S such that 0 < Q' Q. We have 0 < Q@ NRERcCcQNR=P
and @ N R = P by the minimality of P; then @ = @ since @ is the
only prime ideal of S lying over P.

(ii) By [5, p. 168] every derivation of R is regular on R’. Being
a rank-1 valuation ring, R, is completely integrally closed and contains
R'. Then, P'= M, N R is a prime ideal of R’ lying over P; of
course, by (i), P’ is unique.

THEOREM 3.3. Let R be a Noetherian <r-simple ring and R its
integral closure. Let {P.}.., be the set all the minimal prime ideals
of R. Then,

(1) For every awe A, there evists De =7 such that Rp, is D-
simple, and there exists a unique prime ideal P, of R lying over P,.
(ii) {PJue. 15 the set of all the minimal prime ideals of R.

(iii) Let De =&z such that D(P,) & P,, w, the valuation associated
by 3.1, and R, its valuation ring. Then R, = R,sa (hence, any two
derivations D and D' such that D(P,) & P, and D'(P,) & P, give rise
to the same valuation w,).

(iv) R = NacsR0.

Proof. (i) Being <r-simple, R is a domain containing the
rational numbers, and for any « e /4, there exists De & such that
D(P,) « P,, and by 1.3, R, is D-simple. Then, by 3.2, there exists
a unique prime ideal P, of R lying over P,.
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(ii) That every P, is a minimal prime ideal of R is given by 3.2.
Now, let P be a minimal prime ideal of R, and let P= PN R; let M
be a minimal prime ideal of R contained in P; by [3, (10.8), p. 30]
there exists a prime ideal M of R lying over M; since P is the only
prime ideal of R lying over P, we have M < P by [3, (10.9), p. 30],
hence M = P, and P= PN R = M is a minimal prime ideal of R.

(iii) Since R is Noetherian, R is a Krull ring [3, (33.10), p. 118],
and R;,a is a rank-l-discrete valuation ring. As furthermore R;ac R,
we get Rz, = R,.

(iv) R is a Krull ring and {P,},., is the set of all the minimal
prime ideals of R; thus B = MNucs R5, = Nucs Ree

COROLLARY 3.4. Let R be a Noetherian Z-simple ring with
quotient field K. Let S be a ring such that R S c K and such that
every De =7 is regular on S. Then, the following statements are
equivalent:

(i) For every minimal prime ideal P of R there exists a
(unique) prime ideal @ of S lying over P.

(ii) S s tntegral over R.

(iii) For every prime ideal M of R there exists a (unique) prime
ideal N of S lying over M.

Proof. That (ii) = (iii) is a consequence of [3, (10.7), p. 30] and
3.2; that (iii) = (i) is obvious. Now, let {P,},., be the set of the
minimal prime ideals of R, {w,}.., the associated valuations and {R_.}..,
the valuation rings of the w,’s. For any ae 4, let De & be such
that D(P,) & P,, and let @, be a prime ideal of S lying over P,; S,,
is D-simple, the valuation associated to @, is equal to w, and S c R,.

Hence, SC R = Nues Re-

COROLLARY 3.5. Let R be a Noetherian <o-simple ring with
quotient field K, and R its integral closure. Then,

(i) R is the largest =r-simple overring of R in K having a
prime ideal lying over every prime ideal of R.

(ii) R 1is the largest =-simple overring of B in K having a
prime ideal lying over every mimimal prime ideal of R.

Proof. Apply 3.4.

The author wishes to acknowledge the many helpful discussions
on the topics of this paper he had with Professor Ohm.
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